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Abstract: Icing on power transmission lines is a serious threat to the security and stability of the
power grid, and it is necessary to establish a forecasting model to make accurate predictions of icing
thickness. In order to improve the forecasting accuracy with regard to icing thickness, this paper
proposes a combination model based on a wavelet support vector machine (w-SVM) and a quantum
fireworks algorithm (QFA) for prediction. First, this paper uses the wavelet kernel function to replace
the Gaussian wavelet kernel function and improve the nonlinear mapping ability of the SVM. Second,
the regular fireworks algorithm is improved by combining it with a quantum optimization algorithm
to strengthen optimization performance. Lastly, the parameters of w-SVM are optimized using
the QFA model, and the QFA-w-SVM icing thickness forecasting model is established. Through
verification using real-world examples, the results show that the proposed method has a higher
forecasting accuracy and the model is effective and feasible.

Keywords: icing forecasting; support vector machine; fireworks algorithm

1. Introduction

In recent years, a variety of extreme weather phenomena have occurred on a global scale, causing
overhead power transmission line icing disasters to happen frequently, accompanied by power outages
and huge economic losses due to the destruction of a large number of fixed assets. Since the first power
transmission line icing accident recorded in 1932, several serious icing disasters have occurred one
after another throughout the world [1], such as Canada’s freezing rain disaster in 1998, which led to
direct economic losses of 1 billion dollars and indirect losses of 30 billion dollars for the power system.
The power system failure caused by freezing rain was also a tremendous shock to the production
and life of the region. In China, the earliest recorded icing disaster occurred in 1954. After that
year, several large areas of freezing rain and snow disasters have successively occurred in China,
especially Southern China’s freezing weather in January 2008 [2]. That disaster caused tremendous
damage to China’s power system, directly resulting in 8709 tower collapses, more than 27,000 line
breakages, and 1497 substation outages of 110 kV and above lines. The direct property loss for the
State Grid Corporation amounted to 10.45 billion RMB, and the investment in post-disaster electricity
reconstruction and transformation was 39 billion RMB. According to the lessons learned from previous
grid freezing accidents, and given the current development situation of China's grid and the conditions
of global climate change, the grid in China will again be tested by the future large-scale icing disasters.
It is always preferable to take preventative action instead of reacting to events after an accident has
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already happened. Therefore, icing forecasting research with regard to overhead power transmission
lines have important practical application value.

At present, there are many studies on icing forecasting for power transmission lines. According
to the hydrodynamic movement law and heat transfer mechanisms, domestic and foreign scholars
have established a variety of transmission line icing forecasting models that consider meteorological
factors, environmental factors, and various line parameters. Generally these models can be divided
into three categories: mathematical and physical models, statistical models and intelligent forecasting
models. Mathematical and physical models involve simulation modeling and forecasting of the icing
growth process by observing the physical process and mathematical equations of icing formation,
notably including the Goodwin model [3], the Makkonen model [4] and so on. These models are
established based on the experimental data, but there are differences between the experimental data
and the practical data, so the forecasting results of these models are not ideal. Statistical models process
historical data based on statistical theory and traditional statistical methods and do not consider the
physical process of icing formation, e.g., the multiple linear regression icing model [5]. However,
transmission line icing is affected by a variety of factors, and a multiple linear regression model cannot
take all factors into account, meaning the icing forecasting accuracy is greatly reduced.

Intelligent forecasting models combine modern computer technology with mathematical sciences,
and are able to handle high-dimensional nonlinear problems through their powerful learning and
processing capabilities, which can improve the prediction accuracy. The common intelligent forecasting
models are support vector machines (SVM) and Back Propagation(BP) neural network. BP neural
network has a strong nonlinear fitting ability to create the non-linear relationship between the output
and a variety of impact factors. With its strong learning ability and forecasting capability, the non-linear
output can arbitrarily approximate the actual value. For example, paper [6] presented a short-term
icing prediction model based on a three layer BP neural network, and the results showed that the
BP forecasting model is accurate for transmission lines of different areas. Paper [7] presented an
ice thickness prediction model based on fuzzy neural network, the tested result demonstrated its
forecasting abilities of better learning and mapping. However, the single BP model easily falls into
the local optimum, and cannot always reach the expected accuracy. For this problem, some scholars
adopted optimization algorithms to optimize the parameters of BP neural network, thereby improving
the prediction accuracy. For instance, Du and Zheng et al. used Genetic Algorithm (GA) to optimize
BP network and built the GA-BP ice thickness prediction model [8], and this model proved that the
GA-BP model was more effective than the BP model in ice thickness prediction for transmission lines.
Although this combination model could improve the prediction accuracy of BP neural networks, some
scholars started to use SVM to build the icing forecasting model for transmission lines due to its
slow calculating speed and overall poor performance. SVM can establish the non-linear relationship
between various factors and ice thickness, and has better nonlinear mapping ability and generalization
ability. In addition, SVM has a strong learning ability and can quickly approach the target value
through continuous repetitive learning. Therefore, theSVM model is more widely used in transmission
line research. For example, paper [9-11] introduced the icing forecasting model based on the Support
Vector Regression learning algorithm, and obtained the ideal results.

As is known, the standard SVM uses a Gaussian kernel function to solve the support vector by
quadratic programming, and the quadratic programming will involve the calculation of an m order
matrix (m is sample number). When m is bigger, the processing ability of the Gaussian function is more
unsatisfactory. It will take much computing time, thereby seriously affecting the learning accuracy and
predictive accuracy of the algorithm. In transmission line icing forecasting, there are many influencing
factors, so a large amount of input data will make the SVM algorithm become unfeasible using the
traditional Gaussian kernel for such a large-scale training sample. In view of this problem, this paper
will replace the Gaussian kernel function with the wavelet kernel function, and establishes the wavelet
support vector machine (w-SVM) for icing forecasting. Using wavelet kernel function in place of the
Gaussian kernel is mainly based on the following considerations [12]: (1) the wavelet kernel function
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has the fine characteristic of progressively describing the data, and using the SVM of the wavelet
kernel function can approximate any function with high accuracy while the traditional Gaussian
kernel function cannot; (2) the wavelet kernel functions are orthogonal or nearly orthogonal, and the
traditional Gaussian kernel functions are relevant, even redundant; (3) the wavelet kernel function
has multi-resolution analyzing ability for wavelet signals, so the nonlinear processing capacity of
the wavelet kernel function is better than that of Gaussian kernel function, which can improve the
generalization ability of the support vector machine regression model.

The forecasting performance of the w-SVM model largely depends on the values of its parameters;
however, most researchers choose the parameters of SVM only by subjective judgment or experience.
Therefore, the parameters values of SVM need to be optimized by meta-heuristic algorithms. Currently,
several algorithms have been successfully applied to determine the control parameters of SVM, such
as genetic algorithms [13], particle swarm optimization [14], differential evolution [15] and so on.
However, those algorithms have the defects of being hard to control, achieving the global optima
slowly, etc. In this paper, we use the fireworks optimization algorithm (FA) proposed by Tan and
Zhu in 2010 [16] to determine the parameter values of w-SVM. The advantage of using FA over other
techniques is that it can be easily realized and be able to reach global optimal with greater convergence
speed. Besides, in order to strengthen the optimization ability and obtain better results, this paper also
attempts to improve the FA model by using a quantum evolutionary algorithm.

The rest of this paper is organized as follows: In Section 2, the quantum fireworks algorithm (QFA)
and w-SVM are presented in detail. Also, in this section, a hybrid icing forecasting model (QFA-w-SVM)
that combines the QFA and w-SVM models is established; In Section 3, several real-world cases are
selected to verify the robustness and feasibility of QFA-w-SVM, and the computation, comparison and
discussion of the numerical cases are discussed in detail; Section 4 concludes this paper.

2. Experimental Section
2.1. Quantum Fireworks Algorithm

2.1.1. Fireworks Algorithm

A fireworks algorithm (FA) [16] is used to simulate the whole process of the explosion of fireworks.
When the fireworks explosion generates a lot of sparks, the sparks can continue to explode to generate
new sparks, resulting in beautiful and colorful patterns. In an FA, each firework can be regarded as a
feasible solution of the solution space for an optimization problem, and the fireworks explosion process
can be seen as a searching process for the optimal solution. In a particular optimization problem,
the algorithm needs to take into account the number of sparks of each fireworks explosion, how wide
the explosion radius is, and how to select an optimal set of fireworks and sparks for the next explosion
(searching process).

The most important three components of FA are the explosion operator, mutation operator and
selection strategy.

(1) Explosion operator. The number of sparks each fireworks explosion generates and explosion
radius are calculated based on fitness value of fireworks. For the fireworks x; (i=1,2,---,N),
the calculation formula for the number of sparks S; and explosion radius R; are:

Sl':MX ymax_f(xi)+£ (1)
(Ymax — f(x)) + €

M=z

Il
—

R, = R x —J(¥i) ~Ymin +€ @
(f (xi) - ymin> t+e

1Mz
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In the above formula, ¥max, Ymin represent the maximum and minimum fitness value of the current
population, respectively; f (x;) is the fitness value of fireworks x;; and M is a constant to adjust the
number of explosive sparks. R is a constant to adjust the size of the fireworks explosion radius. ¢ is the
minimum machine value to be used to avoid zero operation.

(2) Mutation operator. The purpose of mutation operator is to increase the diversity of the sparks
population; the mutation sparks of fireworks algorithm is obtained by Gaussian mutation, namely
Gaussian mutation sparks. Select fireworks x; to make the Gaussian mutation, and the k-dimensional
Gaussian mutation is:

Rk = xj x e 3)

Where £ representsk-dimensional mutation fireworks, e represents the Gaussian distribution.

In the fireworks algorithm, the new generated explosion fireworks and mutation sparks may
fall out of the search space, which makes it necessary to map it to a new location, using the
following formula:

Rik = xpp i + |Rikl % (Xupk — *LBK) 4)

where x;5, X1 g x are the upper and lower search spaces, respectively; and % denotes the modulo
operator for floating-point number.

(3) Selection strategy. In order to transmit the information to the next generation, it is necessary to
select a number of individuals as the next generation.

Assume that K individuals are selected; the number of population is N and the best individual is
always determined to become the fireworks of next generation. Other N — 1 fireworks are randomly
chosen using a probabilistic approach. For fireworks x;, its probability p(x;) of being chosen is
calculated as follows:

p(x;) = R(xi) , R(x;) = Z d(xj—x;) = Z o — x| (5)
x%KXj xjek xjeK

where R(x) is the sum of the distances between all individuals in the current candidate set. In the
candidate set, if the individual has a higher density, that is, the individual is surrounded by other
candidates, the probability of the individual selected will be reduced.

If F(x) is the objective function of fireworks algorithm, the steps of the algorithm are shown
as follows:

(1) Parameters initialized; Randomly select N fireworks and initialize their coordinates.

(2) Calculate the fitness value f(x;) of each firework, and calculate the blast radius R; and
generated sparks number of each firework. Randomly select dimension z-dimensional coordinates
to update coordinates, coordinate updating formula is as follows: £ = x; + R; x U (—1,1), U(-1,1)
stands for the uniform distribution on [-1,1].

(3) Generate M Gaussian mutation sparks; randomly select sparks x;, use the Gaussian mutation
formula to obtain M Gaussian mutation sparks £;;, and save those sparks into the Gaussian mutation
sparks population.

(4) Choose N individuals as the fireworks of next generation by using probabilistic formula from
fireworks, explosion sparks and Gaussian mutation sparks population.

(5) Stop condition. If the stop condition is satisfied, then output the optimal results; if not, return
step (2) and continue to cycle.

2.1.2. Quantum Evolutionary Algorithm

The development of quantum mechanics impels quantum computing to be increasingly applied
in various fields. In quantum computing, the expression of a quantum state is a quantum bit, and
usually quantum information is expressed by using the 0 and 1 binary method. The basic quantum
states are “0” state and “1” state. In addition, the state can be an arbitrary linear superposition state
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between “0” and “1”. That is to say, the two states can exist at the same time, which challenges the
classic bit expression method in classical mechanics to a large extent [17]. The superposition state of
quantum state can be presented as shown in Equation (6).

p>=al0>+p1> , |af? +|pf =1 (6)

where [0 > and |1 > are the two quantum states « and f3 are the probability amplitudes. |af? represents
the probability at a quantum state of |0 > and ||* represents the probability at a quantum state of |1 >.
In QFA, the updating proceeds by quantum rotating gate, and the adjustment is:

wf \ [ cos(f) —sin(6) o ()
B ]~ \ sin(6) cos(6) pi
cos(f) —sin()

in which set U =
e wihich se ( sin(f)  cos(6)

), U is quantum rotating gate, 6 is quantum rotating angle,

and 6 = arctan(a/p).

A quantum evolutionary algorithm is proposed based on a probabilistic search, as the conception
of qubits and quantum superposition means a quantum evolutionary algorithm has many advantages,
such as better population diversity, strong global search capability, especially great robustness, and the
possibility of combining with other algorithms.

2.1.3. Quantum Fireworks Algorithm

Parameters Initialized

In the solution space, randomly generate N fireworks, and initialize their coordinates. Here, we
use the probability amplitude of quantum bits to encode the current position of fireworks, and the
encoding method is used by the following formula:

cos(8;1)cos(fip) - - - cos(6;)
Pi=| o ®)
sin(0;1)sin(6;,) - - - sin(6;;,)
where 0;; = 2ntrand(), rand() is a random number betweenOand 1;i = 1,2,--- ,m; j =1,2,--- ,n; m s
the number of fireworks, n is the number of solution space.

Therefore, the corresponding probability amplitude of individual fireworks for the quantum
states |0 > and |1 > are as follows:

P;. = (cos(0;1),cos(0;2) - - - cos(6;,)) )
Pis = (sin(0;1), sin(0;2) - - - sin(6;,)) (10)

Solution Space Conversion

The searching process of a fireworks optimization algorithm is carried out on the actual parameter
space [a, b]. Due to the probability amplitude of fireworks location being in the range of [0, 1], it needs to
be decoded into the actual parameter space [a, b] to search in the fireworks algorithm. Let the A()]’.‘j th

;AT
quantum bit for the individual txﬁjl is [ocf, ,Bz] , and its corresponding conversion equations be:

xI - %[bi(l + o) +a;(1—al)] if rand() < Py (11)
X = %[bi(l +B)) + ai(1— Bl)] if rand() > Py (12)
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where rand() is a random number between [0, 1]; X{ . is the actual parameter value in j th dimension

position when the quantum state of i th fireworks individual is |0 >, X{ ; is the actual parameter value
in j th dimension position when the quantum state of the i th fireworks individual is |1 >. b; and a; are
the lower and upper limits.
Assuming the FA is searching in two-dimensional space, that means j = 1, 2. Initialize the position
of population: InitX_ axis; InitY_axis; and the position of individuals can be determined as follows:
if rand() < Py

X(i) = X_axis + %[bi(l +al) +a(1—al)] (13)

Y (i) = Y_axis + %[b,«(l +a?) +a;(1—a?)] (14)
if rand() = Py:

X(i) = X_axis + %[bi(l +B7) +ai(1— B7)] (15)

Y(0) = Y_axis + 5 [bi(1+ B7) + ai(1 - )] (16)

Calculate the Fitness Value f(x;) of Each Individual, and Obtain the Explosion Radius and Generated
Sparks Number S;

5 = M x - Ymax = flxi) e (17)

R; —Rx Nf(xi)*yminJrg (18)
S5 (F (30) — i) + €

Individual Position Updating
The individual position update is operated by using a quantum rotating gate using the
following equation:
k+1 k+1 ikt k
|| e o || )
ABjd smdo COSde id
where tx;.‘jl and ‘B;?{;rl are the probability amplitude of j th fireworks individual in k + 1 th iteration for

d dimension space; 9;‘; lis the rotating angle, which can be get from equation:
k+1 k gk yAgk+l
05 = s(ajy, Bja) A0 (20)

where s(lx;‘d, ,de) determines the rotating angle direction and is the AG;‘; ! rotating angle increment.
In order to adapt to operation mechanism of fireworks algorithm, we convert the updated rx;‘; !

and ,B;?;l to a solution space.

1 )
Xfc = E[bj(l + ocj?jl) +aj(1- oc;.‘jl)] if rand() < Py

(21)
1 .
X4 = (b1 + B +a;(1L = B D] if rand() > Py
Then calculate the positional offset amount:

hj-’c =R; x X4 h;%ls =R; x X]”’s (22)

je’
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if rand() < Py, thend = 1

. . . 1
X(j) = X(@) + . = X(0) + Ry x 5 [b;(1+ ™) + a;(1 — )]

(23)
Y(j) = Y(i) +h§. = Y(i) + R; %[b]-(l o) a1 - )]
if rand() = Pjy: thend = 2
X() = X(0) + 1, = X()+ Rex 2[00+ i) + a1 - ) o

Y(j) = Y(0) + 1 = Y(i) + Ri x %[bj(l + B ") +ai(1 - )]

Detection of cross-border. If the generated explosion sparks exceed the possible domain boundary,
the position of sparks can be updated with the following equations:

X(j) = X + 1X(j)| %(Xupx — X1BK)
Y(j) = Y + Y %(YuBx — YiB k)

(25)

Individual Mutation Operation

The main reason for the premature convergence and local optimum of the fireworks group is that
the diversity of the population is lost in the process of population search. In the quantum fireworks
algorithm, in order to increase the diversity of the population, the Gauss mutation in the original
algorithm is replaced by a quantum mutation. Randomly select fireworks x;, and generate M quantum
mutation sparks, and its operation formula is shown as follows:

. (E —0:)
l 01 ] l COS(BZJ) ] _ l sm(@i]-) ] _ Cf)s % ij (26)
10 sin(6;) cos(6;;) sin( - — 0y)
Let the probability of individual be P, and rand() be a random number between [0,1];
if rand() < Py, the mutation can be operated with the above formula and the probability amplitude in

quantum bit is changed; finally, the mutated individual can be converted into the solution space and
save it to the mutation sparks population.

X§ = %[bj(l + cos(g — 6;)) + a;(1 — cos(= — 6;7))] if rand() < Py

NI

27
X4 = b1+ sin(T —05)) + a;(1 —sin(Z 6] if rand() > Py 7
if rand() < Py, thend = 1
X(M) = X(M) x X]dc Y(M) = Y(M) x X;.ic
if rand() = Pjy: thend = 2
X(M) = X(M) x X;is Y(M) = Y(M) x X;ls

Detection of cross-border. If the generated explosion sparks exceed the possible domain boundary,
the position of sparks can be updated by the following equations:

~

X(M) = Xppg + | X(M)| %(Xupx — X k)
Y(M) =Ygy +|Y(M)|%(Yupx — Yik)

(28)
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(6) Choose N individuals as the fireworks of the next generation by using probabilistic formula
p(x;) from fireworks, explosion sparks and Gaussian mutation sparks population.

(7) Stop condition. If the stop condition is satisfied, then output the optimal results; if not, return
to step (2) and continue to cycle.

2.2. Wavelet Support Vector Machine

2.2.1. Basic Theory of Support Vector Machine (SVM)

A support vector machine, proposed by Vapnik, is a kind of feed forward network [18]; its main
purpose is to establish a hyper-plane to make the input vector project into another high-dimensional
space. Given a set of data {(x;, di)}fil, where x; is the input vector; d is the expected output; it is
further assumed that the estimate value of d is y, which is obtained by the projection of a set of
nonlinear functions: .

y = 2 wii(x) = ') (29)
j=0

where ¢(x) = [¢o(x), ¢1(x), -, P (x)]T, w = [wo, w1, - -, wm]"; Let ¢o(x) = 1; wy represent the bias b,
and the minimization risk function can be described as follows:

O(w, &, &) = ww+62 (& +¢) (30)

The minimization risk function must satisfy the conditions:

di —wTp(x;) <e+¢

wlp(x;) —d; <e+¢
Zi=0 G
& =0

wherei =1,2,--- ,N, cf,f and ¢; are slack variables; loss function is a e-insensitive loss function, C is
a constant.
Establish the Lagrange function and obtain:

(a+€)+ swlw— Za[ Top(xi) —di + e + ]
i=1 (32)

a;[d; — wlg(x;) + e+ &) — §<%&+%Q>

](wzgzé'/arﬂé’,%’y’) =C

i

1=z

L=

1

where #; and &} are Lagrange multiplier; take the partial derivative of variables w,,¢’, o, &, v,
and obtain:
N !
= 1’;] (Déi - ai)(P(xi) (33)
vi=C—ua; 7, =C—u

The above problem can be converted into a dual problem:

N N N N
maXQ wi, o) = Z — EZ wj + lX Z Z - ’X &j— D‘]>¢T(x1)¢(x])

i=1 i=1 i=1j=1
N !
2 (wi—a;) =0
i=1
0<a;<C (34)
0<a;<C
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/

(@ — a;)p(x)

Solve the equation and obtain: w =

L=z

Then F(x,w) = w'x = % (a; — )T (x)¢(x), let K(xT, x) = ¢pT (x)¢(x) be the kernel function.

i=1
In this paper, we choose the wavelet kernel function to replace the Gaussian kernel function,

and the construction of the wavelet kernel function will be introduced in detail in Section 2.2.2.

2.2.2. Construction of Wavelet Kernel Function

The kernel function k(x, x") to SVM is the inner product of the image of two input space data
points in the spatial characteristic. It has two important features: first, the symmetric function to inner
product kernel variables is k(x, x") = k(x’, x); second, the sum of the kernel function on the same plane
is a constant. In general, only if the kernel function satisfies the following two theorems, can it become
the kernel of support vector machine [19].

Mercer Lemma

k(x, x") represents a continuous symmetric kernel, which can be expanded into a series as:

k(x,x') = > Aigi(x)gi(x) (35)
i=1

where A; is positive, in order to ensure the above expansion is absolutely uniform convergence,
the sufficient and necessary condition is:

ff k(x, x)g(x)g(x)dxdx" = 0,x,x" € R" (36)

g()#0
SRn gz((;")d(;" <

characteristic function, A; stands for eigenvalue and all are positive, thus the k(x, x") is positive definite.

For all g() needs to satisfy the condition: { , 8(x;) stands for the expansion of the

Smola and Scholkopf Lemma

If the support vector machine’s kernel function has meet the Mercer Lemma, then it only needs to
prove k(x, x’) to satisfy the follow formula:

F(x)(w) = (271)7”/2J exp(—J(w - x))k(x)dx = 0,x € R" (37)

n

Construction of Wavelet Kernel

If the wavelet kernel satisfies the condition: ¢(x) € L>(R) n L/(R) and §(x) = 0,(x) is the
Fourier transform of (x), the (x) can be defined as [20]:

Yo (x) = (@) P9(*="), x e R (38)

where ¢ means contraction-expansion factor, and m is horizontal floating coefficient, o > 0,m € R.
When the function f(x), f(x) € L?(R), the wavelet transform to f(x) can be defined as:

X—m
g

W (o, m) = o-l/zf;o F)p*(F—)dx (39)
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where 1p*(x) is the complex conjugation of ¢(x). The wavelet transform W (¢, m) is reversible and also
can be used to reconstruct the original signal, so:

+00 400
F) = [ [ Wiomn () S (0

+oo|¢7 |
|wl

For the above equation, is a constant. The theory of wavelet decomposition is to approximate the
function group by the linear combination of the wavelet function.

Assuming 1(x) is a one-dimensional function, based on tensor theory, the multi-wavelet function
can be defined as:

Among them CZ dw < o0, P(w) = §P(x)exp(—Jwx)dx.

Pi(x) = iglllw(x»,x e R, x;e RY (41)

The horizontal floating kernel function can be built as:

X!
—),0i>0 (42)

i

In support vector machines, the kernel function should satisfy the Fourier transform; therefore,
only when the wavelet kernel function satisfies the Fourier transform can it be used for support vector
machines. Thus, the following formula needs to be proved.

Flk|(w) = (271)2 J exp(—J (wx))k(x)dx > 0 43)
R!

In order to keep the generality of wavelet kernel function, choose the Morlet mother wavelet
as follows:
P(x) = cos(1.75x)exp(—x%/2) (44)

o can be figured out. Where x € RN, o, x; € RN, the multi-dimensional wavelet function is an
allowable multidimensional support vector machine functions.

Kax) = T 175<||x1-7xf||2) x;— /117
X, x = Il qcos|l. 252 exp 252 s)

Dexp(—11x;112/202)

Proof: {p; exp(—Jwx)k(x)dx

/ 2
— {p exp(—Jwx) - (11 {cos[1.75(x" ; Yi )]exp(”x’xf”)})dx

i=1 202

exp(j1.75x;/0) + exp(—1.75x; /0)

llillngexp( Jwix;) - ( 5 ) -exp(— |1 x;112/20%)dx;
- 350 fome [ A ey | e |- (2
_iIZLI1| |\2/27r{ (_(1.75—2101(7)2) p(_(175—;w1(f)2)}
Then P(x)w) - 11(1%)exp(~ L2101 | oy A5,
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2.3. Quantum Fireworks Algorithm for Parameters Selection of Wavelet Support Vector Machine
(w-SVM) Model

It is extremely important to select the parameters of w-SVM which can affect the fitting and
learning ability. In this paper, the constructed quantum fireworks algorithm (QFA) is used for selecting
the appropriate parameters of the w-SVM model in order to improve the icing forecasting accuracy.
The flowchart of QFA for parameter selection of the fireworks the w-SVM model is shown in Figure 1
and the details of the QFA-w-SVM model are shown as follows:

(1) Initialize the parameters. Initialize the number of fireworks N, the explosion radius Al, the
number of explosive sparks M, the mutation probability P;;, the maximum number of iterations
Maxgen, the upper and lower bound of the solution space V;;; and Vj,,,, respectively, and so on.

(2) Separate the sample date as training samples and test samples, then normalize the sample data.

(3) Initialize the solution space.

a  In the solution space, randomly initialize N positions, that is, N fireworks. Each of the
fireworks has two dimensions, that is, C and ¢.

b  Use the probability amplitude of quantum bits to encode current position of fireworks
according to Equations (9)—(10).

¢ Converse the Solution space according to Equations (11)—(12).
Input the training samples, use w-SVM to carry out a training simulation for each fireworks,
and calculate the value of the fitness function corresponding to each of the fireworks.

(4) Initialize the global optimal solution by using the above initialized solution space, including
the global optimal phase, the global optimal position quantization of fireworks, the global best
fireworks, and the global best fitness value.

(5) Start iteration and stop the cycle when the maximum number of iterations Maxgen is achieved.

a  According to the fitness value of each firework, calculate the corresponding explosion
radius R(i) and the number of sparks S(i) generated by each explosion. The purpose of
calculating R(i) and S(i) is to obtain the optimal fitness values, which means that if the
fitness value is smaller, the explosion radius is larger, and the number of sparks generated
by each explosion is bigger. Therefore, more excellent fireworks can be retained as much
as possible.

b  Generate the explosive sparks. When each fireworks explodes, carry out the solution
space conversion for each explosion spark and control their spatial positions through cross
border detection.

¢ Generate M Gaussian mutation sparks. Carry out a fireworks mutation operation according
to Equations (26)—(27), resulting in M mutation sparks.

d  Use the initial fireworks, explosive sparks and Gauss mutation sparks to establish a group,
and the fitness value of each firework in the new group is calculated by using w-SVM.

e Update the global optimal phase, the global optimal position quantization of fireworks,
the global best fireworks, and the global best fitness value.

f  Use roulette algorithm to choose the next generation of fireworks, and obtain the next
generation of N fireworks.

g  Use w-SVM to carry out a training simulation for each fireworks, and update the value of
the fitness function corresponding to each of the fireworks.

(6) After all iterations, the best fireworks can be obtained, which correspond to the best parameters
of Cand o.
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Figure 1. The flowchart of the quantum fireworks algorithm (QFA)-w-SVM (wavelet Support Vector
Machine) model.

3. Case Study and Results Analysis

3.1. Data Selection

Transmission line icing is affected by many factors, which mainly include wind direction, light
intensity, air pressure, altitude, condensation level, terrain, alignments, wires hanging height, wire
stiffness, wire diameter, load current and so on. However, the necessary meteorological conditions
are: (1) the relative air humidity must be above 85%; (2) the wind speed should be greater than 1 m/s;
(3) the temperature needs to reach 0 °C and below. In addition, the impact factors, which have the
greater correlations with the line icing, mainly include: wind direction, light intensity and air pressure,
etc. In general, when the wind direction is parallel to the wire or the angle between the wire and the
wire is less than 45, the extent of line icing is lighter; when the wind direction is vertical to the wire
or the angle between the wire and the wire is more than 45, the extent of line icing is more severe.
Similarly, the lower the light intensity is, the more severe the line icing is.

In this paper, three power transmission lines, named “Qianpingxian-95”, “Fusha-I-xian” and
“Yangtongxian” in PingXi, ChangSha and ZhaoYang of Hunan province, respectively, are selected as the
case studies to demonstrate the effectiveness, feasibility and robustness of the proposed method. The
data from the above mentioned three transmission lines are provided by Key Laboratory of Disaster
Prevention and Mitigation of Power Transmission and Transformation Equipment (Changsha, China).

As is known, a large freezing disaster occurred in the south of China, which caused huge damage
to the power grid system. Hunan province, located in the southern part of China, was one of the
most serious areas affected by this disaster. During the disaster period, one third of 500 and 200 kV
substations were out of action in the Hunan power grid. According to the statistics, there were 481 line
breakages of 500 kV transmission lines, 673 line breakages of 200 kV transmission lines, 142 tower
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collapses of 500 kV AC and DC transmission lines, 633 tower collapses of 220 kV transmission lines,
and 1203 tower collapses of 110 kV transmission lines. Moreover, in the Hunan area, which suffered
from the influence of topography; it is easy to form the stationary front due to the mountains block,
when cold air enters the area. Therefore, it is due to their certain typicality that we select those
three transmission lines in Hunan province as cases to verify the validity and robustness of the
proposed method.

Case 1: the data on “Qianpingxian-95” are from 10 January 2008 to 15 February 2008, which has
221 data groups for the training and testing in total. The former 180 data groups are regarded as a
training set and the last 41 groups of data are a testing set. The input vectors of SVM are average
temperature, relative humidity, wind speed, wind direction, and sunlight intensity, and the output
vector is ice thickness. The sample data are shown in Figure 2.

Case 2: the data of “Fusha-I-xian” are from 12 January 2008 to 25 February 2008, which has
287 data groups. The former 240 groups are taken as a training set and the remaining 47 groups as a
testing set. The input vectors are same as that of Case 1. The sample data are shown in Figure 3.

Case 3: the data of “Yangtongxian” are from 8 January 2008 to 24 February 2008, whose data
groups total up to 329. The former 289 groups are taken as a training set and the remaining 40 groups
as a testing set. The input vectors are still same as that of Case 1. The sample data are shown in
Figure 4.
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Figure 2. The original sample data charts.
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Figure 3. Original data of “Fusha-I-xian”.
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Figure 4. Original data charts of “Yangtongxian”.

3.2. Data Pre-Treatment

Before the calculation, the data must be screened and normalized to put them in the range of 0 to
1 using the following formula:

Z={z} = Ji7Ymin i _q123 n (46)

where Ymax and ymin are the maximum and minimum value of sample data, respectively. The values
of each data are in the range [0,1] for eliminating the dimension influence.

Furthermore, this paper will use a quantum fireworks algorithm (QFA) to optimize the parameters
C, o of the wavelet support vector machine to find optimal parameters to improve the prediction
accuracy. In the parameters optimization, we adopt the mean square error (MSE) as the fitness function
to realize the process of QFA, and the formula of MSE is as follows:

function(i) = ——— 47)
where y; is the actual value; y/ is the prediction value; and  is the sample number.

3.3. Case Study 1

In this case, “Qianpingxian-95”, which is a 220kV high voltage line, is selected to performed
the simulation. After the above preparation, apply the constructed model to verify its feasibility
and robustness.

Firstly, initialize the parameters of QFA. Let the maximum iteration number Maxgen = 200,
population number PopNum = 40, Sparks number determination constant M = 100, explosion radius
determination constant R = 150, the border of parameter C be [27°219], the border of parameter ¢
be [27°2°], the upper and lower limits of searching space of fireworks individual be V;;, = 512 and
Viaown = —512, respectively, and mutation rate P;; = 0.05. Then use the steps of QFA to optimize the
parameters of w-SVM and obtain C = 18.3516, ¢ = 0.031402. Finally, we predict the icing thickness of
the testing sample after putting the optimal parameters into the w-SVM regression model.

Figure 5 shows the optimization process of the quantum fireworks algorithm (QFA). As we can
see, the proposed model obtains the optimal value when the iteration number is 35, and the optimal
value is 0.11; this illustrates that the proposed algorithm can obtain the global optimum with a fast
convergence speed. Figure 6 shows the forecasting results of the proposed method. This paper also
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selects w-SVM optimized by a regular fireworks algorithm (FA-w-SVM), SVM optimized by particle
swarm optimization algorithm (PSO-SVM), SVM model, and multiple linear regression model (MLR)
to make a comparison, and the convergence curves of FA-w-SVM and PSO-SVM are also shown in
Figure 5. The forecasting results of four models are shown in Figure 7.
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Figure 5. The iteration process of QFA-w-SVM. PSO-SVM: particle swarm optimization algorithm.
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Figure 7. Forecasting value of each method. MLR: multiple linear regression model.
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For further analysis, this paper will use the relative error (RE), the mean absolute percentage
error (MAPE), mean square error (MSE) and average absolute error (AAE) to evaluate the results
of prediction.

RE — | ¥ y.Yl x 100% MAPE = % u x 100%
i ’ (48)
1x 7 \2 1.2 / 13
MSE==Y (Y, -Y))" AAE==(X |[\,-Yi)/(=2Y)
niil n i=1 ni:l

where Y; is the actual value of power load; Y/ is the forecasting value of power load; i = 1,2,--- ,n.

The relative errors (RE) value of the QFA-w-SVM, FA-w-SVM, PSO-SVM, SVM and MLR models
are shown in Figure 8. It can be clearly seen that the RE curve of QFA-w-SVM is the lowest among
the other four models, which demonstrates that the accuracy of the proposed algorithm is much
higher than other mentioned algorithms. The RE curve of the MLR model is the highest, and this
demonstrates the forecasting results based on the MLR model are not satisfied here.

18% =0~ QFA-w-SVM - =0~ FA-w-SVM
- PSO-SVWM - —0- SWM
-0- MLR

15%
|
9%

6%

%

0%

Figure 8. Forecasting errors of each model.

The relative error range [—3%,+3%] is always regarded as a standard to evaluate the performance
of a forecasting model. As we can see from Figure 7, 35 points of QFA-w-SVM means 85% forcasting
points are in the range [-3%,+3%], and only 6 forecasting points are out of this scope. In the model of
FA-w-SVM, only 8 out of 41 points are in the range [—3%,+3%], which means that 78% of forecasting
points are out of the scope. In addition, only 5 forecasting points of PSO-SVM and one forecasting
point of SVM are in the scope of [—3%,+3%]; none of the forecasting points of the MLR model are in
the scope. These results demonstrate that the QFA-w-SVM model has a better performance in icing
forecasting when compared with other models. In addition, the maximum and minimum relative
errors (MaxRE and MinRE) can also reflect the forecasting accuracy of icing forecasting models. Firstly,
both the MaxRE and MinRE values of combined models are smaller than those of single models,
which proves the optimization algorithm can facilitate improving accuracy of w-SVM through finding
optimal parameters. Secondly, the MaxRE and MinRE values of QFA-w-SVM model are 3.61% and
0.89%, respectively, both of which are the smallest among the five icing forecasting models, which
illustrates that QFA-w-SVM has a better nonlinear fitting ability in sample training. Thirdly, in the
FA-w-SVM model, the MaxRE and MinRE values are 5.91% and 1.02%, respectively, both of which are
smaller than that of PSO-SVM model(6.75% and 1.82%), which means FA-w-SVM has better forecasting
accuracy. Finally, both the MaxRE and MinRE values of SVM are 8.73% and 2.73%, respectively, both of
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which are smaller than that of MLR, that mean the nonlinear processing ability is better than that of
MLR; in other words, the robustness of SVM is much stronger than that of the MLR model.

The MAPE, MSE and AAE values of the above mentioned five models are shown in Figure 9.
The experimental results show that the forecasting effect of the SVM model obviously precedes the
multiple linear regression model; this illustrates that the intelligent forecasting model has strong
learning ability and nonlinear mapping ability which the multiple linear regression model cannot
match. In addition, the MAPE value of single SVM is 4.988%, which is much higher than that obtained
by hybrid QFA-w-SVM, FA-w-SVM and PSO-SVM models (which are 1.56%, 2.83% and 2.776%,
respectively); this result proves that the optimization algorithm can help single SVM to find the
optimal parameters, and heighten the learning capacity and forecasting accuracy. Furthermore, the
MAPESs of QFA-w-SVM and FA-w-SVM are 1.56% and 2.83%, respectively; this shows that the QFA
model can greatly improve the optimization performance of regular FA model through the combination
of quantum optimization algorithm, which makes the algorithm can easily get the optimal results.
Meanwhile, the MAPE value of PSO-SVM model is 2.776%, which is higher than that of QFA-w-SVM;
this illustrates that QFA-w-SVM model has a better global convergence performance compared with
PSO-SVM, and also proves that w-SVM has better nonlinear mapping capability compared with SVM.

40%
NMAPE EMSE MAAE

30%

20%

10% I
VM

QFA-w-SVM  FA-w-SVM S MLR PSO-SVM

Figure 9. Values of mean absolute percentage error (MAPE), mean square error (MSE) and average
absolute error (AAE).

Furthermore, the MSE values of QFA-w-SVM, FA-w-SVM, PSO-SVM, SVM and MLR models are
0.0174, 0.0466, 0.0590, 0.1094 and 0.3581, respectively, and the AAE values of those five models are
0.024, 0.0389, 0.0439, 0.0602 and 0.1092, respectively. As we know, when the value of MSE and AAE is
smaller, the prediction effect of model is more ideal. It can be clearly seen that the MSE value and AAE
value of QFA-w-SVM is the smallest among other models, which directly demonstrates the feasibility
and effectiveness of QFA-w-SVM model, and QFA can improve the optimization performance of the
regular FA to help SVM find the optimal parameters to improve the forecasting accuracy.

3.4. Case Study 2

“Fusha-I-xian”, which is a representative 500 kV transmission line between Fuxing and Shapin of
Hunan province, is chosen to prove the robustness and stability of the proposed QFA-w-SVM icing
forecasting model. The sample data of “Fusha-I-xian” are also predicted by the five models and the
results of five models are also used to make a comparison.

Figure 10 shows the iteration trend of the QFA-w-SVM searching of optimization parameters.
As can be seen from Figure 3, the convergence can be seen in generation 39 with the optimal MSE
value of 0.1124, and the parameters of w-SVM are obtained with C = 23.68, 0 = 0.1526, respectively.
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In FA-w-SVM model, the convergence can be seen in generation 53 with the optimal MSE value of
0.1307, and the parameters of w-SVM are obtained with C = 31.58, = 0.0496. In the PSO-SVM model,
the convergence can be seen in generation 58 with the optimal MSE value of 0.1324, and the parameters
of SVM are obtained with C = 19.48, o = 0.5962. This proves that the proposed QFA-w-SVM model can
find the global optimal value with the faster convergence compared with FA-w-SVM and PSO-SVM
models. This also validates the stability of the proposed icing forecasting model.
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Figure 10. The convergence curves of algorithms.

Figure 11 shows the forecasting results of the five models. The forecasting errors of the five models
are shown in Figure 12. It can be seen from the comparison of the forecasting curve and the actual
value that the forecasting results of ice thickness of those five models have approximation to actual
curve. Among them, the proposed QFA-w-SVM has the best fitting learning and fitting ability, and
44 forecasting points mean that almost 94% of points are in the scope of [—3,+3]; only three forecasting
points are out of this scope. In FA-w-SVM model, 27 forecasting points means that nearly 57% points
are in the range [-3,+3], and 20 points fall out this scope. In PSO-SVM model, 20 forecasting points
means that nearly 43% of points are in the scope, and 27 points are out of the range. In SVM model,
only 2 points are in this range, and the rest of the forecasting points are not in this scope. In MLR
model, none of points are in this scope. This reveals that QFA-w-SVM model has a higher forecasting
accuracy than other mentioned models, and it also has stronger robustness and nonlinear fitting ability.
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Figure 11. Forecasting results of the five models.
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Figure 12. Forecasting errors of each model.

The values of MAPE, MSE, AAE of the five models in icing forecasting of “Fusha-I-xian” are
shown in Figure 13. It can be seen that the proposed QFA-w-SVM model still has the smallest MAPE,
MSE and AAE values, which are 1.9%, 0.026 and 0.018, respectively. This again reveals that the
proposed QFA-w-SVM model has the best performance in the icing forecasting results. In addition, the
MAPE, MSE and AAE values of FA-w-SVM are 3.01%, 0.063 and 0.028, respectively, which are both
larger than that of QFA-w-SVM, but smaller than the rest of three models. In PSO-SVM, the MAPE,
MSE and AAE values are 3.45%, 0.099and 0.034, respectively, which are smaller than those of SVM and
MLR models. That proves that the combined algorithms have better forecasting performance and the
optimization algorithms can help single regression model to achieve a better accuracy through finding
better parameters. This result agrees with the one presented in Section 3.3.
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Figure 13. Values of MAPE, MSE, AAE.

3.5. Case Study 3

In this case, the icing data from a 110 kV transmission line called “Yangtongxian” is selected to
validate the robustness and stability of the proposed QFA-w-5VM icing forecasting model. Similarly,
the five models are still used to make a comparison for prediction results.
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Figure 14 shows the convergence plots of QFA-w-SVM, FA-w-SVM and PSO-SVM. As shown in
the figure, QFA-w-SVM obtains the optimal value after 40 iterations while FA-w-SVM and PSO-SVM
models converge to global solutions after 53 and 57 iterations, respectively. In other words, the
QFA-w-SVM still has the fastest convergence speed and stronger global optimization ability compared
with other models.
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Figure 14. The convergence curves of algorithms.

The forecasting results and relative errors are shown in Figures 15 and 16 respectively. From the
figures, it is obvious that the proposed QFA-w-SVM model still has better accuracy in icing forecasting,
which demonstrates that the proposed model is superior for solving the icing forecasting problem
compared to other algorithms, because it can achieve global optima in fewer iterations and is a critical
factor in convergence process of algorithms.
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Figure 15. Forecasting results of each model.
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Figure 16. Forecasting errors of each model.

Figure 17 shows the MAPE, MSE, and AAE values of the five models; it is clear that the values of
MAPE, MSE, AAE of the proposed QFA-w-SVM model are the smallest among the five models, which
again demonstrates that the proposed model performs with great robustness and stability.
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Figure 17. MAPE, MSE, AAE values of each model.

In summary, the proposed QFA-w-SVM model can greatly close the gap between forecasting
values and original data, which means it outperforms the FA-w-SVM, PSO-SVM, SVM, and MLR
models in icing forecasting with different voltage transmission lines. Moreover, the QFA-w-SVM
which uses QFA to select the parameters of the SVM model, can effectively make a great improvement
for icing forecasting accuracy. It might be a promising alternative for icing thickness forecasting.

4. Conclusions

For better forecasting accuracy for icing thickness, this paper proposes an intelligent method for
a wavelet support vector machine (w-SVM) based on a quantum fireworks optimization algorithm
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(QFA). Firstly, the regular fireworks optimization algorithm is improved through combination with a
quantum optimization algorithm and proposes the quantum fireworks optimization algorithm (QFA);
the steps of QFA are listed in detail. Secondly, in order to make use of the advantages of kernel function
of SVM, the wavelet kernel function is applied to SVM instead of a Gaussian kernel function. Finally,
this paper uses the proposed QFA model to optimize the parameters of w-SVM, and builds the icing
thickness forecasting model of QFA-w-SVM. During the application of icing thickness forecasting, this
paper also gives full consideration to the impact factors and selects the temperature, humidity, wind
speed, wind direction and sunlight as the main impact factors. Through the numerical calculations of
a self-written program, the empirical results show that the proposed forecasting model of QFA-w-SVM
has great robustness and stability in icing thickness forecasting and is effective and feasible.
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