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Abstract:

 Time-scale modification (TSM) is the task of speeding up or slowing down an audio signal’s playback speed without changing its pitch. In digital music production, TSM has become an indispensable tool, which is nowadays integrated in a wide range of music production software. Music signals are diverse—they comprise harmonic, percussive, and transient components, among others. Because of this wide range of acoustic and musical characteristics, there is no single TSM method that can cope with all kinds of audio signals equally well. Our main objective is to foster a better understanding of the capabilities and limitations of TSM procedures. To this end, we review fundamental TSM methods, discuss typical challenges, and indicate potential solutions that combine different strategies. In particular, we discuss a fusion approach that involves recent techniques for harmonic-percussive separation along with time-domain and frequency-domain TSM procedures.




Keywords:


digital signal processing; overlap-add; WSOLA; phase vocoder; harmonic-percussive separation; transient preservation; pitch-shifting; music synchronization








1. Introduction


Time-scale modification (TSM) procedures are digital signal processing methods for stretching or compressing the duration of a given audio signal. Ideally, the time-scale modified signal should sound as if the original signal’s content was performed at a different tempo while preserving properties like pitch and timbre. TSM procedures are applied in a wide range of scenarios. For example, they simplify the process of creating music remixes. Music producers or DJs apply TSM to adjust the durations of music recordings, enabling synchronous playback [1,2]. Nowadays TSM is built into music production software as well as hardware devices. A second application scenario is adjusting an audio stream’s duration to that of a given video clip. For example, when generating a slow motion video, it is often desirable to also slow down the tempo of the associated audio stream. Here, TSM can be used to synchronize the audio material with the video’s visual content [3].



A main challenge for TSM procedures is that music signals are complex sound mixtures, consisting of a wide range of different sounds. As an example, imagine a music recording consisting of a violin playing together with castanets. When modifying this music signal with a TSM procedure, both the harmonic sound of the violin as well as the percussive sound of the castanets should be preserved in the output signal. To keep the violin’s sound intact, it is essential to maintain its pitch as well as its timbre. On the other hand, the clicking sound of the castanets does not have a pitch—it is much more important to maintain the crisp sound of the single clicks, as well as their exact relative time positions, in order to preserve the original rhythm. Retaining these contrasting characteristics usually requires conceptually different TSM approaches. For example, classical TSM procedures based on waveform similarity overlap-add (WSOLA) [4] or on the phase vocoder (PV-TSM) [5,6,7] are capable of preserving the perceptual quality of harmonic signals to a high degree, but introduce noticeable artifacts when modifying percussive signals. However, it is possible to substantially reduce artifacts by combining different TSM approaches. For example, in [8], a given audio signal is first separated into a harmonic and a percussive component. Afterwards, each component is processed with a different TSM procedure that preserves its respective characteristics. The final output signal is then obtained by superimposing the two intermediate output signals.



Our goals in this article are two-fold. First, we aim to foster an understanding of fundamental challenges and algorithmic approaches in the field of TSM by reviewing well-known TSM methods and discussing their respective advantages and drawbacks in detail. Second, having identified the core issues of these classical procedures, we show—through an example—how to improve on them by combining different algorithmic ideas. We begin the article by introducing a fundamental TSM strategy as used in many TSM procedures (Section 2) and discussing a simple TSM approach based on overlap-add (Section 3). Afterwards, we review two conceptually different TSM methods: the time-domain WSOLA (Section 4) as well as the frequency-domain PV-TSM (Section 5). We then review the state-of-the-art TSM procedure from [8] that improves on the quality of both WSOLA as well as PV-TSM by incorporating harmonic-percussive separation (Section 6). Finally, we point out different application scenarios for TSM (such as music synchronization and pitch-shifting), as well as various freely available TSM implementations (Section 7).




2. Fundamentals of Time-Scale Modification (TSM)


As mentioned above, a key requirement for time-scale modification procedures is that they change the time-scale of a given audio signal without altering its pitch content. To achieve this goal, many TSM procedures follow a common fundamental strategy which is sketched in Figure 1. The core idea is to decompose the input signal into short frames. Having a fixed length, usually in the range of 50 to 100 milliseconds of audio material, each frame captures the local pitch content of the signal. The frames are then relocated on the time axis to achieve the actual time-scale modification, while, at the same time, preserving the signal’s pitch.


Figure 1. Generalized processing pipeline of Time-scale modification (TSM) procedures.
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More precisely, this process can be described as follows. The input of a TSM procedure is a discrete-time audio signal [image: there is no content], equidistantly sampled at a sampling rate of [image: there is no content]. Note that although audio signals typically have a finite length of [image: there is no content] samples [image: there is no content] for [image: there is no content], for the sake of simplicity, we model them to have an infinite support by defining [image: there is no content] for [image: there is no content]. The first step of the TSM procedure is to split x into short analysis frames [image: there is no content], [image: there is no content], each of them having a length of N samples (in the literature, the analysis frames are sometimes also referred to as grains, see [9]). The analysis frames are spaced by an analysis hopsize [image: there is no content]:


[image: there is no content](r)=x(r+m[image: there is no content]),if r∈[−N/2:N/2−1],0,otherwise.



(1)







In a second step, these frames are relocated on the time axis with regard to a specified synthesis hopsize [image: there is no content]. This relocation accounts for the actual modification of the input signal’s time-scale by a stretching factor α=[image: there is no content]/[image: there is no content]. Since it is often desirable to have a specific overlap of the relocated frames, the synthesis hopsize [image: there is no content] is often fixed (common choices are [image: there is no content]=N/2 or [image: there is no content]=N/4) while the analysis hopsize is given by [image: there is no content]=[image: there is no content]/α. However, simply superimposing the overlapping relocated frames would lead to undesired artifacts such as phase discontinuities at the frame boundaries and amplitude fluctuations. Therefore, prior to signal reconstruction, the analysis frames are suitably adapted to form synthesis frames [image: there is no content]. In the final step, the synthesis frames are superimposed in order to reconstruct the actual time-scale modified output signal [image: there is no content] of the TSM procedure:


y(r)=∑[image: there is no content][image: there is no content](r−m[image: there is no content]).



(2)







Although this fundamental strategy seems straightforward at a first glance, there are many pitfalls and design choices that may strongly influence the perceptual quality of the time-scale modified output signal. The most obvious question is how to adapt the analysis frames [image: there is no content] in order to form the synthesis frames [image: there is no content]. There are many ways to approach this task, leading to conceptually different TSM procedures. In the following, we discuss several strategies.




3. TSM Based on Overlap-Add (OLA)


3.1. The Procedure


In the general scheme described in the previous section, a straightforward approach would be to simply define the synthesis frames [image: there is no content] to be equal to the unmodified analysis frames [image: there is no content]. This strategy, however, immediately leads to two problems which are visualized in Figure 2. First, when reconstructing the output signal by using Equation (2), the resulting waveform typically shows discontinuities—perceivable as clicking sounds—at the unmodified frames’ boundaries. Second, the synthesis hopsize [image: there is no content] is usually chosen such that the synthesis frames are overlapping. When superimposing the unmodified frames—each of them having the same amplitude as the input signal—this typically leads to an undesired increase of the output signal’s amplitude.


Figure 2. Typical artifacts that occur when choosing the synthesis frames [image: there is no content] to be equal to the analysis frames [image: there is no content]. The input signal x is stretched by a factor of [image: there is no content]. The output signal y shows discontinuities (blue oval) and amplitude fluctuations (indicated by blue lines).
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A basic TSM procedure should both enforce a smooth transition between frames as well as compensate for unwanted amplitude fluctuations. The idea of the overlap-add (OLA) TSM procedure is to apply a window function w to the analysis frames, prior to the reconstruction of the output signal y. The task of the window function is to remove the abrupt waveform discontinuities at the the analysis frames’ boundaries. A typical choice for w is a Hann window function


w(r)=0.51−cos2π(r+N/2)N−1,if r∈[−N/2:N/2−1],0,otherwise.



(3)







The Hann window has the nice property that


∑n∈Zwr−nN2=1,



(4)




for all [image: there is no content]. The principle of the iterative OLA procedure is visualized in Figure 3. For the frame index [image: there is no content], we first use Equation (1) to compute the [image: there is no content] analysis frame [image: there is no content] (Figure 3a). Then, we derive the synthesis frame [image: there is no content] by


[image: there is no content](r)=w(r)[image: there is no content](r)∑n∈Zw(r−n[image: there is no content]).



(5)






Figure 3. The principle of TSM based on overlap-add (OLA). (a) Input audio signal x with analysis frame [image: there is no content]. The output signal y is constructed iteratively; (b) Application of Hann window function w to the analysis frame [image: there is no content] resulting in the synthesis frame [image: there is no content]; (c) The next analysis frame [image: there is no content] having a specified distance of [image: there is no content] samples from [image: there is no content]; (d) Overlap-add using the specified synthesis hopsize [image: there is no content].
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The nominator of Equation (5) constitutes the actual windowing of the analysis frame by multiplying it pointwise with the given window function. The denominator normalizes the frame by the sum of the overlapping window functions, which prevents amplitude fluctuations in the output signal. Note that, when choosing w to be a Hann window and [image: there is no content]=N/2, the denominator always reduces to one by Equation (4). This is the case in Figure 3b where the synthesis frame’s amplitude is not scaled before being added to the output signal y. Proceeding to the next analysis frame [image: there is no content], (Figure 3c), this frame is again windowed, overlapped with the preceding synthesis frame, and added to the output signal (Figure 3d). Note that Figure 3 visualizes the case where the original signal is compressed ([image: there is no content]>[image: there is no content]). Stretching the signal ([image: there is no content]<[image: there is no content]) works in exactly the same fashion. In this case, the analysis frames overlap to a larger degree than the synthesis frames.



OLA is an example of a time-domain TSM procedure where the modifications to the analysis frames are applied purely in the time-domain. In general, time-domain TSM procedures are not only efficient but also preserve the timbre of the input signal to a high degree. On the downside, output signals produced by OLA often suffer from other artifacts, as we explain next.




3.2. Artifacts


The OLA procedure is in general not capable of preserving local periodic structures that are present in the input signal. This is visualized in Figure 4 where a periodic input signal x is stretched by a factor of [image: there is no content] using OLA. When relocating the analysis frames, the periodic structures of x may not align any longer in the superimposed synthesis frames. In the resulting output signal y, the periodic patterns are distorted. These distortions are also known as phase jump artifacts. Since local periodicities in the waveforms of audio signals correspond to harmonic sounds, OLA is not suited to modify signals that contain harmonic components. When applied to harmonic signals, the output signals of OLA have a characteristic warbling sound, which is a kind of periodic frequency modulation [6]. Since most music signals contain at least some harmonic sources (as for example singing voice, piano, violins, or guitars), OLA is usually not suited to modify music.


Figure 4. Illustration of a typical artifact for an audio signal modified with OLA. In this example, the input signal x is stretched by a factor of [image: there is no content]. The OLA procedure is visualized for two frames indicated by window functions. The periodic structure of x is not preserved in the output signal y.
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3.3. Tricks of the Trade


While OLA is unsuited for modifying audio signals with harmonic content, it delivers high quality results for purely percussive signals, as is the case with drum or castanet recordings [8]. This is because audio signals with percussive content seldom have local periodic structures. The phase jump artifacts introduced by OLA are therefore not noticeable in the output signals. In this scenario, it is important to choose a very small frame length N (corresponding to roughly 10 milliseconds of audio material) in order to reduce the effect of transient doubling, an artifact that we discuss at length in Section 4.2.





4. TSM Based on Waveform Similarity Overlap-Add (WSOLA)


4.1. The Procedure


One of OLA’s problems is that it lacks signal sensitivity: the windowed analysis frames are copied from fixed positions in the input signal to fixed positions in the output signal. In other words, the input signal has no influence on the procedure. One time-domain strategy to reduce phase jump artifacts as caused by OLA is to introduce some flexibility in the TSM process, achieved by allowing some tolerance in the analysis or synthesis frames’ positions. The main idea is to adjust successive synthesis frames in such a way that periodic structures in the frames’ waveforms are aligned in the overlapping regions. Periodic patterns in the input signal are therefore maintained in the output. In the literature, several variants of this idea have been described, such as synchronized OLA (SOLA) [10], time-domain pitch-synchronized OLA (TD-PSOLA) [11], or autocorrelation-based approaches [12].



Another well-known procedure is waveform similarity-based OLA (WSOLA) [4]. This method’s core idea is to allow for slight shifts (of up to ±[image: there is no content]∈Z samples) of the analysis frames’ positions. Figure 5 visualizes the principle of WSOLA. Similar to OLA, WSOLA proceeds in an iterative fashion. Assume that in the [image: there is no content] iteration the position of the analysis frame [image: there is no content] was shifted by [image: there is no content] samples. We call this frame the adjusted analysis frame [image: there is no content] (Figure 5a):


[image: there is no content](r)=x(r+m[image: there is no content]+Δm),ifr∈[−N/2:N/2−1],0,otherwise.



(6)






Figure 5. The principle of Waveform Similarity Overlap-Add (WSOLA). (a) Input audio signal x with the adjusted analysis frame [image: there is no content]. The frame was already windowed and copied to the output signal y; (b,c) Retrieval of a frame from the extended frame region [image: there is no content] (solid blue box) that is as similar as possible to the natural progression [image: there is no content] (dashed blue box) of the adjusted analysis frame [image: there is no content]; (d) The adjusted analysis frame [image: there is no content] is windowed and copied to the output signal y.
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The adjusted analysis frame [image: there is no content] is windowed and copied to the output signal y as in OLA (Figure 5a). Now, we need to adjust the position of the next analysis frame [image: there is no content]. This task can be interpreted as a constrained optimization problem. Our goal is to find the optimal shift index [image: there is no content] such that periodic structures of the adjusted analysis frame [image: there is no content] are optimally aligned with structures of the previously copied synthesis frame [image: there is no content] in the overlapping region when superimposing both frames at the synthesis hopsize [image: there is no content]. The natural progression [image: there is no content] of the adjusted analysis frame [image: there is no content] (dashed blue box in Figure 5b) would be an optimal choice for the adjusted analysis frame [image: there is no content] in an unconstrained scenario:


[image: there is no content](r)=x(r+m[image: there is no content]+Δm+[image: there is no content]),ifr∈[−N/2:N/2−1],0,otherwise.



(7)







This is the case, since the adjusted analysis frame [image: there is no content] and the synthesis frame [image: there is no content] are essentially the same (up to windowing). As a result, the structures of the natural progression [image: there is no content] are perfectly aligned with the structures of the synthesis frame [image: there is no content] when superimposing the two frames at the synthesis hopsize [image: there is no content] (Figure 5b). However, due to the constraint [image: there is no content], the adjusted frame [image: there is no content] must be located inside of the extended frame region [image: there is no content] (solid blue box in Figure 5b):


[image: there is no content](r)=xr+(m+1)[image: there is no content],ifr∈[−N/2−[image: there is no content]:N/2−1+[image: there is no content]],0,otherwise.



(8)







Therefore, the idea is to retrieve the adjusted frame [image: there is no content] as the frame in [image: there is no content] whose waveform is most similar to [image: there is no content]. To this end, we must define a measure that quantifies the similarity of two frames. One possible choice for this metric is the cross-correlation


c(q,p,Δ)=∑[image: there is no content]q(r)p(r+Δ)



(9)




of a signal q and a signal p shifted by [image: there is no content] samples. We can then compute the optimal shift index [image: there is no content] that maximizes the cross-correlation of [image: there is no content] and [image: there is no content] by


[image: there is no content]=argmaxΔ∈[−[image: there is no content]:[image: there is no content]]c([image: there is no content],[image: there is no content],Δ).



(10)







The shift index [image: there is no content] defines the position of the adjusted analysis frame [image: there is no content] inside the extended frame region [image: there is no content] (Figure 5c). Finally, we compute the synthesis frame [image: there is no content], similarly to OLA, by


[image: there is no content](r)=w(r)x(r+(m+1)[image: there is no content]+[image: there is no content])∑n∈Zw(r−n[image: there is no content])



(11)




and use Equation (2) to reconstruct the output signal y (Figure 5d). In practice, we start the iterative optimization process at the frame index [image: there is no content] and assume [image: there is no content].




4.2. Artifacts


WSOLA can improve on some of the drawbacks of OLA as illustrated by Figure 6 (WSOLA) and Figure 4 (OLA). However, it still causes certain artifacts that are characteristic for time-domain TSM procedures.


Figure 6. Preservation of periodic structures by WSOLA. The input signal x is the same as in Figure 4, this time modified with WSOLA (time-stretch with [image: there is no content]).
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A prominent problem with WSOLA-like methods is known as transient doubling or stuttering. This artifact is visualized in Figure 7, where we can see a single transient in the input signal x that is contained in the overlapping region of two successive adjusted analysis frames [image: there is no content] and [image: there is no content]. When the frames are relocated and copied to the output signal, the transient is duplicated and can be heard two times in quick succession. A related artifact is transient skipping where transients get lost in the modification process since they are not contained in any of the analysis frames. While transient doubling commonly occurs when stretching a signal ([image: there is no content]), transient skipping usually happens when the signal is compressed ([image: there is no content]). These artifacts are particularly noticeable when modifying signals with percussive components, such as recordings of instruments with strong onsets (e.g., drums, piano).


Figure 7. Transient doubling artifact as it typically occurs in signals modified with WSOLA.
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Furthermore, WSOLA has particular problems when modifying polyphonic input signals such as recordings of orchestral music. For these input signals, the output often still contains considerable warbling. The reason for this is that WSOLA can, by design, only preserve the most prominent periodic pattern in the input signal’s waveform. Therefore, when modifying recordings with multiple harmonic sound sources, only the sound of the most dominant source is preserved in the output, whereas the remaining sources can still cause phase jump artifacts. While WSOLA is well-suited to modify monophonic input signals, this is often not the case with more complex audio.




4.3. Tricks of the Trade


In order to assure that WSOLA can adapt to the most dominant periodic pattern in the waveform of the input signal, one frame must be able to capture at least a full period of the pattern. In addition, the tolerance parameter [image: there is no content] must be large enough to allow for an appropriate adjustment. Therefore, it should be set to at least half a period’s length. Assuming that the lowest frequency that can be heard by humans is roughly 20 Hz, a common choice is a frame length N corresponding to 50 ms and a tolerance parameter of 25 ms.



One possibility to reduce transient doubling and skipping artifacts in WSOLA is to apply a transient preservation scheme. In [13], the idea is to first identify the temporal positions of transients in the input signal by using a transient detector. Then, in the WSOLA process, the analysis hopsize is temporarily fixed to be equal to the synthesis hopsize whenever an analysis frame is located in a neighborhood of an identified transient. This neighborhood, including the transient, is therefore copied without modification to the output signal, preventing WSOLA from doubling or skipping it. The deviation in the global stretching factor is compensated dynamically in the regions between transients.





5. TSM Based on the Phase Vocoder (PV-TSM)


5.1. Overview


As we have seen, WSOLA is capable of maintaining the most prominent periodicity in the input signal. The next step to improve the quality of time-scale modified signals is to preserve the periodicities of all signal components. This is the main idea of frequency-domain TSM procedures, which interpret each analysis frame as a weighted sum of sinusoidal components with known frequency and phase. Based on these parameters, each of these components is manipulated individually to avoid phase jump artifacts across all frequencies in the reconstructed signal.



A fundamental tool for the frequency analysis of the input signal is the short-time Fourier transform [14] (Section 5.2). However, depending on the chosen discretization parameters, the resulting frequency estimates may be inaccurate. To this end, the phase vocoder (Although the term “phase vocoder” refers to a specific technique for the estimation of instantaneous frequencies, it is also frequently used in the literature as the name of the TSM procedure itself.) technique [5,7] is used to improve on the the short-time Fourier transform’s coarse frequency estimates by deriving the sinusoidal components’ instantaneous frequencies (Section 5.3). In TSM procedures based on the phase vocoder (PV-TSM), these improved estimates are used to update the phases of an input signal’s sinusoidal components in a process known as phase propagation (Section 5.4).




5.2. The Short-Time Fourier Transform


The most important tool of PV-TSM is the short-time Fourier transform (STFT), which applies the Fourier transform to every analysis frame of a given input signal. The STFT X of a signal x is given by


X(m,k)=∑r=−N/2N/2−1[image: there is no content](r)w(r)exp(−2πikr/N),



(12)




where [image: there is no content] is the frame index, [image: there is no content] is the frequency index, N is the frame length, [image: there is no content] is the [image: there is no content] analysis frame of x as defined in Equation (1), and w is a window function. Given the input signal’s sampling rate [image: there is no content], the frame index m of [image: there is no content] is associated to the physical time


Tcoef(m)=m[image: there is no content][image: there is no content]



(13)




given in seconds, and the frequency index k corresponds to the physical frequency


Fcoef(k)=k[image: there is no content]N



(14)




given in Hertz. The complex number [image: there is no content], also called a time-frequency bin, denotes the [image: there is no content] Fourier coefficient for the [image: there is no content] analysis frame. It can be represented by a magnitude [image: there is no content] and a phase [image: there is no content] as


X(m,k)=|X(m,k)|exp(2πiφ(m,k)).



(15)







The magnitude of an STFT X is also called a spectrogram which is denoted by Y:


Y=|X|.



(16)







In the context of PV-TSM, it is necessary to reconstruct the output signal y from a modified STFT [image: there is no content]. Note that a modified STFT is in general not invertible [15]. In other words, there might be no signal y that has [image: there is no content] as its STFT. However, there exist methods that aim to reconstruct a signal y from [image: there is no content] whose STFT is close to [image: there is no content] with respect to some distance measure. Following the procedure described in [16], we first compute time-domain frames [image: there is no content] by using the inverse Fourier transform.


[image: there is no content](r)=1N∑k=0N−1[image: there is no content](m,k)exp(2πikr/N).



(17)







From these frames, we then derive synthesis frames


[image: there is no content](r)=w(r)[image: there is no content](r)∑n∈Zw(r−n[image: there is no content])2



(18)




and reconstruct the output signal y by Equation (2). It can be shown that, when computing the synthesis frames by Equation (18), the STFT of y (when choosing [image: there is no content]=[image: there is no content]) minimizes a squared error distance measure defined in [16].




5.3. The Phase Vocoder


Each time-frequency bin [image: there is no content] of an STFT can be interpreted as a sinusoidal component with amplitude [image: there is no content] and phase [image: there is no content] that contributes to the [image: there is no content] analysis frame of the input signal x. However, the Fourier transform yields coefficients only for a discrete set of frequencies that are sampled linearly on the frequency axis, see Equation (14). The STFT’s frequency resolution therefore does not suffice to assign a precise frequency value to this sinusoidal component. The phase vocoder is a technique that refines the STFT’s coarse frequency estimate by exploiting the given phase information.



In order to understand the phase vocoder, let us have a look at the scenario shown in Figure 8. Assume we are given two phase estimates [image: there is no content] and [image: there is no content] at the time instances [image: there is no content] and [image: there is no content] of a sinusoidal component for which we only have a coarse frequency estimate [image: there is no content]. Our goal is to estimate the sinusoid’s “real” instantaneous frequency [image: there is no content]. Figure 8 shows this sinusoidal component (gray) as well as two sinusoids that have a frequency of ω (red and green). In addition, we also see phase representations at the time instances [image: there is no content] and [image: there is no content]. The red sinusoid has a phase of [image: there is no content] at [image: there is no content] and the green sinusoid a phase of [image: there is no content] at [image: there is no content]. One can see that the frequency ω of the red and green sinusoids is slightly lower than the frequency of the gray sinusoid. Intuitively, while the phases of the gray and the red sinusoid match at [image: there is no content], they diverge over time, and we can observe a considerable discrepancy after Δt=[image: there is no content]−[image: there is no content] seconds (blue oval). Since we know the red sinusoid’s frequency, we can compute its unwrapped phase advance, i.e., the number of oscillations that occur over the course of [image: there is no content] seconds:


ωΔt.



(19)






Figure 8. Principle of the phase vocoder.
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Knowing that its phase at [image: there is no content] is [image: there is no content], we can predict its phase after [image: there is no content] seconds:


φPred=[image: there is no content]+ωΔt.



(20)







At [image: there is no content] we again have a precise phase estimate [image: there is no content] for the gray sinusoid. We therefore can compute the phase error [image: there is no content] (also called the heterodyned phase increment [17]) between the phase actually measured at [image: there is no content] and the predicted phase when assuming a frequency of ω:


[image: there is no content]=Ψ([image: there is no content]−φPred),



(21)




where Ψ is the principal argument function that maps a given phase into the range [image: there is no content]. Note that by mapping [image: there is no content] into this range, we assume that the number of oscillations of the gray and red sinusoids differ by at most half a period. In the context of instantaneous frequency estimation, this means that the coarse frequency estimate ω needs to be close to the actual frequency of the sinusoid, and that the interval [image: there is no content] should be small. The unwrapped phase advance of the gray sinusoid can then be computed by the sum of the unwrapped phase advance of the red sinusoid with frequency ω (red spiral arrow) and the phase error (blue curved arrow):


ωΔt+[image: there is no content].



(22)







This gives us the number of oscillations of the gray sinusoid over the course of [image: there is no content] seconds. From this we can derive the instantaneous frequency of the gray sinusoid by


IF(ω)=ωΔt+[image: there is no content][image: there is no content]=ω+[image: there is no content][image: there is no content].



(23)







The frequency [image: there is no content]/Δt can be interpreted as the small offset of the gray sinusoid’s actual frequency from the rough frequency estimate ω.



We can use this approach to refine the coarse frequency resolution of the STFT by computing instantaneous frequency estimates [image: there is no content] for all time-frequency bins [image: there is no content]:


[image: there is no content](m,k)=IF(ω)=ω+Ψ[image: there is no content]−[image: there is no content]+ωΔt[image: there is no content]



(24)




with [image: there is no content], Δt=[image: there is no content]/[image: there is no content] (the analysis hopsize given in seconds), [image: there is no content], and [image: there is no content]. For further details, we refer to ([15], Chapter 8).




5.4. PV-TSM


The principle of PV-TSM is visualized in Figure 9. Given an input audio signal x, the first step of PV-TSM is to compute the STFT X. Figure 9a depicts the two successive frequency spectra of the [image: there is no content] and [image: there is no content] analysis frames, denoted by [image: there is no content] and [image: there is no content], respectively (here, a frame’s Fourier spectrum is visualized as a set of sinusoidals, representing the sinusoidal components that are captured in the time-frequency bins). Our goal is to compute a modified STFT [image: there is no content] with adjusted phases [image: there is no content] from which we can reconstruct a time-scale modified signal without phase jump artifacts:


[image: there is no content](m,k)=|X(m,k)|exp(2πi[image: there is no content](m,k)).



(25)






Figure 9. The principle of TSM Based on the Phase Vocoder (PV-TSM). (a) STFT X (time-frequency bins are visualized by sinusoidals); (b) Using the original phase of [image: there is no content] leads to phase jumps when overlapping the frames at the synthesis hopsize [image: there is no content] (blue oval); (c) Update of the sinusoids’ phases via phase propagation. Phase jumps are reduced (blue oval); (d) Signal reconstruction from the modified STFT [image: there is no content].



[image: Applsci 06 00057 g009 1024]






We compute the adjusted phases [image: there is no content] in an iterative process that is known as phase propagation. Assume that the phases of the [image: there is no content] frame have already been modified (see the red sinusoid’s phase in Figure 9b being different from its phase in Figure 9a). As indicated by Figure 9b, overlapping the [image: there is no content] and [image: there is no content] frame at the synthesis hopsize [image: there is no content] may lead to phase jumps. Knowing the instantaneous frequencies [image: there is no content] derived by the phase vocoder, we can predict the phases of the sinusoidal components in the [image: there is no content] frame after a time interval corresponding to [image: there is no content] samples. To this end, we set [image: there is no content]=[image: there is no content](m,k), ω=[image: there is no content](m,k), and Δt=[image: there is no content]/[image: there is no content] (the synthesis hopsize given in seconds) in Equation (20). This allows us to replace the phases of the [image: there is no content] frame with the predicted phase:


[image: there is no content](m+1,k)=[image: there is no content](m,k)+[image: there is no content](m,k)[image: there is no content][image: there is no content]



(26)




for [image: there is no content]. Assuming that the estimates of the instantaneous frequencies [image: there is no content] are correct, there are no phase jumps any more when overlapping the modified spectra at the synthesis hopsize [image: there is no content] (Figure 9c). In practice, we start the iterative phase propagation with the frame index [image: there is no content] and set


[image: there is no content](0,k)=φ(0,k),



(27)




for all [image: there is no content]. Finally, the output signal y can be computed using the signal reconstruction procedure described in Section 5.2 (Figure 9d).




5.5. Artifacts


By design, PV-TSM can achieve phase continuity for all sinusoidal components contributing to the output signal. This property, also known as horizontal phase coherence, ensures that there are no artifacts related to phase jumps. However, the vertical phase coherence, i.e., the phase relationships of sinusoidal components within one frame, is usually destroyed in the phase propagation process. The loss of vertical phase coherence affects the time localization of events such as transients. As a result, transients are often smeared in signals modified with PV-TSM (Figure 10). Furthermore, output signals of PV-TSM commonly have a very distinct sound coloration known as phasiness [18], an artifact also caused by the loss of vertical phase coherence. Signals suffering from phasiness are described as being reverberant, having “less bite,” or a “loss of presence” [6].


Figure 10. Illustration of a smeared transient as a result of applying PV-TSM. The input signal x has been stretched by a factor of [image: there is no content] to yield the output signal y.
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5.6. Tricks of the Trade


The phase vocoder technique highly benefits from frequency estimates that are already close to the instantaneous frequencies as well as from a small analysis hopsize (resulting in a small [image: there is no content]). In PV-TSM, the frame length N is therefore commonly set to a relatively large value. In practice, N typically corresponds to roughly 100 ms in order to achieve a high frequency resolution of the STFT.



To reduce the loss of vertical phase coherence in the phase vocoder, Laroche and Dolson proposed a modification to the standard PV-TSM in [6]. Their core observation is that a sinusoidal component may affect multiple adjacent time-frequency bins of a single analysis frame. Therefore, the phases of these bins should not be updated independently, but in a joint fashion. A peak in a frame’s magnitude spectrum is assumed to be representative of a particular sinusoidal component. The frequency bins with lower magnitude values surrounding the peak are assumed to be affected by the same component as well. In the phase propagation process, only the time-frequency bins with a peak magnitude are updated in the usual fashion described in Equation (26). The phases of the remaining frequency bins are locked to the phase of the sinusoidal component corresponding to the closest peak. This procedure allows to locally preserve the signal’s vertical phase coherence. This technique, also known as identity phase locking, leads to reduced phasiness artifacts and less smearing of transients.



Another approach to reduce phasieness artifacts is the phase vocoder with synchronized overlap-add (PVSOLA) and similar formulations [19,20,21]. The core observation of these methods is that the original vertical phase coherence is usually lost gradually over the course of phase-updated synthesis frames. Therefore, these procedures “reset” the vertical phase coherence repeatedly after a fixed number of frames. The resetting is done by copying an analysis frame unmodified to the output signal and adjusting it in a WSOLA-like fashion. After having reset the vertical phase coherence, the next synthesis frames are again computed by the phase propagation strategy.



To reduce the effect of transient smearing, other approaches include transient preservation schemes, similar to those for WSOLA. In [22], transients are identified in the input signal, cut out from the waveform, and temporarily stored. The remaining signal, after filling the gaps using linear prediction techniques, is modified using PV-TSM. Finally, the stored transients are relocated according to the stretching factor and reinserted into the modified signal.





6. TSM Based on Harmonic-Percussive Separation


6.1. The Procedure


As we have seen in the previous sections, percussive sound components and transients in the input signal cause issues with WSOLA and PV-TSM. On the other hand, OLA is capable of modifying percussive and transient sounds rather well, while causing phase jump artifacts in harmonic signals. The idea of a recent TSM procedure proposed in [8] is to combine PV-TSM and OLA in order to modify both harmonic and percussive sound components with high quality. The procedure’s principle is visualized in Figure 11. The shown input signal consists of a tone played on a violin (harmonic) superimposed with a single click of castanets halfway through the signal (percussive). The first step is to decompose the input signal into two sound components: a harmonic component and a percussive component. This is done by using a harmonic-percussive separation (HPS) technique. A simple and effective method for this task was proposed by Fitzgerald in [23], which we review in Section 6.2. As we can see in Figure 11, the harmonic component captures the violin’s sound while the percussive component contains the castanets’ click. A crucial observation is that the harmonic component usually does not contain percussive residues and vice versa. After having decomposed the input signal, the idea of [8] is to apply PV-TSM with identity phase locking (see Section 5.6) to the harmonic component and OLA with a very short frame length (see Section 3.3) to the percussive component. By treating the two components independently with the two different TSM procedures, their respective characteristics can be preserved to a high degree. Finally, the superposition of the two modified signal components forms the output of the procedure. A conceptually similar strategy for TSM has been proposed by Verma and Meng in [24] where they use a sines+transients+noise signal model [25,26,27,28] to parameterize a given signal’s sinusoidal, transient, and noise-like sound components. The estimated parameters are then modified in order to synthesize a time-scaled output signal. However, their procedure relies on an explicit transient detection in order to estimate appropriate parameters for the transient sound components.


Figure 11. Principle of TSM based on harmonic-percussive separation.
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In contrast to other transient preserving TSM procedures such as [13,22,24,29], the approach based on HPS has the advantage that an explicit detection and preservation of transients is not necessary. Figure 12 shows the same input signal x as in Figure 10. Here, the signal is stretched by a factor of [image: there is no content] using TSM based on HPS. Unlike Figure 10, the transient from the input signal x is also clearly visible in the output signal y. When looking closely, one can see that the transient is actually doubled by OLA (Section 4.2). However, due to the short frame length used in the procedure, the transient repeats so quickly that the doubling is not noticeable when listening to the output signal. The TSM procedure based on HPS was therefore capable of preserving the transient without an explicit transient detection. Since both the explicit detection and preservation of transients are non-trivial and error-prone tasks, the achieved implicit transient preservation yields a more robust TSM procedure. The TSM approach based on HPS is therefore a good example of how the strengths of different TSM procedures can be combined in a beneficial way.


Figure 12. Transient preservation in TSM based on harmonic-percussive separation (HPS). The input signal x is the same as in Figure 10 and is stretched by a factor of [image: there is no content] using TSM based on HPS.
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6.2. Harmonic-Percussive Separation


The goal of harmonic-percussive separation (HPS) is to decompose a given audio signal x into a signal [image: there is no content] consisting of all harmonic sound components and a signal [image: there is no content] consisting of all percussive sound components. While there exist numerous approaches for this task [30,31,32,33,34,35], a particularly simple and effective method was proposed by Fitzgerald in [23], which we review in the following. To illustrate the procedure, let us have a look at Figure 13. The input is an audio signal as shown in Figure 13a. Here, we again revert to our example of a tone played on the violin, superimposed with a single click of castanets. The first step is to compute the STFT X of the given audio signal x as defined in Equation (15). A critical observation is that, in the spectrogram [image: there is no content], harmonic sounds form structures in the time direction, while percussive sounds yield structures in the frequency direction. In the spectrogram shown in Figure 13b we can see horizontal lines, reflecting the harmonic sound of the violin, as well as a single vertical line in the middle of the spectrogram, stemming from a click of the castanets. By applying a median filter to Y—once horizontally and once vertically—we get a horizontally enhanced spectrogram [image: there is no content] and a vertically enhanced spectrogram [image: there is no content]:


[image: there is no content](m,k)=medianY(m−ℓh,k),…,Y(m+ℓh,k)



(28)






[image: there is no content](m,k)=medianY(m,k−ℓp),…,Y(m,k+ℓp)



(29)




for [image: there is no content], where [image: there is no content] and [image: there is no content] are the lengths of the median filters, respectively (Figure 13c). We assume a time-frequency bin of the original STFT [image: there is no content] to be part of the harmonic component if [image: there is no content](m,k)>[image: there is no content](m,k) and of the percussive component if [image: there is no content](m,k)≥[image: there is no content](m,k). Using this principle, we can define binary masks [image: there is no content] and [image: there is no content] for the harmonic and the percussive components (Figure 13d):


[image: there is no content](m,k)=1,if[image: there is no content](m,k)>[image: there is no content](m,k),0,otherwise,



(30)






[image: there is no content](m,k)=1,if[image: there is no content](m,k)≥[image: there is no content](m,k),0,otherwise.



(31)






Figure 13. The HPS procedure presented in [23]. (a) Input audio signal x; (b) STFT X of x; (c) Horizontally and vertically enhanced spectrograms [image: there is no content] and [image: there is no content]; (d) Binary masks [image: there is no content] and [image: there is no content]; (e) Spectrograms of the harmonic and the percussive component [image: there is no content] and [image: there is no content]; (f) Harmonic and percussive components [image: there is no content] and [image: there is no content].
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Applying these masks to the original STFT X yields modified STFTs corresponding to the harmonic and percussive components (Figure 13e):


[image: there is no content](m,k)=X(m,k)[image: there is no content](m,k),



(32)






[image: there is no content](m,k)=X(m,k)[image: there is no content](m,k).



(33)







These modified STFTs can then be transformed back to the time-domain by using the reconstruction strategy discussed in Section 5.2. This yields the desired signals [image: there is no content] and [image: there is no content], respectively. As we can see in Figure 13f, the harmonic component [image: there is no content] contains the tone played by the violin, while the percussive component [image: there is no content] shows the waveform of the castanets’ click.





7. Applications


7.1. Music Synchronization—Non-Linear TSM


In scenarios like automated soundtrack generation [36] or automated DJing [1,2], it is often necessary to synchronize two or more music recordings by aligning musically related beat positions in time. However, music recordings do not necessarily have a constant tempo. In this case, stretching or compressing the recordings by a constant factor α is insufficient to align their beat positions. Instead, the recordings’time-scales need to be modified in a non-linear fashion. The goal of non-linear TSM is to modify an audio signal according to a strictly monotonously increasing time-stretch function [image: there is no content], which defines a mapping between points in time (given in seconds) of the input and output signals. Figure 14 shows an example of such a function. The first part, shown in red, has a slope greater than one. As a consequence, the red region in the input signal is mapped to a larger region in the output, resulting in a stretch. The slope of the function’s second part, shown in blue, is smaller than one, leading to a compression of this region in the output. One possibility to realize this kind of non-linear modifications is to define the positions of the analysis frames according to the time-stretch function τ, instead of a constant analysis hopsize [image: there is no content]. The process of deriving the analysis frames’ positions is presented in Figure 14. Given τ, we first fix a synthesis hopsize [image: there is no content] as we did for linear TSM (see Section 2). From this, we derive the synthesis instances [image: there is no content] (given in seconds), which are the positions of the synthesis frames in the output signal:


sm=m[image: there is no content][image: there is no content].



(34)






Figure 14. Example of a non-linear time-stretch function τ.
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By inverting τ, we compute the analysis instances [image: there is no content] (given in seconds):


am=τ−1(sm).



(35)







When using analysis frames indicated by the analysis instances for TSM with a procedure of our choice, the resulting output signal is modified according to the time-stretch function τ. To this end, all of the previously discussed TSM procedures can also be used for non-linear TSM.



A very convenient way of defining a time-stretch function is by introducing a set of anchor points. An anchor point is a pair of time positions where the first entry specifies a time position in the input signal and the second entry is a time position in the output signal. The actual time-stretch function τ is then obtained by a linear interpolation between the anchor points. Figure 15 shows a real-world example of a non-linear modification. In Figure 15b, we see the waveforms of two recorded performances of the first five measures of Beethoven’s Symphony No. 5. The corresponding time positions of the note onsets are indicated by red arrows. Obviously, the first recording is longer than the second. However, the performances’ tempi do not differ by a constant factor. While the eighth notes in the first and third measure are played at almost the same tempo in both performances, the durations of the half notes (with fermata) in measures two and five are significantly longer in the first recording. The mapping between the note onsets of the two performances is therefore non-linear. In Figure 15c, we define eight anchor points that map the onset positions of the second performance to the onset positions of the first performance (plus two additional anchor points aligning the recordings’ start times and end times, respectively). Based on these anchor points and the derived time-stretch function τ, we then apply the TSM procedure of our choice to the second performance in order to obtain a version that is onset-synchronized with the first performance (Figure 15d).


Figure 15. (a) Score of the first five measures of Beethoven’s Symphony No. 5; (b) Waveforms of two performances. Corresponding onset positions are indicated by red arrows; (c) Set of anchor points (indicated in red) and inferred time-stretch function τ; (d) Onset-synchronized waveforms of the two performances.
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7.2. Pitch-Shifting


Pitch-shifting is the task of changing an audio recording’s pitch without altering its length—it can be seen as the dual problem to TSM. While there are specialized pitch-shifting procedures [37,38], it is also possible to approach the problem by combining TSM with resampling. The core observation is that resampling a given signal and playing it back at the original sampling rate changes the length and the pitch of the signal at the same time (The same effect can be simulated with vinyl records by changing the rotation speed of the record player). To pitch-shift a given signal, it is therefore first resampled and afterwards time-scale modified in order to compensate for the change in length. More precisely, an audio signal, sampled at a rate of [image: there is no content], is first resampled to have a new sampling rate of [image: there is no content]. When playing back the signal at its original sampling rate [image: there is no content], this operation changes the signal’s length by a factor of [image: there is no content]/[image: there is no content] and scales its frequencies by the term’s inverse. For example, musically speaking, a factor of [image: there is no content]/[image: there is no content]=12 increases the pitch content by one octave. To compensate for the change in length, the signal needs to be stretched by a factor of α=[image: there is no content]/[image: there is no content], using a TSM procedure.



To demonstrate this, we show an example in Figure 16, where the goal is to apply a pitch-shift of one octave to the input audio signal. The original signal has a sampling rate of [image: there is no content]=44,100 Hz (Figure 16a). To achieve the desired pitch-shift, the signal is resampled to [image: there is no content]=22,050 Hz (Figure 16b). One can see that the resampling changed the pitch of the signal as well as its length when interpreting the signal as still being sampled at [image: there is no content]=44,100 Hz. While the change in pitch is desired, the change in length needs to be compensated for. Thus, we stretch the signal by a factor of α=44,100Hz/22,050Hz=2 to its original length (Figure 16c).


Figure 16. Pitch-shifting via resampling and TSM. (a) Spectrogram of an input audio signal; (b) Spectrogram of the resampled signal; (c) Spectrogram after TSM application.
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The quality of the pitch-shifting result crucially depends on various factors. First, artifacts that are produced by the applied TSM procedure are also audible in the pitch-shifted signal. However, even when using a high-quality TSM procedure, the pitch-shifted signals generated by the method described above often sound unnatural. For example, when pitch-shifting singing voice upwards by several semitones, the modified voice has an artificial sound, sometimes referred to as the chipmunk effect [39]. Here, the problem is that the spectral envelope, which is the rough shape of a frequency spectrum, is of central importance for the timbre of a sound. In Figure 17a, we see a frame’s frequency spectrum from a singing voice recording. Due to the harmonic nature of the singing voice, the spectrum shows a comb-like pattern where the energy is distributed at multiples of a certain frequency—in this example roughly 250 Hz. The peaks in the pattern are called the harmonics of the singing voice. The magnitudes of the harmonics follow a certain shape which is specified by the spectral envelope (marked in red). Peaks in the spectral envelope are known as formants. In the example from Figure 17a, we see four formants at around 200 Hz, 2200 Hz, 3100 Hz, and 5900 Hz. The frequency positions of these formants are closely related to the singing voice’s timbre. In Figure 17b, we see the spectrum of the same frame after being pitch-shifted by four semitones with the previously described pitch-shifting procedure. Due to the resampling, the harmonics’ positions are scaled. The spectral envelope is therefore scaled as well, relocating the positions of the formants. This leads to a (usually undesired) change in timbre of the singing voice.


Figure 17. Frequency spectra for a fixed frame m of different versions of a singing voice recording. The spectral envelopes are marked in red. (a) Original spectrum [image: there is no content] with spectral envelope [image: there is no content]; (b) Pitch-shifted spectrum [image: there is no content] with spectral envelope [image: there is no content]; (c) Pitch-shifted spectrum [image: there is no content](m) with adapted spectral envelope.
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One strategy to compensate for this change is outlined in [17]. Let X and [image: there is no content] be the STFTs of a given input signal x and its pitch-shifted version [image: there is no content], respectively. Fixing a frame index m, let [image: there is no content] and [image: there is no content] be the frequency spectra of the [image: there is no content] frames in X and [image: there is no content]. Furthermore, let [image: there is no content]:[0:N−1]→R and [image: there is no content]:[0:N−1]→R denote the spectral envelopes of [image: there is no content] and [image: there is no content], respectively. Our goal is to compute modified spectra [image: there is no content](m) that have the frequency content of [image: there is no content] but the original spectral envelopes [image: there is no content]. To this end, we normalize the magnitudes of [image: there is no content] with respect to its spectral envelope [image: there is no content] and then scale them by the original envelope [image: there is no content]:


[image: there is no content](m,k)=[image: there is no content](m,k)[image: there is no content](k)[image: there is no content](k).



(36)







In Figure 17c we see the frame’s spectrum from Figure 17b after the envelope adaption, leading to a signal that sounds more natural.



There exist several approaches to estimate spectral envelopes, many of them either based on linear predictive coding (LPC) [40] or on the cepstrum (the inverse Fourier transform of the logarithmic magnitude spectrum) [41,42]. Generally, the task of spectral envelope estimation is highly complex and error-prone. In envelope or formant-preserving pitch-shifting methods, it is often necessary to manually specify parameters (e.g., the pitch range of the sources in the recording) to make the envelope estimation more robust.




7.3. Websources


Various free implementations of TSM procedures are available in different programming languages. MATLAB implementations of OLA, WSOLA, PV-TSM, and TSM based on HPS, as well as additional test and demo material can be found in the TSM Toolbox [43,44]. A further MATLAB implementation of PV-TSM can be found at [45]. PV-TSM implemented in Python is included in LibROSA [46]. Furthermore, there are open source C/C++ audio processing libraries that offer TSM functionalities. For example, the Rubber Band Library [47] includes a transient preserving PV-TSM and the SoundTouch Audio Processing Library [48] offers a WSOLA-like TSM procedure. Finally, there also exist proprietary commercial implementations such as the élastique algorithm by zplane [49].





8. Conclusions


In this article, we reviewed time-scale modification of music signals. We presented fundamental principles and discussed various well-known time and frequency-domain TSM procedures. Additionally, we pointed out more involved procedures proposed in the literature, which are—to varying extents—based on the fundamental approaches we reviewed. In particular, we discussed a recent approach that involves harmonic-percussive separation and combines the advantages of two fundamental TSM methods in order to attenuate artifacts and improve the quality of time-scale modified signals. Finally, we introduced some applications of TSM, including music synchronization and pitch-shifting, and gave pointers to freely available TSM implementations.



A major goal of this contribution was to present fundamental concepts in the field of TSM. Beyond discussing technical details, our main motivation was to give illustrative explanations in a tutorial-like style. Furthermore, we aimed to foster a deep understanding of the strengths and weaknesses of the various TSM approaches by discussing typical artifacts and the importance of parameter choices. We hope that this work constitutes a good starting point for becoming familiar with the field of TSM and developing novel TSM techniques.
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