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Abstract: The paper is concerned with the problem of multi-view three-dimensional (3D) point
cloud registration. A novel global registration method is proposed to accurately register two
series of scans into an object model underlying 3D imaging digitization by using the proposed
oriented bounding box (OBB) regional area-based descriptor. A robot 3D scanning strategy is
nowadays employed to generate the complete set of point cloud of physical objects by using 3D
robot multi-view scanning and data registration. The automated operation has to successively
digitize view-dependent area-scanned point cloud from complex-shaped objects by simultaneous
determination of the next best robot pose and multi-view point cloud registration. To achieve this, the
OBB regional area-based descriptor is employed to determine an initial transformation matrix and is
then refined employing the iterative closest point (ICP) algorithm. The key technical breakthrough can
resolve the commonly encountered difficulty in accurately merging two neighboring area-scanned
images when no coordinate reference exists. To verify the effectiveness of the strategy, the developed
method has been verified through some experimental tests for its registration accuracy. Experimental
results have preliminarily demonstrated the feasibility and applicability of the developed method.

Keywords: robot; 3D scanning; image registration; point cloud; reverse engineering;
surface digitization

1. Introduction

Recently, automated three-dimensional (3D) object digitization, known under various
terminologies such as 3D scanning, 3D digitizers or reconstruction, has been widely applied in many
applications, such as 3D printing, reverse engineering, rapid prototyping and medical prosthetics.
According to the sensing principle being employed, the current solutions can be generally classified
into two main categories, namely hand-guided and automated scanning techniques. Hand-guided
scanning allows for acquiring arbitrary shapes [1,2]. However, the effectiveness of this scanning
method highly depends on the skills of the user and the scanning process is generally time-consuming.
In contrast, the automated scanning solution using turntable-based 3D scanners is faster, less expensive,
more automated, and easier to use. However, it is still not able to reconstruct objects with arbitrary or
complex geometry [3,4]. To enhance the efficiency, the six-axis robot arm integrated with 3D imaging
scanners has recently emerged as a technical developing trend for 3D surface scanning for objects
with arbitrary or complex geometry [5-7]. Both Callieri [5] and Larsson [6] presented a system for
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automated 3D modeling consisting of a 3D laser scanner, an industrial six-axis robot and a turntable.
The advantage of this system is that it automatically achieves the shape of the object from initial
scanning and thus, if possible, will scan the object using an orientation of the scanner which gives the
most accurate result. Meanwhile, an autonomous 3D modeling system, consisting of an industrial
robot and a laser striper for efficient surface reconstruction of unknown objects was proposed by Simon
Kriegel [7]. The system iteratively searches for possible scan paths in the local surface model and
selects a next-best-scan (NBS) in its volumetric model. The data reconstruction of the robotic scanning
systems reviewed above is mainly performed in two steps: data registration and data merge. First, an
initial transformation matrix between two neighboring area scans can be traditionally determined by
using the nominal scanning position of the robot arm or turntable as a starting reference, although
it is not always accurate due to the unavoidable robot positioning errors. Thus, the matrix can serve
as a reasonable initial estimate by using the Iterative Closest Point (ICP) algorithm [8] for further
refinement of the transformation matrix. However, due to the lack of a global registration between
successively scanned data, the existing scanning techniques still fail to robustly satisfy accurate object
digitization with 100% surface coverage. Figure 1 shows two cases that are missing some parts of the
object surfaces after performing automated object digitization using robot scanning.

(@) (b)

Figure 1. Illustration of two series of scans with missing parts of object surfaces. (a) Triangle mesh of

series of scans 1; (b) Triangle mesh of series of scans 2.

The above issue is mainly caused by the fact that 3D sensor cannot measure point data from
the scanned object surface that is in contact with its supporting ground. To resolve the issue, the
object can be reoriented manually or automatically by using a robot grabber. Nevertheless, the
changing orientation of the object produced by these two methods will definitively lose the initial
pose estimate from before and after the orientation change. To estimate the pose transformation,
some existing algorithms, such as local descriptor-based coarse alignment [9-11], use local-regional
surface characteristics. As a general case, to compute the initial pose estimate, the geometric distances
between corresponding 3D points existing in different views are minimized. The most common
correspondences are points, curves and surfaces. The point signature [9] is a point descriptor for
searching correspondences, which describes the structural neighborhood of a 3D point by the distances
between neighboring points and their corresponding contour points. Johnson and Hebert proposed
the concept of a spin image [10] to create an oriented point at a vertex in the surface, which is a
two-dimensional (2D) histogram containing the number of points in a surrounding supporting volume.
More recently, Tombari et al. [11] presented a 3D descriptor called the Signature of Histograms
of OrienTations (SHOT) that encodes information about the surface within a spherical support
structure. These methods generally work well for objects with unique local geometric characteristics.
However, the methods can easily lead to less discrimination or sensitivity when dealing with object
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geometry having symmetrical or plural repeating surface contours. Therefore, modeling scanning
completion with 100% surface coverage still remains one of the most challenging problems in current
3D object digitization.

Thus, accurately registering point cloud of two series of scanned point cloud into the
reconstructed object model without an established coordinate reference has proven to be a difficult
process [8-12]. To overcome the above difficulty, an automated robot scanning system integrated
with a NTU-developed optical 3D measuring probe (NTU represents National Taiwan University) is
developed on a global registration method to accurately register two series of scans into an object model
underlying 3D imaging digitization by using the proposed oriented bounding box (OBB) regional
area-based descriptor. The proposed descriptor is used to register two series of scans by matching the
hardware and basic system configuration as well as data processing algorithms such as preprocessing,
overlapping detection and robot path planning, which have been described in [12].

2. Global Registration Method Based on the OBB Regional Area-Based Descriptor

2.1. Principle Concept and Flow Chart Diagram of the Global Registration Method

To find the transformation between two series of scans that are acquired from multiple single
scans, the OBB regional area-based descriptors of source point cloud are matched with the descriptors
of the target point cloud. Figure 2 illustrates the concept of the proposed registration method based on
the OBB regional area-based descriptor to register two series of scans which are represented by the red
and green point cloud for the target and source 3D point cloud that are scanned and obtained from the
optical probe. Each of the proposed descriptors includes two critical components. The first component
contains the information about the OBB of the point cloud. Each OBB is represented by a datum
corner, C(xc, yc, zc), and three vectors, CC1(Xmax, Ymax, Zmax), CCo2(Xmid, Ymidr Zmid)r CC3Xmins Ymins Zmin)s
corresponding with the maximum, middle, and minimum dimensions of the OBB, respectively. The
second component represents the spatial distribution of the surface area of the object in the OBB. The
similarity between the regional area-based descriptor representing the source point cloud and the
regional area-based descriptor representing the target one is then determined by using the normalized
cross-correlation.
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Figure 2. The proposed registration method based on the OBB (oriented bounding box) regional
area-based descriptor.
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To make the proposed method clear in its operation procedure, the following flow chart diagram,
shown in Figure 3, as well as Algorithm 1, is used to describe the proposed method in its main five
steps. In step 1, the boundary points located near the scanning point missing zone can be detected
through the geometric relationship with the support plane, using a set of connected edges that satisfy
two conditions, in which all the boundary edges in the point missing zone have a similar orientation
and each edge lacks an assigned triangle, either on the left or on the right side [7]. Then, the oriented
bounding box (OBB), which is a rectangular bounding box that covers all the object point cloud,
is determined in step 2. In the next step, the generation of the descriptors of the point cloud is
performed. Then, the matching process between the descriptors is implemented and achieves the
initial transformation that can be used for further refined registration using ICP.

2nd Series

1st Series

Scans P Scans Q

[Estimate and enclose] [Estimate and enclose]

the missing region the missing region

Determination Determination

of OBB of P of OBB of Q

Generation of Generation of Descriptors
Descriptor of P Database of Q
FVp FVoo, FVor, ..FVon) y

Transformation

Descriptors

Matching Estimation and

Refinement

Figure 3. The flow chart diagram of the proposed method.

Algorithm 1

Input: Two series of scans P and Q

Output: Transformation matrix

1 Estimate the boundary of the missing points and enclose the missing regions

2 Determine individual OBBs of the two series of scans

3 Generate the descriptors of P and Q

3.1 Calculate the OBB regional area-based descriptor of P

30 Translate the OBB of P to Q using the translation matrix defined by the centers of gravity

’ of P with its estimated missing points and Q with its estimated missing points

Rotate Q around the three axes of the coordinate system defined by the center of gravity
of Q as the origin and the three unit vectors considered as the three directions of the OBB

3.3 . . . . . .
of point cloud P with every increment AD on each axis, generating the OBB regional
area-based descriptors of Q

4 Match the descriptors between P and every Q having an increment A6 of rotation

performed in Step 3.3

5 Determine the best machine and obtain the initial transformation matrix
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2.2. Estimation of Missing Regions and Initial Translation

Assuming that two series of scans to be registered are represented as two sets of unorganized
points P = {p1, p2, ..., px} and Q = {91, 92, - .. , &}, the initial transformation, which represents the
coarse alignment between the two series, can be estimated as follows.

If P and Q represent the same free-form shape, the least squares method can be used to calculate
the initial rotation and translation by minimizing the sum of the squares of alignment errors. Let E be
the sum of the squares of alignment errors. Accordingly,

k k
E=> lell? =Y 1lpi—R-g;—tII? 1)
i=1

i=1

where R is the rotation matrix, ¢ is the translation vector, p; and g; is the corresponding point pair
between the P and Q point clouds.

Let p be the centroid of the set of corresponding points in P {p1, p, . .. , px} and 7 be the centroid
of the set of corresponding points in Q {41, g2, . . . , gx}. Then p and § can be defined as:

1 k
P= P @)
i=1
1 k
T= 20 ©)
i=1
The new coordinates of points are denoted by:
pi=pi—p 4)
qi=qi—1 3)

Note that:

k
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The registration error term is then expressed and rewritten as:
/ / /
ei=pi—R-gi—t=p;—R-q;—t ®)

wheret/ =t—p+R-gq
The sum of the squares of the errors becomes:

k 2
E=3% llp,—R-q;—tIl
i=1

k
p}=R-qi11* =2t 3 [pl = R-gf] +k11#117 ©)
i=1

i

pl—R-g 12+ kI

[l
ISR

The first term in Equation (9) does not depend on #'. Therefore, the total error is minimized if
t' = 0, and then:
t=p-R-g (10)
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Therefore, the initial translation matrix can be computed based on the difference between the
centroid of P and the centroid of Q.

In addition, the weight loss at the missing parts of two the scan series may result in a significant
bias between the translation matrix being estimated (by the difference between the centroid of P and
the centroid of Q) and the real translation matrix. The shifting of two gravity centers (the red and
green points shown in Figure 4) being created using a virtual camera from a model having the centroid
(white point) in Figure 4a illustrates the influence of weight loss from the missing points to the centroid
point position. Assume that the two point sets are separated as shown in Figure 4b. The accurate
translation matrix to merge set Q (green point cloud) with set P (red point cloud) is defined through the
difference between the current centroid of P and the original centroid of the green point cloud (green
points). Therefore, it is necessary to estimate the original centroid of P on the object for translation.

(@) (b)

Figure 4. Improvement of translation: (a) The influence of weight loss from the missing points to the
centroid point position; (b) Two point sets are separated; (c) Detection of the boundary points located
near the missing part.

The boundary points located near the missing part can be detected through the geometric
relationship with the support plane and using a set of connected edges that satisfy two requirements,
in which all edges have a similar orientation and each edge lacks an assigned triangle, either on the
left or on the right side [7] (as shown in Figure 4c). Then, the Random Sample Consensus (RANSAC)
algorithm [13] is used to fit a mathematical model to the boundary and enclose the missing region by
adding extra points. Therefore, the initial translation matrix can be computed based on the difference
between the centroid of enclosed P and the centroid of enclosed Q. From now on, P and Q are referred
to as enclosed P and enclosed Q, respectively.

2.3. Determination of Oriented Bounding Box (OBB)

The oriented bounding box is a rectangular bounding box that covers whole object point cloud.
Each OBB is represented by a corner, C(x, ¥, zc), and three vectors, CC1(Xpuax, Ymax, Zmax), CCo2(Xmid,
Ymidr Zmid)r CC3Xpmins Ymins Zmin), corresponding with the maximum, middle, and minimum dimensions
of the OBB, respectively (as shown in Figure 5). The orientations of the OBB can be determined by
using the covariance-based method, which is proposed by Gottschalk (1996) [14]. The algorithm is
started by obtaining the centroid p (¥, ¥, Z) of the object point cloud:

n
Dz (11)
i=1

X =

|-

S|
=
S|
=

Xi Y= i z=

i=1 i=1
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where 7 is the number of points in the object point cloud. The covariance matrix of the input point
cloud COV is then computed as follows:

cov 1S =P i-p)
S-S w-Dm-7 N -T2
" i=1 i=1 " 1?1 (12)
3| ZE-DE-n X (vi — ) X W=7 =32)
é (xi— %) (21— 2) é vi—7) G -2) é (2 — 2

Figure 5. The oriented bounding box of a point cloud.

The above matrix has three real eigenvalues, A\; > A; > A3, and three normalized eigenvectors,
01(v11, V12, V13), V2(V21, V22, ¥23), and v3(v31, V32, U33), respectively. These eigenvectors are considered as
the three directions of the OBB. By projecting all points in the object point cloud onto the eigenvectors,
three dimensions of the object can be determined as the distance between the nearest and farthest
projected points in each eigenvector. Considering the coordinate system with the origin p and three
unit vectors v1, vy, and v3 (as shown in Figure 6), the coordinates of the point p;(x;, y;, z;) in this
coordinate system are determined by following equation:

x'; vie1 v1ex vie3 X;i—X
, _
Y | = | ver viex voes yi—y (13)
z'; v3e] T3z U3€3 z;—Z
, _
X 011 Y12 013 Xi—X
, _
Vi | =] vt v 023 vi—y (14)
, z
Z'i U31 U3 Us3 Zji—2
x/l- X;—X
, _
Vi | =T vi—y (15)
Z/i Z;—2Z

where e, e, and e3 are the three unit vectors of the original coordinate system.
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Figure 6. The coordinates of point p; (green dot) in the absolute and relative coordinate systems.

Note that matrix T is the orthogonal matrix. It means that T~! = TT.

Let:
X ypin =min{x’y, i =1,.., n}, ¥ par = max {xy, i =1,.., n}
Vopin =min{y/, i=1,..,n}, v, = max{y,, i=1,.., n}
2 in = min{z’i, i =1,.., n}, 2/ pax = max{z';, i =1,.., n}

The parameters of the OBB can be determined as follows:

xc =X + 011X in + 020V iy + 312 min

ye =+ 012X min + 022V in + 0322 min (16)
= / / !

ZCc = Z + 013X min + 023Y 1in T U33Z min

CC = (xlmax - xlmin) Gt
CG = (y/max - ylmin) 02 17)
CGCs = (Zlmax - Z/min) (%

2.4. Generating Descriptors of Point Cloud

2.4.1. The OBB Regional Area-Based Descriptor

Each proposed feature descriptor includes two components [15]. The first component contains
the information about the OBB of the point cloud. Each OBB is represented by a corner, C(xc, yc, zc),
and three vectors, CC1(Xmax, Ymax, Zmax), CCo(Ximids Ymidr Zmid), CC3Xmin, Yimin, Zmin), corresponding with
the maximum, middle, and minimum dimensions of the OBB, respectively. The second component
represents the distribution of the surface area of the object in the OBB. We assume that the three
directions of the OBB are divided into k1, ky, and k3 segments (as shown in Figure 7a); the total number
of subdivided boxes in the OBB is n = k; x ky x k3. The surface area of the object in each subdivided
box Vi (i=0,..,.k —1;j=0,..,.kp = 1,k=0, ..., k3 — 1) is denoted as fo, where v = k(k1k2) + j(k1) + I;
fv can be determined by subdividing the considered surface into the triangle mesh [16] (as shown in
Figure 7c). The distribution of S, is defined as the regional area-based descriptor, shown in Figure 7d.
Thus, the feature descriptor FV can be described as follows:

FV:{ClccllCCZICC3IfOI'"/fU/"'Ian} (18)
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Figure 7. Illustration of the regional area-based descriptor. (a) The OBB of the object is subdivided into

smaller boxes; (b) The object point cloud and OBB; (c) Triangle mesh is generated over the point cloud

data; (d) the regional area-based descriptor of the object.

2.4.2. Generating Database and Calculating Descriptors

{Cp; CpCip,

, n} in the OBB of P. Then we shift the OBB of P to Q using the translation

matrix defined by the centers of gravity of P and Q. We consider the coordinate system Ogx;y4z; with

vy, and v3, which are considered

0,...

Firstly, the regional area-based descriptor of point cloud P is computed as FVp

CpCap, CpCsp, fro, v
the origin O is the center of gravity of Q and three unit vectors vy,

as the three directions of the OBB of point cloud P. Rotating Q around the three axes of the coordinate

, the regional

system Ogx,y,z, is performed with every increment A0 on each axis. For each rotation

, 1}

v=0,...

CiC20i, CrC30i, fou,s

CoiC10is
which can be then determined as described as Algorithm 2. To enhance the accuracy, the descriptors

{Cois

area-based descriptor Q in the OBB of P is FVy;

FVp and FV; can ignore the subdivided boxes in which the missing parts of point cloud P are located.
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Algorithm 2. Generation of database

Input: Series of scans Q = {41, q2, - . - , qu}, the OBB of P

Output: A set of descriptors of Q at different poses
forl=0,1,2,..,21/A0
forj=0,1,2,...,7/A6
fork—O 1,2,..,(n/2)/ A6
0y = Z*AG 0yj =j*AB, 0 = k*AO
R=Ry (0y) Ry (ex]) Rz (621)
Q5 Q;
FVQiZ{le'U,UZO,... ,I’Z}
end_for
end_for
end_for

2.5. Matching Descriptors

In the first step of the matching process, the OBB’s parameters of point cloud P are compared with
the OBB'’s parameters of point cloud Qi. If the OBB matching satisfies the given condition, the regional
area-based descriptor of point cloud P is then compared with the regional area-based descriptor of Qi.
These two OBBs should be satisfied with the following equation:

CpCp1.CoCo1

TCpCpy 1T 11CoCon 1T = Xthresh
CpCp2 CQCQZ

TCpCra 1T-TCoCop 1T < Xthresh (19)
CpCps. CQCQ3 <

MCpCps IT.TTCoCqs I thresh

where oy, is the given adequate threshold.

The similarity between the regional area-based descriptors that represent the object point clouds
P and Q is determined by using the normalized cross-correlation. The normalized cross-correlation
between Fp = {fp,, v =0, ... ,n}and Fg = {fg,, v =0, ..., n} is computed as follows:

Z (va 713) (va _JTQ)
Fp, FQ - - (20)
Z va fP 'ZEO (va_7Q>

v=0

— n — n
where fp = i1 X fro fo = 1 23 foo
U= =
The matching is the best in Equation (20) in which the normalized cross-correlation C (Fp, Fg)
reaches its peak.

2.6. Transformation Estimation and Refinement

After the best matching is defined, the correspondence feature vectors FVp and FV can be
determined. Based on these feature vectors, the initial transformation matrix T}, between two
series of scans can be estimated by aligning the frame {Cg, vg1, vg2, vg3} that represents the series
of scans 1 to the frame {Cp, Ugpest1, VQrest2, UQnest3} that represents the series of scans 2. Although
the parameters of the transformation matrix can be obtained in the initial registration, the accuracy
may not be satisfactory due to the error caused by the limited number of the rotating Q iterations.
Fortunately, a refined registration such as the iterative closest point (ICP) algorithm can be performed
to achieve precise registration between multi-view point cloud.
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3. Results and Discussion

3.1. Case Study on Measured Data

To verify the feasibility of the developed methodology, some experiments were performed
and evaluated. In the experiments, the point cloud of a hammer head were acquired from the
NTU-developed optical 3D measuring probe being developed by using a random speckle pattern
projection and triangulation measurement principle [12,15]. The dimensions of the hammer head are
approximately 110 x 35.5 x 21 mm?. Firstly, the hammer head was placed on a fixed table, allowing
for viewing the object from several positions around the object. However, the whole object surface
could not be detected due to optical occlusion. Therefore, after the first series of automated scans to
obtain point cloud P, the object was reoriented manually and the second series of automated scans
was continuously carried out to acquire point cloud Q. Figure 8 illustrates the coarse registration
process between the two series of scans. The width of the normalized cross-correlation peak depends
on the number of iterations and A6, as shown in Figure 9. Meanwhile, the height of the normalized
cross-correlation depends on the number of OBB segments k1 x kp x k3 and A8.

Point Clouds Q

Rotation

Y%

©

l {

Point Clouds P FVgo, FVp FVoi, FVp EVon , FVp

Best Matching

(h)

(k) Y

@

Figure 8. The coarse registration process between series of scans point cloud P and series of scans
point cloud Q: (a) hammer point cloud Q from the first series of scans; (b—d) rotation of point cloud
Q; (e) hammer point cloud P from the second series of scans; (f-h) the OBB regional area-based
descriptor of P and Q; (i) overlap rejected model after refine registration; (j-1) the triangle meshes of
the hammer head.
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Figure 9. Normalized cross-correlation curves given by Equation (11): (a) the coarse registration with
rotation A8 = 1/60 and oresh = 71 (b) the coarse registration with rotation A8 = /60 and Xhresh =
1/10; (c) the coarse registration with rotation A8 = 71/180 and &pesn, = 71/30 (OBB segments: k1 x ky x
k3 =4 x 5 x 6); (d) the coarse registration with the rough rotation estimate before a rotation increment
AB =7/180 and Xypresh = 7/ 30 (OBB segments: ky x ky x k3 =9 x 10 x 11).

The performance of the registration can be estimated by using the distance from each overlapping
point g; in point cloud Q to the fitting control point p; which is the projected point of g; onto the triangle
mesh of P. If d; denotes the distance between a point p; in P and its closest neighbor point g; in Q, the
mean distance p and standard deviation o, which are used to evaluate the performance of the object

registration, are computed as follows:

n= 13, @D
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(22)

In this experiment, the mean deviation value is 0.0347 mm and the standard deviation value is
0.0235 mm. Figure 10 illustrates the other examples being achieved by the developed method.

Figure 10. The triangle meshes of three objects being scanned by the developed method.

3.2. Case Study on Synthetic Data

In this section we provide a discussion on the influence of parameters on the performance of the
proposed method. In addition, a comparison against several already published local feature descriptor
methods is also introduced. The considered approaches are: Spin Images (SI), Point Signatures
(PS), Point Feature Histograms (PFH), and the Signature of Histograms of OrienTations (SHOT).
All methods were implemented in C++ using the open source Point Cloud Library (PCL). To estimate
the computation cost of the registration process, the experiments are processed on a computer with an
Intel core i7 processor with 3.40 GHz and 8 GB RAM.

In real application, it is very difficult to distinguish different error sources such as shape
measurement error (noise, surface sampling, efc.), correspondence error (occlusion, outliers, efc.),
and registration error. In order to evaluate the coarse registration errors, we have generated synthetic
data, which is provided by the Industrial Technology Research Institute (ITRI) (as shown in Figure 11).
The dimensions of the socket model, connector model, cylinder model, and Brazo Control model are
45 x 25 x 25 mm3, 41 x 33 x 25 mm?, 35 x 35 x 35 mm?, and 86 x 53 x 30 mm?, respectively. Then,
the point cloud corresponding with different views of the models are extracted by the NTU-developed
virtual camera software (Precision Metrology (PM) lab, National Taiwan University, Taipei, Taiwan).
The motion between green and red point cloud is a displacement of 50 mm in each axis and a rotation
of /4 around a fixed axis. Therefore, we have precise knowledge of the motion parameter rotation
matrix R and translation vector ¢ to serve as a reference for error estimation and validation of the
coarse registration methods. The measures used to determine the accuracy include the rotation error
and translation error. In order to evaluate the accuracy, the estimated transformation is compared to
an expected one.
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Figure 11. The synthetic data used in experiments: (a-d) CAD models of the objects; (e-h) point cloud

of the objects; (i-1) point cloud of the objects from the virtual camera.

Results obtained show that sampling does not considerably affect the accuracy of the registration
results. Thus, low resolution surfaces can be used in the proposed approach to reduce the computation
time. Meanwhile, as is shown in Table 1, errors in the proposed registration algorithms extremely
depend on the rotation increment A0 (rad). To enhance the accuracy, the rotation increment should
become smaller. However, the increment has a significant impact on the runtime of the proposed coarse
registration process. As an example, the experiment with 1000 points in Table 1, with computation
time in the case A8 = 0.01 (rad), at 126.439 (s), was much higher than that in the case A8 = 0.05 (rad), at

only 1.063 (s).

Table 1. Experimental results using the connector model obtained by the proposed coarse registration

method with different samplings and increments A6.

Points Increment AO (rad) Translation Error (mm) Rotation Error (rad) Time (s)
0.05 1.371 0.036 1.063
1000 0.02 1.371 0.017 15.328
0.01 1.371 0.009 126.439
0.05 1.352 0.039 7.244
5000 0.02 1.352 0.013 110.212
0.01 1.352 0.012 904.237
0.05 1.368 0.035 18.332
10,000 0.02 1.368 0.015 203.795
0.01 1.368 0.009 1762.824

Another important characteristic of the developed method is the total number of subdivided boxes
in the OBB, n = k; x ky x k3. From Table 2, it can be seen that if the OBB contains many subdivided
boxes, it is more expensive to find the best rotation. For a fast registration procedure, fewer subdivided
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boxes are preferable. However, it is also required that the number of subdivided boxes is great enough
to achieve the expected rotation. For instance, in the experiment using a connector model of 1000
points, the rotation error rose to 0.057 (rad) for the OBB of n =k; x kyp x k3 =4 x 5 x 6, while it reached
just 0.017 (rad) if the OBBof n=k; x ky x ks =7 x 8 x 9.

Table 2. Experimental results using the connector model obtained by the proposed coarse registration
method with different numbers of the oriented bounding box (OBB) segments ky x kp x k3.

OBB Segments: kq

Points Translation Error (mm) Rotation Error (rad) Time (s)
X kz X k3
4x5x%x6 1.371 0.057 4.052
1000 7x8x%x9 1.371 0.017 15.328
10 x 11 x 12 1.371 0.017 50.953
4x5x%x6 1.352 0.073 43.570
5000 7x8x9 1.352 0.013 110.212
10 x 11 x 12 1.352 0.013 329.641
4x5x6 1.368 0.035 67.327
10,000 7%x8x%x9 1.368 0.015 203.795
10 x 11 x 12 1.368 0.015 936.841

Besides, the ratio of the overlapped area is especially crucial. As shown in Table 3, translation
and rotation errors in the proposed approach grow in direct proportion to the percentage of the
non-overlapping region. This change is especially significant with over 40% of the outliers. This is
because it is difficult to estimate translation exactly without a high level of overlapping. The excellent
results are obtained for over 80% of shape the overlapping. In this case, the translation and rotation for
tested models were at under 1.5 (mm) and 0.02 (rad), respectively. As described in the Introduction, the
proposed registration method is developed to register two series of surface scans which exist with a
certain degree of optical occlusion from each individual viewpoint of the probe scanning. To accurately
register two series of scans under such a circumstance, it is important to have them overlap as much
as possible. However, realistically, the overlapped ratio really depends on the complexity of the
scanned object’s geometry and how the object is placed on the rotation table. In general, the higher the
overlapped ratio between two series of scans, the more accurate the registration that can be achieved.

Table 3. Experimental results using the connector model obtained by the proposed coarse registration
method with different ratios of overlapped area.

Models Ratio of Translation Error (mm) Rotation Error (rad) Time (s)
Overlapped Area

90% 1.066 0.013 15.328

80% 1.371 0.017 13.543

Connector 60% 2.452 0.042 10.476
50% 5.796 0.137 9.548

30% 12.347 0.532 7.365

90% 1.023 0.012 16.462

80% 1.455 0.015 13.443

Brazo 60% 2.674 0.044 11.348
50% 5.357 0.159 8.348

30% 15.642 0.758 6.769

The result of Table 4 reveals the performances of the proposed approach and 3D key point
descriptors. It shows that the developed method in this paper outperforms in registration accuracy
with reasonable operation efficiency. As we know, one significant common problem using feature
descriptors is that they usually fail to deal with object geometry that has symmetrical or plural repeated
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surface contours. We demonstrate the developed approach by using four test cases comprising two
regular shapes, a Brazo and a connector, and two featureless models, a cylinder and a socket with
80% shape similarity which was provided by the Industrial Technology Research Institute (ITRI)
(as shown in Figure 11). Given the reported results, it is clear that the proposed approach performs
more accurately than the other methods on all the tested data. The computation efficiency of the
proposed method is approximately the half of the fastest method, the Signature of Histograms of
OrienTations SHOT. However, its time efficiency still ranks within a reasonable range.

Table 4. Experimental results using synthetic data obtained by the proposed method and local feature
descriptor methods.

Models Method Translation Error (mm) Rotation Error (rad) Time (s)
Spin Images (SI) 5.893 0.074 6.762

Point Signatures (PS) 3.642 0.056 103.433

Brazo PFH 4.543 0.047 43.232
SHOT 2.632 0.053 5.432

Proposed 1.371 0.017 13.543
Spin Images (SI) 7.443 0.093 8.342

Point Signatures (PS) 5.378 0.053 123.533

Connector PFH 6.313 0.077 48.436
SHOT 3.472 0.023 7.922

Proposed 1.174 0.014 17.468
Spin Images (SI) 6.421 1.235 9.672

Point Signatures (PS) 8.432 2.348 103.573

Cylinder PFH 3.445 1.764 34.562
SHOT 5.472 0.973 4.358

Proposed 1.421 0.013 12.667
Spin Images (SI) 9.243 2.645 9.457

Point Signatures (PS) 9.831 2.569 103.376

Socket PFH 5.219 1.323 52.436
SHOT 4.642 1.873 5.782

Proposed 1.684 0.015 13.578

To test the noise influence, the synthetic experiments were carried out with respect to three
different levels of Gaussian noises: o = 0.01, 0.02 and 0.03 (standard deviation). The coarse registration
results on the connector point-sets are shown in Table 5. We found that the proposed approach is able
to achieve acceptable results with a certain level of noise.

Table 5. Experimental results using the connector model obtained by the proposed coarse registration
method with different levels of Gaussian noise.

Points Gaussian Noise (0) Translation Error (mm) Rotation Error (rad) Time (s)
0.01 1.339 0.018 20.862
6000 0.02 1.481 0.019 20.277
0.03 1.585 0.021 20.839

4. Conclusions

In this study, a global registration method is developed to overcome one of the most challenging
problems remaining in current 3D scanning systems for accurate image registration, even with no
reference coordinate existing between the neighboring scanned surface patches. The key innovation in
this work is the strategy in determining a robust registration transformation between two neighboring
scans. The experimental results demonstrate the validity and applicability of the proposed approach.
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The registration error can be controlled within a few tens of micrometers in one standard deviation for
an object size reaching 100 millimeters.
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