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Abstract: In this paper the development and practical implementation of a Passivity-Based Control (PBC)
algorithm to stabilize an Unmanned Aerial Vehicle (UAV) described with unit quaternions are presented.
First, a mathematical model based on Euler-Lagrange formulation using a logarithmic mapping in
the quaternion space is introduced. Then, a new methodology: a quaternion-passivity-based control
is derived, which does not compute excessive and complex Partial Differential Equations (PDEs) for
synthesizing the control law, making a significant advantage in comparison with other methodologies.
Therefore, the control design to a system as the quad-rotor is easily solved by the proposed methodology.
Another advantage is the possibility to stabilize quad-rotor full dynamics which may not be possible
with classical PBC techniques. Experimental results and numerical simulations to validate our proposed
scheme are presented.

Keywords: passivity-based control; micro air vehicle (MAV); quaternion; real-time validation;
under-actuated systems

1. Introduction

Many efforts have been made to model and control quad-rotor Unmanned Aerial Vehicles (UAVs).
In recent years, a wide number of strategies have been developed to solve the stabilization problem
for this type of system using different methodologies in terms of control techniques and modeling
approaches, such as [1–4]. Several strategies based on Euler angles provide an intuitive and easy
way to visualize the quad-rotor kinematic and dynamical properties, but some obstacles are found
with this representation, for instance, certain orientations can not be defined due to mathematical
singularities, also a problem known as “gimbal lock” exists, which consists on an infinite number of
possible representations for a single rotation. A potential solution for this problem is the use of unit
quaternions to represent the rigid body rotations.

In the last years, several researchers have explored unit quaternions as an alternative to avoid
these kind of issues. For instance, a quaternion-based nonlinear P2 controller, for solving the attitude
problem of a quad-rotor is proposed in [5], the proposed control scheme performs very well with
a very small overshoot and a very good reference tracking, however only numerical simulations are
presented to prove the efficiency of the suggested scheme. In [6], a quaternion-based feedback is
developed for the attitude stabilization of a quad-rotor. The control design takes into account a priori
input bound and is based on nested saturations. The authors forced the closed-loop trajectories to enter
in a fixed neighborhood around the origin in a finite time and remain thereafter. A quaternion-based
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nonlinear robust output feedback tracking controller is developed in [7] to address the attitude and
altitude tracking problem of a quad-rotor, here, approximation components based on neural network
are introduced to estimate the model uncertainties and robust feedback components are designed
to compensate for external disturbances. Also, [8] investigates the attitude control design using
backstepping technique for a quad-rotor represented by unit quaternions, external disturbance torques
were taken into consideration, the attitude and the angular velocity of the quad-rotor were governed
to be uniformly ultimately bounded by the proposed controller. Meanwhile, experimental results and
implementation of a quaternion based attitude robust controller for quad-rotors are presented in [9].
Here, a state feedback controller which compensates nonlinearities and uncertainties is proposed,
attenuating their effects in the closed-loop control system. A robust controller based on quaternion for
the attitude control problem of quad-rotors with a nominal controller and a robust compensator is
proposed in [10]. A quaternion based control scheme for the attitude control problem of a quad-rotor
has been presented and experimentally evaluated in [11]. Recent works of quad-rotor’s control based
on quaternions can be found in [12–16].

Few works based on PBC (Passivity-Based Control) strategies applied to UAVs can be found in the
literature. For example in [17], the authors presented a nonlinear control technique based on passivity
to solve the path tracking problem for the quad-rotor, but only one control loop was considered in their
work. For this work Souza, et al. showed that the PBC formulation leads to a set of partial differential
equations constraints due to the underactuation degree of the system. In [18] the authors proposed a
controller based on an extension of Interconnection and Damping Assignment-Passivity Based Control
(IDA-PBC) framework, for shaping the whole physical characteristics of a quad-rotor and for obtaining
a desired interactive behavior between the vehicle and the environment. In [19] a passivity-based
approach is designed for this vehicle. The authors reduced the problem to the longitudinal plane
to avoid solving complicated PDEs (Partial Differential Equations). A passivity-based control for a
quad-rotor transporting a cable-suspended payload is presented in [20]. Here, the problem is also
reduced to the longitudinal plane to avoid complex PDEs. Finally, a passivity based controller for a
PVTOL (Planar Vertical Take-Off and Landing) is introduced in [21].

On the one hand, observe in these works that it is not possible to use passivity-based strategies
directly to control the vehicle’s full dynamics because certain passivity properties are not satisfied,
i.e., when this methodology is used directly in the classical quad-rotors equations, then only the attitude
can be stabilized. Nevertheless, controllers based on PBC can be used if the dynamics are modified,
this requires the use of more complex algorithms and high computational cost implementations for just
a partial stabilization. On the other hand, IDA-PBC strategy is designed for underactuated systems.
However, it requires computing complex PDEs, many of which may have not solution. The design of
an IDA-PBC for a quad-rotor has this problem. By avoiding the complex PDEs, we can only control
the quad-rotor’s attitude.

Motivated by the aforementioned considerations, in this work we introduce a methodology to
analyze the quad-rotor vehicle using a passivity-based control with unit quaternions. The PBC strategy
is obtained from the mathematical model based on Euler-Lagrange formulation using a quaternion
logarithmic mapping such that a fully actuated virtual system is proposed, then an attitude trajectory
in the quaternion space is used to apply the mathematical restrictions inherent to the quad-rotor.
The resulting control scheme does not compute excessive and complex PDEs and can be designed
directly from the model and can control the full quad-rotor equations. The proposed approach has no
issues with singularities and can be straightforwardly applied in real-time experiments.

The paper is organized as follows: A brief survey of the main concepts of unit quaternions and
passivity is presented in Section 2. The representation of the quad-rotor dynamics in terms of unit
quaternions is described with the logarithmic mapping in Section 3. The quaternion-passivity-based
control is developed in Section 4. Numerical simulations are presented in Section 5. Real-time
experimental results are shown in Section 6. Conclusions and perspectives are finally given in Section 7.
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2. Preliminaries

2.1. Quaternion Background

A quaternion is basically a type of complex number that consists of four values, one of which
is real, while the other three are imaginary [22–25]. The quaternion space is denoted by H. Let q be
a quaternion expresses by:

q = q0 + q̄ = q0 +

 q1

q2

q3

 , q0 ∈ R, q̄ ∈ R3

where q̄ represents the complex vectorial part of q, and q0 denotes the scalar part of q. Note that if
q0 = 0, then q = q̄, thus q ∈ R3, this implies that R3 is a subset of H in which q0 = 0.

The quaternion basic operations are:

• Quaternion multiplication

q⊗ r = (q0 r0 − q · r) + (r0 q + q0 r + q× r)

where r is also a quaternion.
• Norm of a quaternion q

||q|| =
√

q⊗ q∗ =
√

q2
0 + q2

1 + q2
2 + q2

3

In the case that ||q|| = 1, q represents an unit quaternion.
• Quaternion conjugate

q∗ = q0 − q

• Quaternion inverse
q−1 = ||q||−1q∗

If q is unitary, then the inverse and the norm are equivalent.
• The derivative of a quaternion

q̇ =
1
2

q⊗ω

whereω represents the angular velocity.

Any vector in a three-dimensional space can be rotated from one reference frame to another
(for example a body frame), i.e.,

v′ = q∗ ⊗ v⊗ q (1)

where v ∈ R3 and v′ ∈ R3 are in the fixed and body frames respectively.
Any rotation can be expressed by its axis-angle representation, which is composed by a direction

vector ē ∈ R3, ||ē|| = 1 and its angle θ ∈ R, as depicted in Figure 1. This yields to a single vector θ̄ = θē
with θ̄ ∈ R3.

The Euler-Rodrigues Formula then relates this rotation vector to a unit quaternion as

q = cos(θ/2) + ē sin(θ/2) (2)

A logarithmic mapping can be used to change any unit quaternion to the axis-angle representation

θ̄ = 2 ln q, ˙̄θ = ω,
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where

ln q =

 ln ||q||+ q
||q|| arccos

q0

||q|| , ||q|| 6= 0

ln ||q||, ||q|| = 0

Note that (2) implies that ||q|| = 1 , thus the scalar part of the quaternion logarithm is zero,
implying that ln q ∈ R3 ∀ q | q0 = 0.

Figure 1. Axis-angle representation of a rotation.

2.2. Passivity-Based Control Approach

Passivity is a fundamental property exhibited by many physical systems which involves energy
dissipation and transformation. It is related to the notion of stability in an input-output sense, that is,
a system is stable if bounded input energy supplied to the system produces bounded output energy.
Passivity-based control methodology relies on synthesizing control law which render the closed loop
system passive [26].

Let us consider a system described as follows{
ẋ(t) = f (x) + g(x)u(t)
ỹ(t) = h(x)

(3)

where x ∈ Rn, u ∈ Rm and ỹ ∈ Rm, f (x), g(x) and h(x) are smooth functions. There is a function
w [u, ỹ] called supply rate, such that is locally integrable, i.e.,

t1∫
t0

w [u (t) , ỹ (t)] dt < ∞, ∀t0 ≤ t1

If there is a function H(x) ≥ 0, H(0) = 0, such that

H(x(t1))− H (x(t0)) =

t1∫
t0

w [u (t) , ỹ (t)] dt− d(t) (4)

then, (3) is said to be a dissipative system. When w [u (t) , ỹ (t)] = ỹT (t) u (t), (3) represents a passive
system. Here, H(x) represents the storage function and d(t) is the dissipated energy function. For the
system (3), passivity is equivalent to the existence of a scalar H(x) such that,

(∇x H)T f (x) ≤ 0, h(x) = gT(x)∇x H
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2.3. Classical Algorithm Applied to a Quad-Rotor

The PBC strategy seen in the Section 2.2 can not be applied directly to a quad-rotor, since the
vehicle is a under-actuated system. However, the approach IDA-PBC (for further details, the interested
reader is referred to [27]) if can be applied. Hence the main difficulty is in the solution of complex PDEs,
which often can not be computed. Also, it is only possible to stabilize the attitude of the quad-rotor.

We briefly review a classical procedure to design a IDA-PBC algorithm to stabilize a quad-rotor
without using quaternions (for further details, the interested reader is referred to [18]).

From the Euler-Lagrange formulation the dynamic model of a quad-rotor can be expressed as

M(λ)λ̈+ D(λ, λ̇)λ̇+ G = B(λ)u (5)

where the state vector λ =
[

pT ηT
]T

, p =
[

x y z
]T

denotes the position of the UAV,

η =
[
ψ θ φ

]T
are the Euler angles yaw, pitch and roll, respectively. The input vector

u =
[

fth τ
]T

, fth is the total thrust magnitude and τ =
[
τx τy τz

]T
. The matrix B(λ)

is given as

B =


sφsψ + cφcψsθ cφsθsψ − cψsφ cθcφ 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


T

Matrices M(λ), D(λ, λ̇) and the vector G are defined in [28]. Notice that matrix B(λ) is not
invertible. Then, if we applied the potential energy-shaping procedure of IDA-PBC, we can get the
energy-shaping term as [27]

ues = (BT B)−1BT(∇λV −∇λVd) (6)

where V denotes the potencial energy and Vd the desired potencial energy.
The desired potential energy can be obtained from [27]

B⊥ {∇λV −∇λVd} = 0 (7)

A popular choice for the full rank left annihilator B⊥ is [18]

B⊥ =

[
0 −1 cφsθsψ−cψsφ

cθcφ
0 0 0

−1 0 sφsψ+cψcφsθ
cθcφ

0 0 0

]

Thus, substituting the above into (7), it follows that{
∇yVd − cφsθsψ−cψsφ

cθcφ
(∇zV −∇zVd) = 0

∇xVd − sφsψ+cψcφsθ
cθcφ

(∇zV −∇zVd) = 0

The previous implies the next simple solution

Vd(λ) = −V +φ(φ, θ,ψ) (8)

where φ(φ, θ,ψ) is an arbitrary differentiable function that is selected to be a quadratic function.
Introducing (8) into (6) it can be observed that is only possible to control the attitude of the

quad-rotor. Several solutions to stabilize the full dynamics can be found in the literature, for example [17],
nevertheless they propose to rewrite the model in some special forms to apply their approach.
Our contribution to solve this problem is to design a control strategy using a logarithmic mapping and
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an attitude trajectory in the quaternion space. This allows to stabilizes all the system states without
any assumptions in the model.

3. Quad-Rotor Quaternion Dynamic Model

The body diagram of a quad-rotor can be drawn as in Figure 2.

Figure 2. Quad-rotor free body diagram.

Let us consider an inertial coordinate frame I = {ex, ey, ez} fixed to the ground, a body fixed

coordinate frame β = {eb
x, eb

y, eb
z}. Then, the vector ξ =

[
p θ̄

]T
∈ R6 defines all the states variables

of the quad-rotor, where p =
[

x y z
]T

defines the position vector with respect to the inertial frame,

θ̄ = 2 ln(q) denotes the rotation quaternion expressed in its axis-angle notation. f̄th =
[
0 0 fth

]T

defines the thrust vector generated by the four rotors, g =
[
0 0 −g

]T
represents the gravity vector,

τ =
[
τx τy τz

]T
contains the torques applied to the body’s center of mass, expressed on the aerial

vehicle in the body-fixed frame.

3.1. Euler-Lagrange Methodology

The Lagrangian equation is known to be the difference between the kinetic and potential energies

L = K−V, (9)

We can obtain the motion equations applying the following expression

d
dt

(
∂L
∂ξ̇

)
− ∂L

∂ξ
= uu, (10)

where uu = [ f T
u τT

u ]
T represents the input vector, fu expresses the input force with respect to the

inertial frame and τu denotes the input torque to be computed by the control law.
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3.1.1. Kinetic Energy

The total kinetic energy is obtained by the sum of the translational and rotational kinetic energies,
which are obtained using the translational and rotational velocities respectively,

KUAV =
1
2

mṗT ṗ +
1
2

˙̄θT J ˙̄θ, (11)

where m denotes the vehicle’s mass, and J represents the inertia matrix.

3.1.2. Potential Energy

The potential energy is described by the product of the mass, the gravity g, and the height z (the
position in the vertical axis in the inertial frame)

V = mgz. (12)

3.1.3. Lagrangian Expression

Substituting (11) and (12) into (9) the Lagrangian equation becomes

L =
1
2

mṗT ṗ +
1
2

˙̄θT J ˙̄θ−mgz, (13)

Solving (13) with (10) the dynamic equations are obtained as[
fu

τu

]
=

[
mp̈−mḡ

J ¨̄θ

]
. (14)

Thus, the dynamic model can be expressed in matrix form as follows

Mξ̈+ G(ξ) = uu, (15)

where the inertia matrix is given by

M =

[
mI3×3 03×3

03×3 J

]
(16)

which is symmetric and positive definite. The gravitational vector is given by

G(ξ) =
[
0 0 mg 0 0 0

]T
, (17)

3.2. Coupled Dynamics Strategy

Notice that the quad-rotor is an under-actuated system, then the force fu which is expressed in
the inertial frame, is the force f̄th rotated using a quaternion double product

fu = q⊗ f̄th ⊗ q∗ (18)

Since the angular acceleration is given by the external torques and the internal rotational dynamics,
then by Newton’s equations of motion, it follows that

¨̄θ = ω̇ = J−1(τ−ω× Jω) (19)
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thus the relation between the computed control input τu from (14) and the actual applied torque τ
from (19) becomes

τu = τ−ω× Jω. (20)

It is known that the translational and rotational dynamics of the quad-rotor are coupled such that
the direction of the total force fu depends only on the orientation of the UAV given by q, while its
magnitude is equal to the total force given by the four rotors || f̄th||, see Figure 2 and Equation (18).
Then a rotation θ̄d = ēdθd must exist such that f̄th is transformed into fu in the inertial frame.

If the scalar product between these two vectors is defined as

f̄th · fu = || fu||b · fu = || fu||2 cos(θd) (21)

where b = [0 0 1]T denotes the axis on which the thrust acts in the body frame. The cross product is
expressed by

f̄th × fu = || fu||b× fu = || fu||2 sin(θd)ēd (22)

Using some trigonometric identities to introduce (21) and (22) into the Euler-Rodrigues Formula
from (2), a quaternion attitude trajectory qd can be introduced as

qd = (b· fu+|| fu ||)+b× fu
||(b· fu+|| fu ||)+b× fu ||

fth = || fu||
, (23)

which is used to close the loop such that the orientation of f̄th coincides with fu thus the position is
stabilized in the desired reference.

4. PBC Methodology for a Quad-Rotor Using Quaternions

The development of the mathematical model using quaternions simplifies the control law design.
In the sense that the proposed control law is such that the quad-rotor system can be analyzed and
controlled as a fully-actuated system. Also, the proposed control law avoids the issues with singularities.

The idea is to apply the PBC approach to (15). Thus, the total energy is

H(ξ, ξ̇) =
1
2
ξ̇T Mξ̇+ V(ξ) (24)

In PBC methodology, the control input is naturally decomposed into two terms

uu = ues(ξ) + udi(ξ̇) (25)

where the first term is designed to achieve the energy-shaping and the second one injects the damping.
From (4) notice that if we can find ues such that

−
∫ t

0
uT

es [ξ(t)] ỹ(t)dt = Ha [ξ(t)] + k (26)

for some Ha(ξ) and some constant k, then the energy-shaping term ues will ensure that the map
ues → ỹ is passive with the following form for the desired energy function

Hd(ξ, ξ̇) = H(ξ, ξ̇) + Ha(ξ) (27)

where Ha(ξ) represents the supplied energy by the controller. We will require that the function Hd has
an isolated minimum at ξ∗, that is

ξ∗ = arg min Hd(ξ, ξ̇) (28)
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The passive outputs for this system are the generalized velocities, that is ỹ = ξ̇. The easiest way
to shape the energy is by [29]

ues = ∇ξH(ξ, ξ̇)− Kp(ξ− ξ∗) (29)

where ues stabilizes ξ∗ with Lyapunov function the difference between the stored and
supplied energies.

Then, introducing (29) and ỹ = ξ̇ into (26) we can obtain

Ha(ξ) = −V(ξ) +
1
2
(ξ− ξ∗)Kp (ξ− ξ∗) + k (30)

where Kp = KT
p > 0 contains design parameters. Substituting (24) and (30) into (27), it follows that

Hd(ξ, ξ̇) =
1
2
ξ̇T Mξ̇+

1
2
(ξ− ξ∗)Kp (ξ− ξ∗) (31)

The controller (29) can be rewritten as

ues(ξ) = ∇ξH(ξ, ξ̇)−∇ξHd(ξ, ξ̇) (32)

From (32), we can ensure that the map ues → ỹ is passive with (31) as the desired energy function.
The damping injection term is given by

udi(ξ̇) = −Kvξ̇ (33)

where Kv = KT
v > 0 contains design parameters.

To compute the final control law, consider that Kp =

[
Kpt 03×3

03×3 Kpr

]
and Kv =

[
Kvt 03×3

03×3 Kvr

]
.

Now, we first determine the energy-shaping term ues from (32), which, in this case, takes the form

ues =

[
−mḡ− Kpt (p− pd)

−2Kpr ln (qe)

]

Note that the term qe = q⊗ q∗d is the quaternion error between the actual orientation q and the
desired reference q∗d. If the control law is such that ln (qe) → [0 0 0]T , then qe → 1 + [0 0 0]T ,
which implies that the orientation of the UAV converges to the desired reference q → q∗d. Here pd
denotes the desired position.

Hence, we determine the damping injection term udi from (33)

udi =

[
−Kvt ( ṗ− ṗd)

−Kvr

(
˙̄θ− ˙̄θd

) ]

where θ̄d = 2 ln qd, and the matrices Ki > 0, i : pt, pr, vt, vr are composed by the tuning parameters.
From (25) the control law is applied to the model (15) according to the following equivalence:[

Fu

τu

]
=

[
−mḡ− Kpt (p− pd)− Kvt ( ṗ− ṗd)

−2Kpr ln (qe)− Kvr

(
˙̄θ− ˙̄θd

) ]
, (34)

The obtained control law in quaternion space guarantees the stabilization of all the system states
without any change in the model or in the PBC strategy. From (8) can be observed that the PBC
algorithm using Euler angles allows only to control the attitude.
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Control Strategy Comparison

The comparison of various algorithms based on passivity applied to a quad-rotor are summarized
on the Table 1.

Table 1. Qualitative comparison of control algorithms based on passivity applied to a quad-rotor.

Characteristic References

[17] [18] [19] [20] [21] Our work

The algorithm avoids complicated PDEs 1 × × × × X X
Quad-rotor full dynamics control X X × X X X

There is not change in the UAV mechanical structure 2 × × X X X X
Simple real-time experiments × × × X × X

Three-dimensional maneuvers X X × × × X
The algorithm has no issues with singularities × × × × × X

1 The control algorithm allows to compute the control law without solving complex PDEs. PDEs: Partial
Differential Equations; 2 That is when the mechanical structure has not been modified in order to obtain
coupling between longitudinal and lateral movements with roll and pitch motions. UAV: Unmanned
Aerial Vehicle.

5. Numerical Validation

In order to validate the proposed mathematical scheme, the model and control law were simulated
in a computer programming environment.

The control gains were selected beginning from identity matrices and adjusted empirically such
that stable behavior of the system was well appreciated. Kpr and Kpt are adjusted to ensure the
convergence to the desired references for the attitude and position respectively, while Kvr and Kvt

act by reducing the setting time and the overshoot for the rotational and translational dynamics
respectively. The values applied on the simulation are the following

Kpt = kpt I3×3 , Kpr = kpr I3×3

Kvt = kvt I3×3 , Kvr = kvr I3×3

with kpt = 5, kpr = 50, kvt = 4, and kvr = 10.
Our research team makes every effort to validate most of our algorithms in real experimental

platforms. One of the drones we commonly use for tests is the Parrot AR Drone 2 which is cheap and
easy to handle for attitude and position experiments, and was modified with a software framework
that is compatible with other quad-rotors that our team has developed for more specific applications.
For this reason, the mass and inertia matrix for the Parrot AR Drone 2 were needed, thus obtained
from [30], and used in our simulations.

J =

 2.04016 0 0
0 1.56771 0
0 0 3.51779

× 104
[

g cm3
]

m = 430.6 g

Simulation Results

A simulated experiment was designed in which a position reference is given to the quad-rotor.
A sequence of five set-points are defined in a time lapse of 25 seconds, thus following a 1 meter square
at 1 meter height as illustrated in Figure 3.
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pd =



[
0 0 1

]T
, t < 5[

1 0 1
]T

, 5 <= t < 10[
1 1 1

]T
, 10 <= t < 15[

0 1 1
]T

, 15 <= t < 20[
0 0 1

]T
, 20 <= t

(35)

In order to proof in simulation the robustness to unknown bounded perturbations, additive
uniformly distributed noise was considered with bounds empirically chosen between ±0.5 m for the
position, and between ±5% for the orientation, and translational and rotational velocities.
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Figure 3. Quad-rotor’s translation in 3D (3-dimensional) space.

The feedback translational signals plus the additive noise close the loop to calculate the required
force (see Figure 4a) to move the vehicle in the 3D (3-dimensional) space. Note in this figure that the
force in the z axis is stabilized around mg = (0.4306)(9.81) = 4.22 N in order to maintain the vehicle’s
altitude. The control torques are calculated such that the vehicle’s orientation q follows the trajectory
qd, see Figure 4b.
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Figure 4. Control inputs. (a) Control Forces; (b) Control Torques.

The force in the inertial frame is then used to compute the orientation trajectory which will point
the thrust force to the required direction in the inertial frame. Figure 5 illustrates the trajectory tracking



Appl. Sci. 2017, 7, 13 12 of 17

for the vehicle’s attitude, illustrated in axis-angle representation for a better understanding, here,
θ̄ = 2 ln q, and θ̄d = 2 ln qd.
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Figure 5. Vehicle’s attitude and reference quaternions expressed in axis-angle representation.
(a) Quad-rotor’s attitude reference tracking for x axis; (b) Quad-rotor’s attitude reference tracking for y
axis; (c) Quad-rotor’s attitude reference tracking for z axis.

Finally, Figure 6 represents the translational stabilization. In the first one, the position for each
axis is stabilized according to the reference.

The quality indicator IAE (Integral of Absolute Error) is chosen to compare the behavior and
efficiency of the proposed controller with other control techniques for a quad-rotor using a quaternion
representation of the attitude. PD (Proportional Derivative), LQR (Linear Quadratic Regulator) and
backstepping control strategies presented in [12] are selected to compare them with the PBC strategy.
The results of IAE are shown in Table 2.

We can observe that the quality indicators IAE for the four strategies are similar, i.e., they exhibit
a very similar behavior. The two controller with better performance are PD and PBC for the positions
x and y, Backstepping and PBC for the position z.
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Figure 6. Quad-rotor’s translation responses.

Table 2. Comparison of control strategies applied to a quad-rotor.

Strategy Quality Indicator IAE 1

IAEX IAEY IAEZ
PD 1 12.98 12.96 12.31

LQR 1 13.35 13.26 13.15
Backstepping 13.30 13.38 12.07

PBC 1 13.08 13.08 11.98

1 IAE: Integral of Absolute Error; PD: Proportional Derivative; LQR: Linear Quadratic Regulator; PBC:
Passivity-Based Control.

6. Flight Tests

Our proposed strategy was validated with real time indoor experiments using one of our
laboratory’s Parrot AR Drone 2 vehicles (Vedio S1). This UAV’s firmware was modified to work
under a software framework which runs a Linux-based operating system, capable of implementing a
wide range of conceived control schemes. An OptiTrack motion capture system was used to estimate
the vehicle’s position and translational velocity, which was communicated to the drone using a Wi-Fi
LAN, while its internal Inertial Measurement Unit (IMU) was used to measure its attitude quaternion
and angular velocity, this configuration was chosen to maintain a minimal bandwidth usage in the
wireless communications.

A Sony DualShock 3 controller was used to input a 3-dimensional position and velocity trajectory,
which was controlled by one of our team members using joysticks. The generated trajectory was set as
the desired position for the drone. Figure 7 illustrates the UAV’s real trajectory and its reference in
a real time experiment.

The trajectory given by the joystick is considerably fast, making strong movements to prove
robustness. Notice the delay between the quad-rotor’s position and its reference when it is moving,
and the convergence to the desired position when the reference is held static.

A desired control force is then computed using the position error, which is represented in Figure 8.
The z component maintains a negative offset due to a compensation of the gravitational effects.

Since our framework is compatible with three different UAV configurations and models, the thrust
force was set to be dimensionless. This means a force with norm 1 makes the motors output a maximum
thrust, while norm 0 translates in no thrust force.
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Figure 7. Quad-rotor’s position in 3D space.
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Figure 8. Quad-rotor’s control forces in dimensionless units.

An attitude trajectory is now used to rotate the thrust force into the translational control
law’s direction. The orientation controller then, assures the vehicle’s convergence to this reference.
For a better visualization of the attitude dynamics, the equivalent Euler angles of the orientation error
are illustrated in Figures 9a–11a, note the stabilization of around zero.

Finally, Figures 9b–11b represent the stabilization of the position error. Note the proposed control
strategy well stabilizes the quad-rotor, even if the desired trajectories include strong displacements.
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Figure 9. Quad-rotor’s roll and x axis error stabilization. (a) Quad-rotor’s roll error stabilization;
(b) Position error in the x axis.
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Figure 10. Quad-rotor’s pitch and y axis error stabilization. (a) Quad-rotor’s pitch error stabilization;
(b) Position error in the y axis.
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Figure 11. Quad-rotor’s yaw and z axis error stabilization. (a) Quad-rotor’s yaw error stabilization;
(b) Position error in the z axis.
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7. Conclusions

In this work, a mathematical model via the Euler-Lagrange formalism using the axis-angle attitude
representation of a unit quaternion by its logarithmic mapping was presented. The mathematical model
using quaternions was found to be a fully-actuated system and this simplifies the control law design.

A new methodology: quaternion-passivity-based control for a quad-rotor was presented.
The proposed algorithm does not compute excessive and complex partial differential equations for
obtaining the control law. The methodology can be designed directly from the model and can control
the full quad-rotor dynamics.

The developed control scheme avoided the issues with singularities and was found to perform
with good results for the control objective, as shown in the simulations and real-time results.

Future works include the use of this strategy for aerial manipulation tasks.

Supplementary Materials: The following are available online at: www.mdpi.com/2076-3417/7/1/13/s1,
Video S1: Passivity-Based Control for a Micro Air Vehicle Using Unit Quaternions.
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