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Abstract: In this paper, a detailed and systematic derivation of the output filter in a novel dual-input
photovoltaic (PV)-wind converter (DIPWC) is presented. The theoretical derivation is based on
an energy balance principle. While the DIPWC operates in steady state, the amount of charged
energy of the output filter will be equal to that of the energy pumped away within one switching
cycle. From this zero net change in energy, the minimum value of the output filter can be found.
With the determined value, the DIPWC is able to operate in continuous conduction for high power
applications. The developed procedure of the inductance determination can be applied to other
types of dual-input converters. Therefore, it makes significant contributions to the design toward
a green-energy, multi-input converter. To verify the correctness of the mathematical analysis, the
DIPWC—with the derived output inductance—is built and tested. Practical measurements and
results have verified the inductance determination.

Keywords: PV-wind power converter; green energy; multi-input converter; energy balance principle;
inductance derivation

1. Introduction

Nowadays, renewable energies, such as photovoltaic (PV), wind energy and hydroelectric, have
been widely adopted as alternatives to fossil fuels. However, output power of a renewable-energy
generator is highly affected by atmospheric conditions. Therefore, a hybrid power system—including
two or more input sources—has become the design trend for renewable energy processing, in which a
constant output voltage and sustained power supply can be completed [1–6].

A dual-input converter (DIC) can simultaneously deal with two inputs and obtains a regulated
voltage [7–12]. For renewable power applications, a DIC should have the ability to process renewable
energy for each individual input. Even though neither of the inputs has the power to feed, the DIC can
still function well. In addition, the DC-bus voltage of a grid-connected system is normally up to 380 V.
That is, the DIC must be capable of achieving a high step-up feature [13–21]. In order to meet the
marketable requirements, a DIC should have the features of high efficiency, cost-effectiveness, a low
electromagnetic interference (EMI), small size, minimum component counts, and a low current ripple.
In [22,23], an isolated DIC with multi-windings, based on the flux additivity concept, is proposed to
accomplish some of the mentioned features. However, each power MOSFET in the DIC has to be in
series with a reverse-blocking diode, which results in the energy stored in the leakage inductors not
being recycled and causes a high voltage spike on MOSFET during turn-on and turn-off transitions.
Adopting a clamp circuit or snubber may be an approach to alleviate the mentioned voltage spike
and to reduce power loss [24]. Nevertheless, this approach increases the power component count and
cannot improve the voltage conversion ratio.
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In this paper, a novel power DIC is presented, which can process PV power and wind-turbine
energy simultaneously or individually and its so called novel dual-input PV-wind converter (DIPWC).
For continuous current operation and output voltage regulation, the output port adopts a second-order
LC filter in cascade connection to the converter. The inductance of the output filter will dominate
the feature of the DIPWC. However, the determination of the inductance has a sophisticated
procedure. Therefore, this paper will first describe the operation of the DIPWC and then design
the inductance theoretically.

Following the introduction in Section 1, the remainder of this paper is organized as follows.
Section 2 briefly introduces the characteristics of the proposed DIPWC. The circuit operation principle
of the converter and control mechanism are discussed in Section 3. A theoretical analysis for
determining an optimal value of the output inductor is presented in Section 4. To verify the correctness
of the theoretical analysis, a DIPWC prototype with the designed filter is built. Key experimental
results will be illustrated in Section 5. Finally, Section 6 summarizes the conclusions.

2. Characteristics of Proposed Converter

Figure 1 shows the circuit configuration of the proposed DIPWC in this paper, which mainly
consists of two coupled inductors, four power MOSFETs, four capacitors, ten diodes, and an LC filter.
The proposed DIPWC can conceptually be regarded as the integrating of two double-ended forwards
with voltage multipliers. This structure can recycle the energy stored in the leakage inductors, Lk,wind
and Lk,pv, to their corresponding power inputs. By controlling the appropriate power switches with
pulse-width modulation (PWM), the DIPWC can draw renewable energy and then feed power to the
DC bus. The input renewable energy can come from either a PV panel, a wind turbine or both. During
a switch cycle, when all the switches are in an off state, the output inductor Lo has to release energy
to the DC bus to continually provide power. A renewable generation system—to deal with the high
power rating—will accompany a high level of output current. As a result, the DIPWC should operate
in continuous conduction mode (CCM) to lower current stresses of semiconductor devices. This reason
has revealed the importance of the design relating to output-filter inductance.
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Figure 1. The configuration of the presented dual-input photovoltaic-wind converter (DIPWC). 
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Figure 1. The configuration of the presented dual-input photovoltaic-wind converter (DIPWC).

3. Operation Principle

The operation of the DIPWC can be divided into six stages. Figure 2 shows the related equivalents,
while corresponding key waveforms are depicted in Figure 3. In Figure 1, the magnetizing inductances,
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Lm,wind and Lm,pv, are both in CCM. To simplify the circuit analysis, there are some assumptions made
in the following.

(1) In Figure 2, capacitances of C1,wind, C2,wind, C1,pv, and C2,pv are large enough so that all the
voltages across them can be regarded as constant in a switching cycle.

(2) The internal resistances and parasitic capacitances in all active switches are neglected.
(3) All diodes are ideal.

Stage 1 [t0, t1]: Refer to Figure 2a for Stage 1. Switches SW1,wind and SW2,wind are closed, whereas
SW1,pv and SW1,pv are opened. The wind-turbine input voltage Vwind forward energy to Lm,wind via the
loop of Vwind-SW1,wind-Lk,wind-Lm,wind-SW2,wind. Meanwhile, the output inductor Lo and capacitor Co

absorb energy from C2,wind, so that the current flowing through Lo, iLo, increases linearly. The capacitor
C2,pv is charged by the magnetizing inductor Lm,pv. This stage ends as the SW1,wind and SW2,wind are
turned off.

Stage 2 [t1, t2]: The equivalent of Stage is shown in Figure 2b. During this time interval, all
the switches are open. The leakage inductor Lk,wind dumps energy to capacitor Cwind via the loop
of Lk,wind-D1,wind-Cwind-D2,wind. The current of the leakage inductor Lk,wind, iLk,wind, decreases rapidly.
At output, the Lo powers output and its current decreases accordingly. This stage ends when the
current iLk,wind falls to 0.
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Stage 3 [t2, t3]: Figure 2c depicts the equivalent circuit of this stage, in which all the switches are
open. Magnetizing inductors, Lm,wind and Lm,pv, release their energy to C2,wind and C2,PV , respectively.
The capacitor C1,wind charges Co by the loop of Co-D4,wind-C1,wind-D5,wind-Lo. The operation of the
converter enters into the next stage when SW1,pv and SW2,pv are simultaneously turned off.

Stage 4 [t3, t4]: This stage begins at t = t4. Figure 2d illustrates the equivalent. In Stage 4, both
switches SW1,pv and SW2,pv are closed, whereas SW1,wind and SW1,wind are opened. The PV input
voltage Vpv forwards energy to Lm,pv through the loop of Vpv-SW1,pv-Lk,pv-Lm,pv-SW2,pv. The energy
stored in the magnetizing inductor Lm,wind is released to the secondary of the coupled inductor T1 to
charge C2,wind. The inductor Lo and capacitor Co absorb energy from C2,pv; therefore, the current of Lo,
iLo, increases linearly. As the SW1,pv and SW2,pv are turned off again, this stage ends.

Stage 5 [t4, t5]: As referred to in Figure 2e, it can be found that all the switches are in an off state
in Stage 5. The leakage inductor Lk,pv charges capacitor Cpv and its current drops steeply. In addition,
output inductor Lo pumps energy to Co, which results in a linear decrease at current iLo. At the moment
that current iLk,pv drops to 0, Stage 6 begins.



Appl. Sci. 2016, 6, 263 6 of 15

Stage 6 [t5, t6]: Figure 2f shows the equivalent circuit of this stage, in which all the switches are
open. Capacitors C2,wind and C2,pv are charged by magnetizing inductors, Lm,wind and Lm,pv, respectively.
The output absorbs energy from C1,wind via the loop of Co-D4,wind-C1,wind-D5,wind-Lo. When SW1,wind
and SW2,wind are turned on again, this stage ends and the operation of the DIPWC over one switch
cycle is completed.

To achieve MPPT, the simplest MPPT algorithm, the perturb-and-observe method, is adopted
to reach the maximum power point, as shown in Figure 4. The MPPTs for the wind turbine and PV
module are controlled independently. Accordingly, the terminal voltages and currents of the wind
turbine and PV module, vwind, iwind, vpv and ipv, have to be detected for the calculation of each input
power. Then, based on the truth table and the corresponding flowchart, as shown in Table 1 and
Figure 5, respectively, duty ratios of the four active switches are determined for MPPT accomplishment.
All the control is completed by a microcontroller dsPIC30F4011, which is illustrated in Figure 1.
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4. Inductance Derivation

Conceptual waveforms of gate signals and output inductor voltage and current are illustrated in
Figure 6, in which the switches SW1,wind and SW2,wind are closed for DwindTs and SW1,pv and SW2,pv are
closed for DpvTs, respectively. Since the voltage ripple at each capacitor is much less than the average
capacitor voltage, the voltage across the output inductor can be regarded as constant under all switch
statuses. Accordingly, the current flowing through the output inductor will be piecewise linear over
one switching cycle. The derivation of the output inductance of the DIPWC is sophisticated. For a
clear description, the related procedure is summarized as follows.

Step 1: Find the voltages across C1,wind and C1,pv, VC1,wind and VC1,pv.
Step 2: Apply energy balance principle to Lm,wind and Lm,pv to determine the voltages across C2,wind

and C2,pv, respectively.
Step 3: Apply volt-second balance criterion (VSBC) to Lo to determine the output capacitor voltage VCo.
Step 4: After obtaining all capacitor voltages VC1,wind, VC2,wind, VC1,pv, VC2,pv, and VCo, calculate the

voltage levels of Lo during the intervals of DwindTs, DpvTs, and (1 − Dwind − Dpv)Ts.
Step 5: Find the inductor currents at the time points, t = D1Ts, D2Ts, and D3Ts, as shown in Figure 6.
Step 6: Estimate the average current of Lo, ILo,avg.
Step 7: From the equation of ILo,avg obtained in Step 6, find the minimum inductance of Lo for the
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Following the previous seven steps, a detailed derivation of output inductance is presented below.
From Figure 2a, it can be observed that the voltage VC1,wind is n times the magnitude of Vwind if the
leakage inductor Lk,wind is neglected. That is,

VC1,wind = nwindVwind (1)

Meanwhile, the current increment on magnetizing inductor Lm,wind can be estimated by

∆iLm,wind,+ =
Vwind

Lm,wind
DwindTs (2)
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When switches SW1,wind and SW2,wind are both turned off, the voltage polarity of Lm,wind reverses.
The energy stored in Lm,wind will be forwarded to the secondary of the coupled inductor T1 to charge
the capacitor C2,wind, and then the current iLm,wind decreases. The descent is calculated as:

∆iLm,wind,− =
VC2,wind − VC1,wind

nwindLm,wind
(1 − Dwind)Ts (3)

Based on the energy balance principle, that is, net current change in Lm,wind being zero, the voltage
across C2,wind can be expressed as:

VC2,wind =
nwindVwind
1 − Dwind

(4)

Similarly, from Figure 2d, in which the switches SW1,pv and SW2,pv are closed, the voltage VC1,pv and
the current increment on the magnetizing inductor Lm,pv can be represented by:

VC1,pv = npvVpv (5)

and

∆iLm,pv,+ =
Vpv

Lm,pv
DpvTs (6)

respectively. Once SW1,pv and SW2,pv are turned off, the capacitor C2,pv begins absorbing energy from
C1,pv, resulting in current decrease in Lm,pv. The current drop is estimated as follows:

∆iLm,pv,− =
VC2,pv − VC1,pv

npvLm,pv
(1 − Dpv)Ts (7)

In steady state, net current change is zero, which yields:

VC2,pv =
npvVpv

1 − Dpv
(8)

Subsequently, the finding for VCo is discussed. When the switches SW1,wind and SW2,wind
are in the on state, the output inductor Lo will absorb energy from C2,wind via the loop of
Co-C2,wind-n2,wind-D5,wind-Lo. Thus, the voltage across Lo over the time interval DwindTs can be given by:

VLo,wind = nwindVwind
2 − Dwind
1 − Dwind

− VCo (9)

During the interval DpvTs, the switches SW1,pv and SW2,pv are in the on state, which results in the
output inductor Lo absorbing energy from C2,pv via the loop of Co-C2,pv-n2,pv-D5,pv-Lo. In this time
interval, the voltage across Lo becomes:

VLo,pv = npvVpv
2 − Dpv

1 − Dpv
− VCo (10)

As shown in Figure 2c, the statuses of the four switches are open in the remaining time of a switching
period, (1 − Dwind − Dpv)Ts. The inductor Lo releases energy and its voltage is valued as:

VLo,o f f = nwindVwind − VCo (11)

By applying VSBC to Lo and deriving with Equations (9)–(11), the following relationship holds:

[
nwindVwind

2 − Dwind
1 − Dwind

− VCo

]
Dwind +

[
npvVpv

2 − Dpv

1 − Dpv
− VCo

]
Dpv + (nwindVwind − VCo) (1 − Dwind − Dpv) = 0 (12)
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Rearranging equation (12), one can obtain the following representation of VCo:

VCo = nwindVwind[
1 − Dpv + DpvDwind

1 − Dwind
] + npvVpv[

Dpv(2 − Dpv)

1 − Dpv
] (13)

The values of Va, Vb and Vc shown in Figure 6 can be found by substituting (13) into (9), (10), and (11).

Va = nwindVwind(1 + Dpv)− npvVpv
Dpv(2 − Dpv)

1 − Dpv
(14)

Vb = nwindVwind(
Dpv − Dwind − DpvDwind

1 − Dwind
)− npvVpv

Dpv(2 − Dpv)

1 − Dpv
(15)

and

Vc = npvVpv(2 − Dpv)− nwindVwind(
1 − Dpv + DpvDwind

1 − Dwind
) (16)

Once Va, Vb and Vc have been determined, the inductor currents at the time points, t = D1Ts, D2Ts,
and D3Ts, can be readily calculated. The current magnitudes at these time points are Ia, Ib, and Ic, in
turn, which are estimated as follows:

Ia =
Va

L
DwindTs (17)

Ib = Ia +
Vb
L
(D2 − Dwind)Ts (18)

and
Ic = Ib +

Vc

L
DpvTs (19)

In Step 6, the average current of iLo, ILo,avg, is the integral over the period Ts. That is,

ILo,avg = 1
Ts
(
∫ D1Ts

0
Ia

D1Ts
xdx +

∫ (D2−D1)Ts
0

[
Ib−Ia

(D2−D1)Ts
x + Ia

]
dx +

∫ (D3−D2)Ts
0

[
Ic−Ib

(D3−D2)Ts
x + Ib

]
dx

+
∫ (1−D3)Ts

0

[
−Ic

(1−D3)Ts
x + Ic

]
dx)

(20)

Calculating and simplifying the equation (20) results:

ILo,avg =
IaD2 + Ib(D2 + Dpv − Dwind) + Ic(1 − D2)

2
(21)

According to Ampere Second Balance (ASBC), the average current of the output capacitor Co

should be zero. As a result, the current ILo,avg is equal to the load current Io. Then, substituting (14), (15),
(16), (17), (18), and (19) into (21), one can obtain the minimum inductance of Lo for CCM as follows:

Lo =
(−2 + Dpv)Dpv(−1 + 2D2 + Dpv)npvTsVpv − (−1 + Dpv)(Dpv(−1 + 2D2 + Dpv) + Dwind)nwindTsVwind

2(1 − Dpv)Io
(22)

With respect to capacitor design, voltage ripple dominates capacitance determination. Voltage
ripple across a capacitor, ∆vc, can be found by:

∆vc =
∆Q
C

=
ic∆t

C
(23)

where ∆vc stands for charge variation during time interval ∆t, ic is the current flowing through the
capacitor, and C is the corresponding capacitance. The currents of capacitors C1,wind, C2,wind, C1,pv, C2,pv
and Co are iD3,wind, iD4,wind, D3,pv, D4,pv and iLo-Io, respectively. According to the operation principle
discussed in Section 3, the voltage ripples across capacitors C1,wind, C2,wind, C1,pv, C2,pv and Co can be
estimated as follows:

∆vc1,wind =
iD3,windDwind

C1,wind fs
(24)
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∆vc2,wind =
iD4,wind(1 − Dwind)

C2,wind fs
(25)

∆vc1,pv =
iD3,pvDpv

C1,pv fs
(26)

∆vc2,pv =
iD4,pv(1 − Dpv)

C2,pv fs
(27)

and

∆vco =
(iLo − Io)Dwind

Co fs
(28)

From (24)–(28), the capacitances of C1,wind, C2,wind, C1,pv, C2,pv and Co can be readily computed.

5. Experimental Results

To verify the correctness of the theoretical analysis in this paper, a 1-kW prototype with the
specifications summarized in Table 2 is built. The output inductor Lo is designed according to Section 4,
which ensures CCM operation while output power is greater than 500 W. In Figure 7, the output power
Po is equal to 500 W. It can be seen that the inductor current iLo is twice the switching frequency and in
BCM. This experimental measurement of iLo and inductor voltage vLo are identical to the conceptual
waveforms depicted in Figure 6. Output power can be increased by enlarging the duty ratios of active
switches. At 1-kW output, Figure 8 shows that the control signals vsw,pv and vsw,wind are still in an
interleaved pattern but with larger duty ratio than that in Figure 7. In addition, the inductor current iLo
is, indeed, in CCM. To examine the voltage and current stresses of the active switch, Figure 9 shows the
practical voltage vds,wind and current ids,wind at full load, while vds,pv and ids,pv are shown in Figure 10.
The vds,wind and ids,wind stand for the voltage and current of the active switches SW1,wind and SW2,wind,
as vds,pv and ids,pv do for SW1,pv and SW2,pv. Figure 11 indicates that the output voltage can be kept at
400 V with the designed inductance, even if one of the renewable power sources shuts down. The
DIPWC is able to accomplish a high conversion efficiency. Figure 12 depicts the measured efficiency
from light load to full load, in which the peak efficiency is up to 95.4%. The practical measurement
of the MPPT result at full load is shown in Figure 13. After MPPT, Figure 14 shows the steady-state
output voltage of the PV module, vpv, from which it can be seen that the output voltage fluctuates
around a constant. In addition, Figure 15 is the picture of the DIPWC setup.

Table 2. The specifications of the DIPWC.

Symbols Values & Types

vwind (wind-turbine voltage) 120 V
vpv (PV voltage) 80 V

VCo (output voltage) 400 V
Po (output power) 1 kW

fs (switching frequency) 40 kHz
Lm,wind (magnetizing inductance) 1.09 mH
Lm,pv (magnetizing inductance) 1 mH

Lk,wind (leakage inductance) 4.2 µH
Lk,pv (leakage inductance) 4 µH

Lo (output inductance) 584 µH
nwind (turns ratio of T1) 2.12
npv (turns ratio of T2) 2

C1,wind and C2,wind (capacitors) 47 µF
C1,pv and C2,pv (capacitors) 33 µF

Co (output capacitor) 220 µF
SW1,wind and SW2,wind (switches) IXFH120N20P

SW1,pv and SW2,pv (switches) IXFH120N15P
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6. Conclusions

A novel DIPWC to process PV energy and wind-turbine power is first presented and then its
operation principle is explored. The key power component in the DIPWC is the output inductor,
which is designed with a detailed and theoretical derivation. To verify the correctness, a 1-kW
prototype with the designed values is built and measured. Practical results validate the DIPWC.
In addition, the feasibility and high-efficiency feature are also illustrated by the measurements.
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