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Abstract: How to efficiently mimic the wing shape and kinematics pattern of an able hovering living
flier is always a concern of researchers from the flapping wing micro aerial vehicles community.
In this work, the separate or combined optimizations of wing geometry or/and wing kinematic
parameters are systematically performed to minimize the energy of hovering flight, firstly on the
basis of analytically extended quasi-steady aerodynamic model by using hybrid genetic algorithm.
Before the elaboration of the optimization problem, the parametrization description of dynamically
scaled wing with non-dimensional conformal feature of insect-scale rigid wing is firstly proposed.
The optimization results show that the combined optimization of wing geometry and kinematic
parameters can obtain lower flapping frequency, larger wing geometry parameters and lower power
density in comparison with those from other cases of optimization. Moreover, the flapping angle
for the optimization involving wing kinematic parameters manifests harmonic shape profile and
the pitch angle possesses round trapezoidal profile with certain faster time scale of pitch reversal.
The combined optimization framework provides a novel method for the conceptual design of
fundamental parameters of biomimetic flapping wing micro aerial vehicle.

Keywords: flapping wing hovering flight; extended quasi-steady aerodynamic estimating model;
hybrid genetic algorithm; sensitivity analyses; minimum power consumption; nonlinear couple

1. Introduction

The development of flapping wing micro aerial vehicles (FWMAV) has become a hot subject
in the field of bio-inspired micro-devices engineering because its splendid properties, such as high
maneuverability, portability and stealth with small characteristic size, are hopeful to be realized in near
future [1–5]. However, it is far from sufficient to devise the most power-efficient schematic to build the
FWMAV based on particular demand, e.g., carrying some certain mass of battery, avionics sensors
and other payload to reach certain flight endurance and range [1]. For biomimetic design of FWMAV
inspired by flying insects or hummingbirds, the critical starting point is to solve how to efficiently
mimic the wing shape and kinematics pattern of the living flier, especially those who can maintain
aloft hovering.

In the past decade, some attempts have been made to explore the optimal design space of
wing geometry parameters (WGP) or wing kinematics parameters (WKP). Hedrick and Daniel
explored the unconstrained WKP space controlling the hovering flight of hawkmoth through
simulating the hovering dynamic ordinary differential equation based on quasi-steady aerodynamic
model to be stabilized at a fixed position and orientation [6]. The optimization simulation that
minimized the difference between the simulated and desired locations of the hawkmoth’s body in the
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global parameters space was performed by using the micro-genetic algorithm, which appended the
Nelder-Mead simplex search algorithm, to find optimal WKP. Later, the sole optimization of WKP,
which is reproduced by the neural network to form various function shapes of wing movements,
was performed by Rakotomamonjy et al. to maximize the mean lift of the hovering FWMAV carrying
available payload by using a simulation model called OSCAB (which stands for Outil de Simulation
de Concept d’Ailes Battantes, French) and genetic algorithm (GA) [7]. Moreover, Berman and Wang
conducted the sole optimization of wing kinematics pattern, which was characterized by specific
functional forms determined by 11 parameters for three wing motion angles, to minimize the hovering
power density of flapping wing insects on the basis of quasi-steady aerodynamic model by using
hybrid-GA formed by the GA and Nelder–Mead simplex algorithm [8]. Subsequently, from the aspects
of quasi-steady aerodynamic model and 2D computational fluid dynamics (CFD) numerical simulation
separately, they performed a comparative study of aerodynamic efficiency between flapping wing
hovering flight with optimal wing motions and fixed wing steady flight with optimal angle of attack
under the constraint of lift balancing weight of fruit fly. They found that optimized flapping wing
motions were more efficient than optimal steady flight [9,10]. Following the method of Berman and
Wang, additionally considering the contribution of elastic strain energies to total mechanical energy,
Kurdi et al. conducted similar study but used a different constrained nonlinear optimization solver
to search for optimal wing kinematics formulated by spline interpolation [11]. The result shows that
average mechanical power as a function of elastic storage decreased linearly with minimal benefits
from the dissipation cost [11].

Recently, the higher order calculus of variation method was adopted by Taha et al. to minimize
the aerodynamic power only on the basis of the translational aerodynamic analytical model under the
constraint of lift with given WGP. After scrupulous analytical derivation, they found that a flapping
angle featuring triangular waveform and pitch angle with constant value during a half-stroke could
yield optimal aerodynamic performance [12]. Moreover, in order to acquire maximum lift or minimum
power constrained by given lift, Nabawy and Crowther also studied the aero-optimum hovering wing
kinematics only on the basis of translational aerodynamic analytical model. They found that flapping
angle with sinusoidal profile and pitch angle with profile of rectangular wave could yield maximum
lift with given flapping frequency and WGP, while flapping angle with profile of triangular shape
and pitch angle also with rectangular profile could realize the minimization of power consumption
with given lift constraint and WGP [13]. However, the effect of rotational circulation mechanism and
added-mass effect on lift and power consumption has been neglected in their study. According to our
best knowledge, these two aerodynamic mechanisms play an important role in wingbeat dynamics,
especially in wing pitch motion’s realization and maintenance. Thus, they must be considered in the
quasi-steady aerodynamic model and eventual power density model of flapping hovering flight.

It is noteworthy that an adjoint-based optimization method has been used to explore the
combined optimization of wing shape and kinematics pattern of flapping wing hovering flight while
maximizing the aerodynamic force coefficients [14]. The result shows that the highest improvement of
aerodynamic performance could be obtained by optimal wing shape and kinematic parameters and
there is an essential nonlinear dependence between them [14]. Although this method has provided
a practical approach to optimize general unsteady aerodynamic flows and has the potential to perform
highly efficient and discretely consistent sensitivity analysis for the any complicated problems [15,16],
its successful realization is highly dependent on high-fidelity simulations for complicated model
and calculation environments. And a wide range of research topics, such as the techniques of
locally optimal, reduced-order model, and checkpointing used to reduce storage requirements,
multi-fidelity optimization algorithms and convergence acceleration techniques that impact the
computational cost, remain to be explored [16]. Moreover, some other methods, such as gradient-based
method [17–19], sensitivity equations methods [20] and surrogated-based approach [21], also provide
thinkable alternatives for optimization of wing shape and kinematics pattern of flapping wings flight.
However, all of them suffer from excessive computational cost, which is directly proportional to the
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dimensionality of design variables. Several attempts based on experimental apparatus have also been
made to perform the optimization of flapping-wing flows [22–24]. The deficiency of optimization based
on the experiments is obvious, namely, the optimal results are limited by finite times of experiments
and numbers of design variables.

Here, taking computational cost and dimensionality of design variables into consideration,
we systematically performed the separate or combined optimizations of WGP or/and WKP to
minimize the energy of hovering flight on the basis of extended quasi-steady aerodynamic model
by using hybrid genetic algorithm (hybrid-GA) [8]. The essential nonlinear relationship between
WGP and WKP via flow parameters (Re) is explored by minimization of the objective function,
which is constructed by power density model with additional penalty items for lift-to-weight ratio,
boundary constraints, linear constraint of aspect ratio (AR) and nonlinear constraint of Re. In this
paper, two main highlights are presented. The first highlight is that the parametrization description
of dynamically scaled wing with non-dimensional conformal feature of insect-scale rigid wing is
firstly proposed. This parametrization method provides an effective simplifying way for aerodynamic
analysis based on insect-scale rigid wings’ non-dimensional outline thus a feasibility of optimization
involving WGP. The second highlight is that the combined optimizations of WGP and WKP are
firstly performed to minimize the energy of flapping wing hovering flight on the basis of analytically
extended quasi-steady aerodynamic model by using hybrid-GA. These two innovative points fill the
research void of aerodynamic parameter’s combined optimization of flapping wing hovering energy
minimization in analytical method.

The rest of this paper is organized as follows. Firstly, the parametrization characterization
for dynamically scaled wing with non-dimensional conformal feature is developed in Section 2.
Then the parametrization of wing kinematics pattern is prescribed in Section 3. In Section 4,
we outline the extended quasi-steady aerodynamic model and present its verification and validation.
The optimization problem is modeled and formulated in Section 5. The optimization results and the
corresponding sensitivity analysis are given out in Section 6. Moreover, we make some discussion
about the optimization results in Section 7. Lastly, we draw the conclusions in Section 8.

2. Wing Morphological Parametrization

The wing morphological parametrization is critical for the calculation of flapping wing
aerodynamic, center of pressure (COP) and moments of inertia and thus for the determination of
aerodynamic moment and efficiency. Here, due to the small size and lower inertial mass of the fruit
fly wing planform and thus negligible deformation, we assume that the wing can be taken as a 2D
rigid thin plate for simplifying analysis of inertial tensor and definition of wing kinematics [25,26].
The parametrization description of the wing shape for fruit fly, whose geometrical data has been
measured by Muijres [27], is developed through further including the parametrization of the wing’s
actual effective leading-edge profiles, the definition of wing pitch axis and the characterization of
dynamically scaled wing with non-dimensional conformal feature.

2.1. Description of Wing Morphology

The complete wing planform outline, wing shoulder frame (XsOsZs) and some basic sizes
are illustrated in Figure 1. Here, the intersection of Xs-axis and Zs-axis (Os) can be termed wing
shoulder [1,28], so we term the coordinate frame of XsOsZs as wing shoulder frame (or wing
planform fixed frame). We assume that in the initial case, Xs-axis of XsOsZs is aligned with pitch
axis, where r is the radial distance along it. It is worth noting that the wing hinge always exists in
the insect body, so the wing root coordinate offset distance between wing shoulder (Os) and wing
root (Or), which is commonly necessary to design the airfoil of FWMAV in engineering, is termed
xr,orig [29,30]. The variable pitch axis (xp) is schemed by the red dash-dotted line. Here, x0,vari denotes
the projected distance between pitch-axis and maximum variable leading-edge point. As a starting
point, we choose the Xs-axis of the wing shoulder frame as the original location of the pitch axis,
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which corresponds to the non-dimensional value of 0.36 from the maximum leading-edge point.
In other words, the original leading-edge profiles (zle,orig(r)) and trailing-edge profiles (ztr,orig(r)) are
prescribed in the wing shoulder frame firstly, then the value of 0.36 times the projected distance between
maximum point on original leading-edge profiles and minimum point on original trailing-edge
profiles relative to the original leading-edge profiles defines the initial pitch axis location, namely,
zle,orig,maxp/Cmax,letotr,orig = 0.36 (Figure 1).

Appl. Sci. 2016, 6, 390  4 of 35 

corresponds to the non‐dimensional value of 0.36 from the maximum leading‐edge point. In other 

words,  the  original  leading‐edge  profiles  ( le,orig ( )z r )  and  trailing‐edge  profiles  ( tr,orig( )z r )  are 

prescribed  in  the wing  shoulder  frame  firstly,  then  the value of 0.36  times  the projected distance 

between  maximum  point  on  original  leading‐edge  profiles  and  minimum  point  on  original 

trailing‐edge  profiles  relative  to  the  original  leading‐edge  profiles  defines  the  initial  pitch  axis 

location, namely, zle,orig,maxp/Cmax,letotr,orig = 0.36 (Figure 1). 

 

Figure 1. Definition of wing shoulder frame (XsOsZs) and basic size for fruit fly wing planform. 

For conciseness of description, a statement is made that if there is no specific suffix on the right 

lower quadrant of some arguments, then the notation for this argument is possessed by the original 

or  variable wing morphological  parameters  collectively,  such  as  Reff  is  possessed  by  Reff,orig  and 

Reff,vari.  In  the wing  shoulder  frame,  and  chord  length  between  leading‐edge  and  trailing‐edge 

profiles is C(r). Wing effective  length  (Reff)  is defined as  the projected distance between  the most 

proximal point  (wing  root) and  the most distal point  (wing  tip) on  the wing planform along  the 

Xs‐axis. Mean  chord  length  (Caver)  is  defined  as  the  area  of  single wing  (Aw)  divided  by wing 

effective length, Aw/Reff (Table S1). The actual original wing outline of leading‐edge ( le,orig ( )z r ) and 

trail‐edge ( tr,orig( )z r ) for fruit fly has been obtained through polynomial fitting the geometrical data 

located in the coordinate frame of XsOsZs (Figure 1 and Tables S2 in the Supplementary Materials). 

The  geometrical  data  of  the  wing  is  transposed  and  translated  from  the  original  right  wing 

geometrical data measured by Muijres [27]. 

2.2. Non‐Dimensional Parametrization of Wing Morphology 

Following  the  non‐dimensional  way  of  Ellington  [31],  we  write  the  wing  morphology  in 

non‐dimensional form by applying wing effective length (Reff) and mean chord (Caver) as the length 

scale  for  size  parameter  components  along  Xs‐axis  and  Zs‐axis,  respectively.  A  series  of 

non‐dimensional parameters has been  acquired,  for  example, non‐dimensional  x‐root offset   ො௥ݔ = 
xr/Reff,  non‐dimensional  radial  distance  ݎ̂   =  r/Reff,  non‐dimensional  leading‐edge  profiles

le le averˆˆ ( ) ( ) /z r z r C , non‐dimensional trailing‐edge profiles  ˆˆ ( ) ( ) /tr tr averz r z r C , and non‐dimensional 

chord distribution  aver
ˆ ˆ( ) ( ) /C r C r C . Here, aspect ratio (AR) is equal to Reff/Caver for the single wing 

planform. Eventually, the parameters of wing planform can be determined by wing effective length 

(Reff), mean chord (Caver), non‐dimensional leading‐edge and trailing‐edge profiles ( ˆˆ ( )lez r   and  ˆˆ ( )trz r

). 

2.3. Characterization of Dynamically Scaled Wing 

The  posterior  optimization  problem  involving  WGP  firstly  needs  the  characterization  of 

non‐dimensional  parameters  and mass  properties  of  dynamically  scaled wing  planform.  In  the 

current  study,  non‐dimensional  leading‐edge   ,((ݎ̂)୪ୣݖ̂) and non‐dimensional  trailing‐edge profiles 

Figure 1. Definition of wing shoulder frame (XsOsZs) and basic size for fruit fly wing planform.

For conciseness of description, a statement is made that if there is no specific suffix on the right
lower quadrant of some arguments, then the notation for this argument is possessed by the original or
variable wing morphological parameters collectively, such as Reff is possessed by Reff,orig and Reff,vari.
In the wing shoulder frame, and chord length between leading-edge and trailing-edge profiles is C(r).
Wing effective length (Reff) is defined as the projected distance between the most proximal point (wing
root) and the most distal point (wing tip) on the wing planform along the Xs-axis. Mean chord length
(Caver) is defined as the area of single wing (Aw) divided by wing effective length, Aw/Reff (Table S1).
The actual original wing outline of leading-edge (zle,orig(r)) and trail-edge (ztr,orig(r)) for fruit fly has
been obtained through polynomial fitting the geometrical data located in the coordinate frame of
XsOsZs (Figure 1 and Tables S2 in the Supplementary Materials). The geometrical data of the wing is
transposed and translated from the original right wing geometrical data measured by Muijres [27].

2.2. Non-Dimensional Parametrization of Wing Morphology

Following the non-dimensional way of Ellington [31], we write the wing morphology in
non-dimensional form by applying wing effective length (Reff) and mean chord (Caver) as the
length scale for size parameter components along Xs-axis and Zs-axis, respectively. A series of
non-dimensional parameters has been acquired, for example, non-dimensional x-root offset x̂r = xr/Reff,
non-dimensional radial distance r̂ = r/Reff, non-dimensional leading-edge profiles ẑle(r̂) = zle(r)/Caver,
non-dimensional trailing-edge profiles ẑtr(r̂) = ztr(r)/Caver, and non-dimensional chord distribution
Ĉ(r̂) = C(r)/Caver. Here, aspect ratio (AR) is equal to Reff/Caver for the single wing planform.
Eventually, the parameters of wing planform can be determined by wing effective length (Reff),
mean chord (Caver), non-dimensional leading-edge and trailing-edge profiles (ẑle(r̂) and ẑtr(r̂)).

2.3. Characterization of Dynamically Scaled Wing

The posterior optimization problem involving WGP firstly needs the characterization of
non-dimensional parameters and mass properties of dynamically scaled wing planform. In the
current study, non-dimensional leading-edge (ẑle (r̂)), and non-dimensional trailing-edge profiles
(ẑtr (r̂)), which are from the geometry outlines of fruit fly, are assumed to remain unchanged.
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The variable wing effective length (Reff,vari) and variable mean chord (Caver,vari) are chosen to regulate
the dynamically scaled wing planform outlines. Moreover, the variable x-root offset (xr,vari) and
variable non-dimensional pitch axis location relative to the maximum point of actual leading-edge
profile (x̂0,vari) are adopted to regulate the aerodynamic performance of the dynamically scaled wing
planform. The distance of the wing root and shoulder (xr,vari) in engineering design is always arbitrarily
determined only according to the assembly gap between transmission of drivetrain and overlap joint
of the wing planform. This determining way neglects its effect on aerodynamic characteristics of
hovering wing planform due to the fact that a constant velocity contribution from the interval of wing
shoulder and root is added to linearly varying velocity of the whole wing planform [29,30]. While
the non-dimensional pitch axis location (x̂0,vari) of the dynamically scaled fruit fly wing model shall
influence the experimental rotational coefficient [32]. So it is necessary to choose the x-root offset
and non-dimensional rotational axis location as two additional variables to complete the optimized
parameters’ characterization of the dynamically scaled wing planform.

The mass properties for the dynamically scaled wing planform are prepared for the optimization
involving WGP by assuming that the wing mass was uniform isotropic distribution with very small
thickness. Firstly, a three-dimensional (3D) geometry model is constructed from the original wing
geometry data by CAD software (UGS NX 7.5, siemens plm software, Plano, TX, USA). The mass of
wing (mwing,orig), center of mass (COM) in the frame of XsOsZs (xcom,orig and zcom,orig), and moment
of inertia relative to the COM (Ixx,com,orig and Izz,com,orig) are calculated and listed in Table S1.
Then, two ratios between dynamically scaled wing planform and original wing planform of the fruit fly
are developed. They are wing length ratio (Rratio) between variable wing effective length (Reff,vari) and
original wing effective length (Reff,orig), and mean chord ratio (Cratio) between variable mean chord
length (Caver,vari) and original mean chord length (Caver,orig), respectively. It is not difficult to find the
relation of COM in the frame of XsOsZs for the wing planform before and after it is dynamically
changed (as seen in Figure 2, the variable pitch axis (xpi) are also illustrated). The calculating
formulation for COM of the dynamically changed wing planform with non-dimensional conformal
feature in the frame of XsOsZs can be expressed as:

xcom,vari = Rratio(xcom,orig − xr,orig) + xr,vari, (1)

zcom,vari = Cratiozcom,orig. (2)
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The dynamically changed wing planform’s mass has the form of mwing,vari = RratioCratiomwing,orig.
Thirdly, according to the definition formulation of inertial tensor [25], the moment of inertia of the
dynamically scaled wing planform relative to the changed COM can be expressed as:
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Ixx,com,vari = RratioCratio
3 Ixx,com,orig, (3)

Izz,com,vari = Rratio
3Cratio Izz,com,orig. (4)

So the moment of inertia of the dynamically scaled wing planform in the frame of XsOsZs can be
acquired through generalized parallel-axis theorem:

Ixx,vari = Ixx,com,vari + mwing,varizcom,vari
2, (5)

Izz,vari = Izz,com,vari + mwing,varixcom,vari
2. (6)

Thus, the complete optimized parameters characterization for the dynamically scaled fruit
fly wing planform has been finished. It is worth noting that this parametrization description
of dynamically scaled wing with non-dimensional conformal feature is not limited to the wing
morphology of the fruit fly but also applicable to some symmetric or asymmetric and regular or
irregular wing planforms [29]. The aerodynamic characteristics comparisons of these wing planforms
with different wing leading and trailing edge outlines go beyond the scope of this work.

3. Wing Kinematics

In this paper, the right wing Euler angles relative to stroke plane in right wing root frame of
reference (xrryrrzrr) are defined by three angles (flapping angle (ϕ), stroke deviation angle (θ) and pitch
angle (ψ), Figure 3). The determination of direction of three angles obeys a right-hand rule. Moreover,
the body frame of reference (XbYbZb) and lab frame of reference (XlabYlabZlab) for fruit fly are also
illustrated for clarity. The stroke plane is the horizontal plane of the lab frame of reference (XlabObZlab).
The radius vector of Oroot relative to Ob is neglected in posterior torques calculation. The inclined
angle of longitudinal body axis (Zb) relative to Zlab axis (β) is 47.5◦ for hovering fruit fly [27]. Take
a concise hovering design and simplifying optimization analysis for FWMAV in engineering into
consideration [2,12,33], we assume the stoke deviation is absent. Using the coordination systems
shown in Figure 3, we write the complete transformation matrix from the right wing root frame of
reference (xrryrrzrr) to the right wing planform fixed frame (xrwyrwzrw) as

rw
rr R =

 cosφ sinφ 0
−cosψsinφ cosψcosφ sinψ

sinψsinφ sinψcosφ cosψ

. (7)
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The converse transformation matrix from the wing planform fixed frame to the right wing root
frame of reference can be given by rr

rwR = rw
rr R−1. According to above transformation and wing

kinematics differentiating to time, the wing angular velocity vector in right wing planform fixed frame
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can be acquired from the transformation of the middle coordination frame (mid) to the right wing

planform fixed frame due to flapping and pitch motion, namely, rwω = rw
midRx,−ψ

.
φ
→

kmid +
.
ψ
→
irw, where i

and k denote unit vectors along x and z directions of local frame, respectively, and the right superscript
of rwω is the abbreviation of the right wing. Thus rwω can be extended as

rwω =

 ωx

ωy

ωz

 =

 1 0 0
0 cosψ sinψ

0 −sinψ cosψ


 0

0
.
φ

+


.
ψ

0
0

 =


.
ψ

.
φsinψ
.
φcosψ

, (8)

where the left superscript of rwω is the abbreviation of the right wing. The wing angular acceleration
velocity vector rw .

ω in the right wing planform fixed frame can be expressed as

rw .
ω =


.

ωx
.

ωy
.

ωz

 =


..
ψ

..
φsinψ +

.
φ

.
ψcosψ

..
φcosψ−

.
φ

.
ψsinψ

. (9)

Here, in order to additionally consider the effect of time scale of wing stroke reversal and wing
pitch reversal on optimization including WKP, we adopt the wing kinematic pattern of Berman and
Wang [8], but overlook the effect of stroke plane deviation angle on optimization because of its low
amptitude [12,21].

φ(t) =
φm

sin−1 (Kφ

) sin−1 (Kφsin (2π f t)
)
, (10)

ψ(t) =
ψm

tanhCψ
tanh

[
Cψsin (2π f t + ζ)

]
, (11)

where φ(t) is flapping angle, ψ(t) is pitch angle (Figure 3). φm and ψm are flapping and pitch angle
amplitude, respectively. Their boundary values are listed in Table 1 in terms of empirically observed
value (φm = 75◦) and suggested value (ψm = π/2) [8]. Kφ and Cψ are regulating parameters of profiles
of flapping and pitch angle, respectively. The bound of Kφ is listed in Table 1 according to the reported
values [8]. While the bound of Cψ is limited in the range from 0 to 5 by referring to the upper bound
suggested by Nabawy and Crowther [13,30]. It is necessary to limit the upper bound of Cψ at a relative
value of 5, which means that the pitch reversal of the wing should be completed within around 25% of
the stroke period. The larger the upper bound of Cψ, the shorter the pitch reversal complete, then the
pitch acceleration during pitch reversal shall be more larger, which must induce extremely large inertia
force, including inertia force of wing planform itself and added-mass force derived from the inviscid
irrotational model [25]. This is not in agreement with the practical physical situation of flapping wing
hovering aerodynamic force. Thus the upper bound of Cψ must be limited at a reasonable value [13,30].
As shown in Figure 4, the profiles of flapping angle and pitch angle separately change from harmonic
to triangular and round trapezoidal waveform with Kφ and Cψ varying from their lower boundaries to
upper boundaries (Table 1). ζ is the phase offset of the pitch angle relative to the flapping angle. Here,
we define ψ = 0◦ when the wing planform is vertical to the horizontal stroke plane, thus the pitching
offset (η0) in the wing kinematic pattern of Berman and Wang can be discarded [8]. According to the
probable passivity of wing pitch dynamic or observed results for nearly all insects that the leading
edge of wing planform is always above wing stroke plane [8], we limit the range of phase offset (ζ)
within −π/2 to 0 (Figure 4 and Table 1).
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Thus, a two degrees of freedom (DOF) wing kinematic pattern is parameterized by six variables.
The other independent variables and their constraint boundaries are listed in Table 1.

Table 1. Independent variable wing geometry parameters (WGP) and wing kinematics parameters
(WKP) and their constraints.

Variables Description Min Max

Reff,vari (mm) wing effective length 2 4 a

Caver,vari (mm) mean chord length 0.5 2 a

xr,vari (mm) x-root offset 0 2 a

x̂0 rotational axis location 0 0.36
f (Hz) Frequency 0 ∞

φm (rad) Flapping amplitude 0 1.309
Kφ Regulating parameters of flapping angle profiles 0 1

ψm (rad) Pitch amplitude 0 π/2
ζ (rad) Pitch phase offset −π/2 0

Cψ Regulating parameters of pitch angle profiles 0 5
a prescribed by referring to the constraints of AR in Section 5.2.

4. Extended Quasi-Steady Aerodynamic Model

Here, we assume that flapping wing fruit fly can always keep hovering in flight, so the revised
quasi-steady aerodynamic model can be adopted to estimate the aerodynamic force of the flapping wing
thin plate passing through unsteady flow [32,34,35]. Considering the assumption and applicability of
revised quasi-steady aerodynamic model, a nonlinear constraint for posterior optimization analysis of
minimum energy is defined via Reynolds number, Re = UaverCaver/ν. Here Uaver is mean translating
velocity of wing tip expressed as 4φmfReff, and ν is kinematic viscosity of air (1.48 × 10−5 m2/s).
The hovering flight of flapping wing insects including fruit fly usually has a low Re approximate to
100~3000 [25,36,37], in which range the quasi-steady aerodynamic model has been proved to be able to
estimate experimental result very well [32,35]. Here, we shall derive aerodynamic forces and moments
component analytical formulas for three aerodynamic mechanisms, namely, translational and rotational
circulation mechanism and added mass effect. It is worth noting that the aerodynamic damping
moment, which plays an important role in realizing smooth pitch rotation of wing planform [25],
is introduced into the pitch-axis aerodynamic moment. Moreover, the aerodynamic damping moment
that stems from the velocity gradient of each strip along chordwise differential elements due to pitch
motion of wing planform [8,25,38–40] is also included to complete the development of aerodynamic
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moments. Thus, the current aerodynamic model can be termed an extended version of quasi-steady
aerodynamic model.

4.1. Aerodynamic Forces

As seen in Figure 1, the blade-element method assumes that the aerodynamic force acting on the
wing planform is the summation of force acting on each infinitesimal spanwise strip, and the local
pressure drag acting on each strip is the summation of normal pressure drag acting on the chordwise
differential elements. So the aerodynamic forces in the wing planform fixed frame, which are produced
by translational circulation, rotational circulation, and added mass effect, can be given by

Ftrans,y =
1
2

ρReff,vari
3Caver,vari F̂transCN (α) ωpal

2, (12)

Frot,y =
1
2

ρReff,vari
2Caver,vari

2 F̂rotCRωxωpal, (13)

Fadd,y =
π

4
ρCaver,vari

2Reff,vari
2 F̂rot

( .
ωz + ωxωy

)
+

π

4
ρCaver,vari

3Reff,vari F̂coeff,add,y
.

ωx, (14)

where F̂trans and F̂rot can be termed non-dimensional translational and rotational aerodynamic force,
respectively [25]. And F̂coeff,add,y can be analogously termed non-dimensional rotational added-mass
aerodynamic coefficient. Their complete expression is detailed in Table 2. CR is the theoretical rotational
coefficient with expression of CR = π(0.75− x̂0,vari), and ωpal, which is equal to

.
φ, is defined as the

angular velocity of the pitch axis line of wing planform. Here, for translational aerodynamic force,
its tangential component is neglected due to its small contribution [30,41,42]. The normal translational
aerodynamic force coefficient (CN (α), α is angle of attack) is obtained from lift and drag coefficients
using trigonometry. Within the community of the flapping wing, the two-dimensional (2D) quasi-static
lift and drag coefficients in the local flow for translational circulation mechanism adopted broadly are
from simple harmonic fitness relationships to the experimental data for the dynamically scaled fruit
fly wing model [34], {

CL (α) = 0.225 + 1.58sin (2.13α− 7.2)

CD (α) = 1.92− 1.55cos (2.04α− 9.82)
, (15)

These formulas might be appropriately used to evaluate translational component of aerodynamic
force for dynamically scaled wing planform with non-dimensional conformal feature. However,
the translational aerodynamic lift and drag coefficients for prolonged attachment of the leading edge
vortex (LEV) might be influenced by the variation of wing shape. As concluded and remarked by
Birch and Dickinson [43], the prolonged attachment of LEV on insect-scale wings may be due to the
attenuating effect of downwash induced by the tip vortex and wake vorticity but not spanwise flow
under lower Re for fruit flies, such as 100 ± 250. Thus, it is necessary to try to analytically explore
whether the variation of wing shape will indirectly have much influence on lift and power density by
probable way of influencing translational aerodynamic coefficients.

In order to account for the possible effect of any variation of wing shape on aerodynamic
coefficients thus lift and power, an approximate expression to experimental data for translational
steady lift coefficient is also utilized to model the lift for flapping wing biomechanics of insect or
FWMAV [30,44], this expression for 3D translational lift coefficient is given by

CL (α) = 0.5CLαsin (2α), (16)

where CLα is 3D wing lift curve slope. Recently, Taha and Nabawy give out 3D lift curve slope based
on Extended Lifting Line Theory and Prandtl lifting line theory, respectively [30,44]. Here, the 3D
lift curve slope given by Nabawy is adopted because it takes care of some correction for unsteady
aerodynamic mechanism through edge correction except aspect ratio. According to the Prandtl lifting
line theory [30], the 3D wing lift curve slope (CLα) for aspect ratio above 3 can be given by
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CLα =
CLα,2d

Evari,ec + kCLα,2d/πARvari
, (17)

where CLa,2d is 2D aerofoil lift curve for a flat plate. The value of 0.09 deg−1 is adopted for rigid
thin wing planform at typical insect wing’s Re [30]. The variable aspect ratio, ARvari, is equal to
Reff,vari/Caver,vari for a single wing. The parameter k, which can be evaluated by induced power factor
according to a hovering actuator disc model [30], is termed ‘k-factor’. The k-factor for the normal
hovering flight of a fruit fly can take the value of 1.51 in terms of the estimating result of Nabawy and
Crowther through including three contributors of the non-uniform downwash velocity distribution, tip
losses and effective flapping disc area [30]. The parameter, Evari,ec, is edge correction based on lifting
line theory considering the 3D effect of variation of wing shape [30]. Accounting for simplification
in the integral of wing planform semi-perimeter, we assume that the edge correction (Evari,ec) for
dynamically scaled wing planform can be estimated as

Evari,ec = λ1RratioCratioEorig,ec, (18)

where a factor of shape, λ1, is introduced to match 3D lift coefficient of original wing planform to
2D quasi-static lift coefficient fitted from experimental data for dynamically scaled fruit fly wing
model [34] (Figure 5). A value of 0.62 is used with root-mean-squared error (RMSE) of 0.04 relative to
2D quasi-static data. The edge correction for the original wing planform, Eorig,ec, is calculated by the
quotient of the wing semi-perimeter to its length [33], as given by

Eorig,ec =
Csemi,perim

Reff,vari
, (19)

here, Csemi,perim =
Sle,orig+Str,orig

2 is semi-perimeter of original fruit fly wing planform. The arc length of
leading-edge and trailing edge profiles can be expressed as

Si,orig =
w Reff,orig

xr,orig

(
1 +

(dzi,orig (r)
dr

)2) 1
2

dr, (20)

where i (i = le, tr) denotes leading-edge and trailing edge profiles.
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Figure 5. Translational circulations lift and drag coefficients.

Once the 3D translational lift coefficient is obtained, the drag coefficient can be obtained by
using trigonometry:

CD (α) = λ2CL (α) tan (α) = λ2CL (α) sin2 (α), (21)
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Similarly, a factor of shape, λ2, is introduced to match 3D drag coefficient of original wing
planform to 2D quasi-static drag coefficient (Figure 5). A value of 0.93 is used with RMSE of 0.11
relative to 2D quasi-static data. As shown in Figure 5, the 3D lift and drag coefficients of (16) and (21)
have a good approximation with the fitting formulas based on experimental data with little RMSE
after introduced two factors of shape. Thus these formulas of translational lift and drag coefficients
constructed by 3D lift curve slope based on Prandtl lifting line theory [30] are also adopted for
comparing the possible effect of wing aerodynamic performance arising from variation of wing shape
on optimization involving WGP. Finally, the normal translational aerodynamic force coefficient can be
obtained by a simple transformation, CN (α) = cos(α)CL(α) + sin(α)CD(α).

Table 2. Non-dimensional aerodynamic parameters for different aerodynamic components.

Aerodynamic Components Abbreviation Calculation Formulas

Translational components
F̂trans F̂trans =

r 1
0(r̂ + x̂r,vari)

2 Ĉ (r̂) dr̂
M̂coeff,trans,z M̂coeff,trans,z =

r 1
0(r̂ + x̂r,vari)

3 Ĉ (r̂) dr̂
r̂spw,cop,trans r̂spw,cop,trans =

M̂coeff,trans,z

F̂trans

Rotational components
F̂rot F̂rot =

r 1
0(r̂ + x̂r,vari) Ĉ (r̂)2 dr̂

M̂coeff,rot,z M̂coeff,rot,z =
r 1

0(r̂ + x̂r,vari)
2 Ĉ (r̂)2 dr̂

r̂spw,cop,rot r̂spw,cop,rot =
M̂coeff,rot,z

F̂rot

Aerodynamic damping components M̂coeff,rd,x M̂coeff,rd,x =
r 1

0 ẑrd (r̂) dr̂ a

M̂coeff,rd,z M̂coeff,rd,z =
r 1

0Ĉ (r̂)3 (x̂r,vari + r̂) dr̂

Added-mass components

F̂coeff,add,y F̂coeff,add,y =
r 1

0Ĉ (r̂)2 ẑhdr̂ b

M̂coeff,add,z,1 M̂coeff,add,z,1 =
r 1

0Ĉ (r̂)2 (r̂ + x̂r,vari)
2 dr̂

Îxx,am Îxx,am =
r 1

0Ĉ (r̂)2
(

ẑh (r̂)2 + 1
32 Ĉ (r̂)2

)
dr̂ b

Îxz,am Îxz,am =
r 1

0 (r̂ + x̂r,vari)Ĉ (r̂)2 ẑh (r̂) dr̂ b

a ẑrd (r̂) = 1
4

[∣∣ẑle,orig (r̂)− ∆̂
∣∣ (ẑle,orig (r̂)− ∆̂

)3 −
∣∣ẑle,orig (r̂)− ∆̂− Ĉ (r̂)

∣∣ (ẑle,orig (r̂)− ∆̂− Ĉ (r̂)
)3
]
;

b ẑh (r̂) = 1
2 Ĉ (r̂)−

(
ẑle,orig (r̂)− ∆̂

)
.

4.2. Aerodynamic Moments

The aerodynamic moments in wing planform fixed frame, which are produced by the mechanisms
of translational circulation, rotational circulation, aerodynamic damping moment, and added mass
effect, can be expressed as

Mtrans,z =
1
2

ρReff,vari
4Caver,variM̂coeff,trans,zCN (α) ωpal

2→e z, (22)

Mtrans,x =
1
2

ρReff,vari
3Caver,vari

2 F̂transẐcop,trans (α) CN (α)ωpal
2, (23)

Mrot,z =
1
2

ρCaver,vari
2Reff,vari

3M̂coeff,rot,zCRωxωpal
→
e z, (24)

Mrot,x =
1
2

ρCaver,vari
3Reff,vari

2 F̂rotẐcop,rot (α) CRωxωpal, (25)

Mrd,x = −1
2

ρCaver,vari
4Reff,variM̂coeff,rd,xCrdωx |ωx|

→
e x, (26)

Mrd,z = −1
6

ρCaver,vari
3Reff,vari

2M̂coeff,rd,zCrdωx |ωx|
→
e z, (27)

Madd,x =
(
−π

4
ρCaver,vari

3Reff,vari
2 Îxz,am

( .
ωz + ωxωy

)
− π

4
ρCaver,vari

4Reff,vari Îxx,am
.

ωx

)→
e x, (28)

Madd,z =
(

π
4 ρCaver,vari

2Reff,vari
3M̂coeff,add,z,1

( .
ωz + ωxωy

)
+ π

4 ρCaver,vari
3Reff,vari

2 Îxz,am
.

ωx

)→
e z, (29)
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The complete derivations of (22)–(29) are listed in Table 2 for concision. Here, M̂coeff,trans,z and
M̂coeff,rot,z in (22) and (24), can be termed non-dimensional translational and rotational aerodynamic
moments, respectively. M̂coeff,rd,x and M̂coeff,rd,z in (26) and (27) can be termed non-dimensional
rotational damping coefficient. Îxz,am, Îxx,am and M̂coeff,add,z,1 in (28) and (29) can be termed
non-dimensional added mass moments coefficients, respectively. Regarding the pitching moment
component of wing planform arisen from the rotational circulation term, it is necessary to tackle the
problem of chordwise acting point distribution of rotational normal aerodynamic force since it might
play an improving or resisting role during the passivity of pitch reverse dynamic of wing planform [40].
Here, taking the difficulty of direct measurements of rotational moments into consideration, we assume
that chordwise location distribution of COP for rotational normal aerodynamic force is the same as
the one for translational normal aerodynamic force (d̂cop (α)) in the light of translational circulation
and rotational circulation stemming from the same mechanism of circulatory-and-attached-vortex
force [45,46]. Thus, the non-dimensional chordwise location of COP at a certain angle of attack (α)
for particular strip, to which the translational and rotational aerodynamic force act normal, can be
simplified as Ẑcop,trans (α) and Ẑcop,rot (α) in (22) and (25) after derivation like following expression

Ẑcop,trans (α) =

r 1
0ẑcop

(
r̂spw,cop,trans

)
(r̂ + x̂r,vari)

2 Ĉ (r̂) dr̂
F̂trans

, (30)

Ẑcop,rot (α) =

r 1
0ẑcop

(
r̂spw,cop,rot

)
(r̂ + x̂r,vari) Ĉ (r̂)2 dr̂

F̂rot
, (31)

where r̂spw,cop,trans and r̂spw,cop,rot are non-dimensional spanwise location of COP relative to z-axis of
wing shoulder frame for translational and rotational aerodynamic force, respectively. For acting point
of translational aerodynamic force, the non-dimensional chordwise distance of COP for spanwise COP
strip relative to pitch axis line of wing planform, ẑcop

(
r̂spw,cop,trans

)
, is given by

ẑcop
(
r̂spw,cop,trans

)
= ẑle,orig

(
r̂spw,cop,trans

)
− ∆̂− Ĉ

(
r̂spw,cop,trans

)
d̂cop (α), (32)

where d̂cop (a) is non-dimensional chordwise position distribution of COP about angle of attack relative
to leading edge [25], which is given as

d̂cop (α) =
0.82

π
|α|+ 0.05. (33)

While ∆̂ = ẑle,orig,maxp − x̂0,vari with ẑle,orig,maxp = zle,orig,maxp/Cmax,letotr,orig is also introduced to
consider the effect of variable on-dimensional location of pitch axis (x̂0,vari) relative to leading-edge
on non-dimensional position distribution of COP along specific strip, and zle,orig,maxp is the projected
distance between maximum point on the actual leading-edge profiles for original wing planform and
Xs-axis of wing shoulder frame (Figure 1), its non-dimensional is ẑle,orig,maxp, and Cmax,letotr,orig is the
projected distance between the maximum point on the actual leading-edge profiles and minimum
point on actual trailing-edge profiles for original wing planform (Figure 1). Similarly, for the acting
point of rotational aerodynamic force, the non-dimensional chordwise location distribution of COP for
a specific strip located in r̂spw,cop,rot can be given by

ẑcop
(
r̂spw,cop,rot

)
= ẑle,orig

(
r̂spw,cop,rot

)
− ∆̂− Ĉ

(
r̂spw,cop,rot

)
d̂cop (α). (34)

where ẑcop
(
r̂spw,cop,rot

)
is also introduced to consider variable non-dimensional location of pitch

axis (x̂0,vari).
In short, here, the extended quasi-steady aerodynamic forces and moments model is derived from

previous revised quasi-steady aerodynamic model [25,32,34,35], but it has two different points from
the latter one. The first one is that it includes the contribution of aerodynamic damping moment along
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z-axis of wing shoulder frame, which is scarcely considered in previous research [8,25,40]. The second
one is that the assumption of uniform distribution about non-dimensional chordwise location of
COP for translational and rotational circulation aerodynamic mechanism is introduced to simplify
the calculation of rotational aerodynamic moment. Because of the difficulty of direct measurements
of rotational moments and the lack of exploring possible chordwise location of COP of rotational
circulation aerodynamic mechanism [8,40,47,48], the calculation of rotational aerodynamic moment is
either neglected [25] or consciously executed by assumption that the chordwise position distribution of
COP for aerodynamic force arising from translational and rotational circulation is identical, and located
at the geometric center of the wing strip elements [8,40].

4.3. Horizontal and Vertical Force in Right Wing Root Frame of Reference

According to the quasi-steady model for flapping wing hovering flight [32,34,35], the total
instantaneous aerodynamic force normal to the wing planform can be represented as the summation
of three force components

Faero,y = Ftrans,y + Frot,y + Fadd,y, (35)

Obviously, the quasi-steady estimating model is unable to include some unsteady effects, such as
the vortex starting effect during acceleration impulsively from rest [49], vortex shedding effect
occurring at high angle of attack [50], wake capture due to wing planform intercepting its own
wake during reciprocating oscillation [34], and induced flow effects depended on wing size and
shape [30,46,51]. However, the current extended quasi-steady aerodynamic model should not be
discounted to evaluate the flapping wing hovering aerodynamics as verified by following comparisons
between estimating results and experimental results. It is worth mentioning that the gravitational and
inertia forces of the wing itself have been ignored in comparison with the contribution of aerodynamic
components to total instantaneous forces; after all, the measured instantaneous force has also excluded
their influence [27,52,53]. Thus, the total instantaneous forces normal to the wing planform are
approximately equal to the total instantaneous aerodynamic force:

rwFtotal,y = Faero,y, (36)

where rwFtotal,y can be further transformed into right wing root frame of reference (xrryrrzrr) by
transform matrix, rr

rwR.

rrFbody =


rrFlateral,x

rrFhorizontal,y
rrFvertical,z

 = rr
rwR · rwFtotal,y

→
j =

 −sinφ · cosψ · rwFtotal,y
cosφ · cosψ · rwFtotal,y
−sign(α) · sinψ · rwFtotal,y

, (37)

here, the sign function for α is introduced to determine the direction of vertical upward force
(rrFvertical,z). The lateral force (rrFlateral,x) has zero mean value during the whole period due to symmetric
flapping stroke. In order to conveniently measure vertical upward force generated by two wing
planforms in non-dimensional form [8], the lift-to-weight is defined as

LtoW =
2
(

rrFvertical,z

)
rrWbody

, (38)

here rrWbody is the body weight of fruit fly. Thus, when LtoW ≥ 1 is kept, the insect can support
itself aloft.
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4.4. Aerodynamic Moments in Right Wing Root Frame of Reference

The total aerodynamic moments along the spanwise pitch axis (xrw) and chordwise axis of the
wing shoulder (zrw) in the wing planform fixed frame of xrwyrwzrw for a single wing planform can be
given by {

rw Mpitch
total,x = Mtrans,y + Mrot,y + Mrd,y + Madd,x

rw Mtotal,z = Mtrans,z + Mrot,z + Mrd,z + Madd,z
, (39)

which constitute the vector of rw Mtotal =
[

rw Mpitch
total,x 0 rw Mtotal,z

]T
. Further, the aerodynamic

moments in right wing root frame of reference (xrryrrzrr) for single wing planform, rr
M, can be

expressed as

rr M = rr
rwR · rw Mtotal =

 cosφ · rw Mpitch
total,x − sinφ · sinψ · rw Mtotal,z

sinφ · rw Mpitch
total,x + cosφ · sinψ · rw Mtotal,z

cosψ · rw Mtotal,z

, (40)

where z-axis component of rr M, which is along the zrr-axis of right wing root frame of reference,
can be denoted as rr Mstroke

z . Once the total aerodynamic torques for both wing planforms are
obtained by summing the contributions from right and left wing planform, then the three components
of aerodynamic torques (rr M) for two wings can be termed the pitch, roll and yaw aerodynamic
moment, respectively.

4.5. Verification and Validation

Frankly speaking, the extended quasi-steady aerodynamic model evolved from the work of
Sane et al. [32,35,54] and Whitney and Wood [25] has, in some extent, been verified by their works,
where the complete experiments were made by them to confirm its applicability. However, part of the
viscous dissipative damping arisen from the velocity gradient of differential rotation for chordwise
infinitesimal elements was ignored by them. In spite of this, before the development of the optimization
problem, the compatibility of current extended quasi-steady aerodynamic model with experimentally
measured results of dynamically scaled robotic fruit fly wing, which replayed the steady hovering
wingbeat kinematics [27], needs to be validated.

In order to preferably make a comparison with experimental results, the morphological parameters
of wing planform (Table S1), and actual leading-edge profiles (zle(r)) and trailing-edge profiles (ztr(r))
for right wing of fruit fly (Table S2) are used to calculate non-dimensional aerodynamic forces and
moments parameters. The wing motion inputs are given by steady hovering wingbeat kinematics
formulas with Fourier form extracted from the Supplementary Materials [27], without involving
deviation angle. Here, for comparison with the experimental results, the vertical and horizontal forces
(rrFhorizontal,y and rrFvertical,z from (37) and pitch torque (rr Mpitch,x, which is equal to rr Mx from (40) for
two wing planforms in the inertial frame are adopted. The comparisons for yaw and roll torque are
neglected. Because they are from the contribution of each wing with an opposite sense of direction,
both of their eventual summations are equal to zero at each point during the whole stroke period for
bilaterally symmetric wing motions [54].

As shown in Figure 6, the magnitude and trends of calculated instantaneous force and pitch
torque have a good agreement with the experimental results [27]. However, see Figure 6a,b carefully,
the peak value of calculated vertical force and horizontal force is a little lower than the measured ones,
while the peak value of calculated pitch moment is a little higher than the measured one, which might
result from the absence of deviation angle, after all the experimental measure replays three DOF wing
motions [27,52,53]. What is more, some unsteady aerodynamic mechanism mentioned above might
also confirm the inability of the current extended quasi-steady aerodynamic model. The experiments
that can explicitly determine the coefficients for rotational aerodynamic force and added-mass force,
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and chordwise location of COP for various kinds of aerodynamic moments need to be done to better
estimate these exceptions.
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5. Optimization Problem’s Modeling and Formulation

5.1. Power Density Model

Before the development of optimization analysis, three assumptions are made for the power
density model [8]. Firstly, the energetic cost consumed by hovering insect only considers the
time-averaged positive mechanical power output used to overcome aerodynamic damping and inertial
power [54–56]. Secondly, the elastic storage can be recovered completely and thus be treated as a part of
the negative power of the system [55–57]. Thirdly, the wing motions are powered by actuators located
at the wing shoulder. Based on these assumptions and Euler equations of a rigid body, the power
output from two DOF wing motions about angle i can be written as

Pi (t) = Ξ
{

Ωi

[
Ii

.
Ωi −Maero

i

]}
, (41)

where [i, j] is a sequence of [φ, ψ], Ii and Ωi are moment of inertia and angular velocity when rotating
in angle of i, respectively. The moments of inertia of dynamically scaled wing planform have been
expressed in Section 2.3. Ξ {·} is a predefined function with the value of 1 for positive internal
variable and with the value of 0 for non-positive ones, which is adopted to harness the assumption for
completely positive power consumption by taking no account of negative power stored in the system
and recovered in the later stroke. Maero

i , which is the component of aerodynamic moment in φ̂- or
ψ̂-directions, is defined as

Maero
i =

{
3Mpitch

total,x i = ψ

1Mstroke
z i = φ

. (42)



Appl. Sci. 2016, 6, 390 16 of 35

The inertial power is also included in the later optimization problem [58]. Similarly, take the
consistency with much of reported literatures and convenience of measuring optimization objective
into consideration [8,34,54,56], we present specific total power P*, i.e., power normalized to mass of
insect body:

P∗ =
Ξ
(

Pφ + Pψ

)
Minsect

, (43)

where Pφ and Pψ separately include the aerodynamic power and inertial power (their derivation are
detailed in Appendixs A–C, respectively). Here, Minsect is not limited to the body mass of the fruit
fly (Table S1), and some other mass arguments can be chosen for the particular design of hovering
FWMAV with demand of minimum energy consumption.

5.2. Formulation of the Optimization Problem

The optimization problem is to search for optimal WGP and WKP to minimize the specific power
output of hovering insect (LtoW ≥ 1) under different given conditions, such as prescribing wing
kinematic pattern and fixed WGP (Table 3) and constraining AR and Re as follows. Here, AR is
introduced as a linear constraint because of its role in mediating stability of LEV. According to the
result of statistic analysis over 300 insects, AR of single wing termed Rossby number has an average
value near to 3 [59,60]. Here, taking the extension of optimal analysis and feasibility of design in
engineering into consideration, we limit the range of AR as

2.9 ≤ AR =
Reff,vari + xr,vari

Caver,vari
≤ 4. (44)

The lower bound of AR is an average value for fruit flies [60], and the upper bound refers to the
average value of 65 hummingbirds [61]. Moreover, Re as a nonlinear constraint is also introduced to
consider the scope of application of quasi-steady aerodynamic model, which has been probed by some
researchers [36,62]. Here, by referring to the review of Sun [37], the range of Re is limited as

100 ≤ Re =
4φm f Reff,variCaver,vari

ν
≤ 3000. (45)

So, the optimization problem, which subjects to some tricky nonlinear constraints of Re and
LtoW ≥ 1, can be written as:

find x
min f (x) = P∗ (x)

s.t. LtoW (x) = 1
xmin ≤ x ≤ xmax

Reff,vari − 4 ∗ Caver,vari ≤ 0
−Reff,vari + 2.9 ∗ Caver,vari ≤ 0
100ν− 4φm f Reff,variCaver,vari ≤ 0
−3000ν + 4φm f Reff,variCaver,vari ≤ 0

, (46)

where x is design variables with bound of xmin and xmax, and f (x) is objective function for average
positive power density output (P*(x)). AR is the linear equality constraint, and ratio of lift-to-weight
(LtoW) and Re are nonlinear inequality constraints. In order to conveniently realize optimization,
we convert the constrained optimization into a single objective function with some penalty functions
formed by boundary constraints, linear constraints and nonlinear constraints [8]. The single objective
function is termed fitness, F(x), which subject to optimized parameter space (Υ) corresponding to the
optimization problem,
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min F (x) = P∗ (x) + rΘ (1− LtoW (x)) + s∑
j∈

∣∣ζ j
∣∣

Maxj −Minj
+ λΘ ({Con}), (47)

here the nonlinear equality constraint (LtoW ≥ 1) is penalized to be infinitesimally approximate to
equality constraint (LtoW ≡ 1) with relative toleration of 10−8 [8]. Θ (x) is set as the Heaviside step
function about lift-to-weight’s equality constraint (LtoW = 1) with a positive real penalty factor of r
ahead. ζ j is the distance corresponding to the parameter j outside the range specified by its upper and
lower bounds (Maxj and Minj given in Table 1). Thus, the third item of (47) forms the penalty function
about the boundary constraint with a positive real penalty factor of s ahead. Here, Θ ({Con}) is also
a Heaviside function expression about AR and Re with a positive real penalty factor λ ahead. For the
following linear constraint of AR and nonlinear constraint of Re, and Θ ({Con}) is constructed by

Θ ({Con}) =

{
1, if (lc1 > 0 or lc2 > 0 or nlc3 > 0 or nlc4 > 0)

0, else (lc1 ≤ 0 and lc2 ≤ 0 and nlc3 ≤ 0 and nlc4 ≤ 0)
, (48)

where the linear and nonlinear constraints expressions are organized as
lc1 = Reff,vari − 4 ∗ Caver,vari

lc2 = −Reff,vari + 2.9 ∗ Caver,vari

nlc3 = 100ν− 4φm f Reff,variCaver,vari

nlc4 = −3000ν + 4φm f Reff,variCaver,vari

, (49)

these expressions are constructed by considering the range of AR and Re, which is necessary for
successfully realizing the combined optimization of WGP and WKP.

Here, a hybrid scheme of Genetic Algorithm (GA) and Nelder–Mead simplex algorithm from
MATLAB R2011b [63] is adopted to minimize the objective function (F). Firstly, GA for 350 generations
with numbers of individuals corresponding to optimized parameters and population size of 100 at each
generation is used to approach the global minimal basin. After evolving the population sufficiently to
stop according to the stall limit set of generations, then the final best parameter set from GA is taken as
initial point for solver of simplex search algorithm, which can efficiently search for the local optimum
of the global minimal basin by relaxing each of the parameter sets obtained by GA. In the iterations
of the simplex search algorithm, relative tolerances of 10−8 for fitness function and all constraint
parameters are set as stall limits of convergence for the final solution by considering computation cost.
Here, all of the values of r, s and λ are chosen to be 2000 [8].

6. Optimization Results and Analysis

6.1. WGP Optimization Results

Firstly, the sole optimization of WGP with 3D translational aerodynamic coefficients is executed to
minimize the hovering specific power output. Here, the WKP are unchanged and completely equal to
the data from approximately steady hovering fruit fly (Table 3, as illustrated in Figure 7a). The optimal
results are listed in Tables 3 and 4. Then the pitch power output and flapping power output of a single
wing planform separately along the pitch axis of wing planform and flapping axis of the right wing
root frame are estimated again in terms of (41) with the optimal WGP and known WKP (as illustrated
in Figure 7b,c). Both the pitch power output and flapping power output include aerodynamic power
and inertial power, respectively. The aerodynamic power consists of four components, which are
from translational circulation effect, rotational circulation effect, rotational damping, and added-mass
effect. In addition, the positive mechanical pitch and flapping power output utilized to estimate
time-averaged power density in optimization model (41) and (43) are also shown (Figure 7b,c). Here,
it is not difficult find that pitch power consumption mainly distributes around the pitch reversal while
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flapping power consumption distributes during the large range of the midstroke and peaks near to
the midstroke.

Table 3. Original WGP and WKP of hovering fruit fly and optimal WGP and WKP.

Variables Original WGP
and WKP

Optimal WGP with 2D (Left)
and 3D (Right) CF,trans (α) b

Optimal
WKP

Combined Optimal WGP and WKP with
2D (Left) and 3D (Right) CF,trans (α) b

Reff,vari (mm) 3.004 a 2.4370 2.6843 3.004 a 3.9813 4.000
Caver,vari (mm) 0.8854 a 0.9626 0.9882 0.8854 a 1.9600 1.9111

xr,vari (mm) 0.3289 a 0.3574 0.2315 0.3289 a 1.7845 1.8118
x̂0,vari 0.36 a 0 0.1443 0.36 a 0.0001 0.0020
f (Hz) 188.7 a 188.7 a 188.7 a 189.1094 46.6104 60.7851

φm 1.1488 a 1.1488 a 1.1488 a 1.1386 1.3076 1.3022
Kφ null null null 0.3733 0.1891 0.1170

ψm (rad) 1.0157 a 1.0157 a 1.0157 a 1.2324 1.2715 1.2287
Cψ null null null 4.8336 2.5103 2.5887

ζ (rad) null null null −1.5708 -1.5169 −1.5391
a is original data from fruit fly [27]; b CF,trans (α) are 2D or 3D translational aerodynamic coefficients, respectively.

For pitch aerodynamic power (Px,total) during the forward stroke (Figure 7b), the added-mass
power (Px,add) dominates other three terms, the subdominant term belongs to rotational circulation
power (Px,rot), and the third one is rotational damping power (Px,rd), while the translational circulation
power (Px,trans) has the minimum contribution to pitch power consumption. Their synergistic effect
spans a rapidly varying pitch interval composed of three pitch reversal segments, and two positive
peaks of pitch aerodynamic power distribute at previous instant of the first and second pitch reversal
points, where the pitch velocity or slope of wing pitch angle is maximum (Figure 7a,b). The pitch
inertial power (Px,inert) is reverse to the pitch aerodynamic power; their mutual subtraction results in
a positive peak of total pitch mechanical power output (Px,total,posi) around the middle of the first and
the second pitch reversal points. For the backward stoke, a similar trend of pitch power distribution
can be observed, although with some differences in amplitude. Namely, the amplitudes are larger
than those for forward stroke. This is due to a faster stroke being completed in the backward stroke
(Figure 7a,b).

For flapping aerodynamic power (PZ,total) during the forward stroke (Figure 7c), the translational
circulation power (PZ,trans) dominates the other three terms, the subdominant term belongs to
added-mass power (PZ,add), and the third one is rotational circulation power (PZ,rot), while the
rotational damping power (PZ,rd) has a minimum contribution to flapping power. The flapping
inertial power (PZ,inert) is positive during translation acceleration and negative during translation
deceleration. Their synergistic effect results in two positive peaks of total flapping mechanical power
output (PZ,total,posi) occurring around the middle of the forward stroke, which is different from the
situation for the backward stroke. In the backward stroke, there is only one positive peak because
a faster backward stroke leads to a larger translational aerodynamic power output than inertial power.
Eventually, the positive total flapping mechanical power output is nearly consumed during the whole
stroke except at the interval of stroke reversal where a minor negative PZ,add might be stored in elastic
joint or dissipated.

It is worth noting that the asymmetries of amplitudes for pitch power output and flapping
power output are observed in Figure 7b,c, which must result from the fact that different split time are
consumed by the forward stroke and backward stroke for hovering steady wingbeat motion of fruit fly.
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single wing (b,c) for optimal wing geometry parameters (WGP).

6.2. Sensitivity Analysis for Optimal WGP

Given the optimized WGP listed in Table 3, the effect of a perturbing single parameter on
lift-to-weight ratio and power density is analyzed to gain insight of the reason why the optimized
WGP can produce power-efficient lift to maintain the insect’s aloft hovering. It is necessary to
dissect how the most power-efficient lift-to-weight ratio changes with one parameter of WGP while
keeping other parameters unchanged and equal to their optimal values. As shown in Figure 8a–c,
the lift-to-weight ratio and power density consistently and monotonically increase with wing length
(Reff,vari), average chord (Caver,vari) and wing-root offset (xr,vari), although there is an interplay between
WGP via AR except for the parameter for non-dimensional location of pitch axis (x̂0,vari). This indicates
that the conflict between lift-to-weight ratio and power density is unavoidable because additional
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lift production must result in an increase of power consumption. Thus, the optimal values for these
parameters, which are loosely restricted by approximate nonlinear equality constraint (LtoW ≡ 1),
were found by the resulting simplex algorithm. The lift-to-weight ratio and power density consistently
and monotonically decrease with x̂0,vari (Figure 8d), which arises from the fact that lift changes with
x̂0,vari due to variation of rotational circulation coefficient (CR ) with x̂0,vari [32,64] although the inertial
power shall reduce with the pitch axis shifting to trailing edge. Thus, the optimal value of x̂0,vari

with maximum rotational circulation coefficient is a reasonable value under primary condition of lift
balancing weight.
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and power density (P*) as the function of some given WGP are illustrated by red solid lines and blue
dashed lines in Figure 8, respectively. The black dot-dash vertical lines indicate the position of optimal
value for the parameter in question. The black dot-dash horizontal lines denote the location where
L/W = 1. The black dash horizontal lines indicate the corresponding value of power density when
L/W = 1.

Furthermore, the sole optimization results of WGP for 2D translational aerodynamic coefficients
(Table 3) are also used to plot instantaneous power output (as seen in Figure S1 of Supplementary
Materials for compactness). The sensitivity analysis of the single parameter is shown in
Figure S2. No obvious distinction is observed in the visualization results involving 3D and 2D
translational aerodynamic coefficients although there is a small difference in amplitude, which
directly indicates that the adopted 3D translational aerodynamic force coefficients have little effect
on the eventual optimization results of WGP and indirectly shows that the variation of wing shape
only brings little influence on lift and power density by probable way of influencing translational
aerodynamic coefficients.

6.3. WKP optimization Results

As for WKP optimization, the sole optimization of WKP is performed to minimize the specific
power output of a hovering insect by using 2D translational aerodynamic coefficients, which is
also formulated as Equation (47) but does not involve linear equation constraints for AR. For this
optimization problem, the WGP are unchanged and they are taken from the actual morphological
parameters of fruit fly (as listed in Table S1 and S2). The optimal results are also listed in Tables 3 and 4.



Appl. Sci. 2016, 6, 390 21 of 35

The optimal wing kinematic pattern is characterized by round trapezoidal profile for pitch angle,
and harmonic shape profile for flapping angle (Figure 9a). The round trapezoidal pitch angle signifies
the pitch reversal of wing must be completed at certain faster time scale regulated by Cψ. Moreover,
the geometry angle of attack needs to be kept constant during the large range of the midstroke. Here,
the optimal harmonic shape flapping angle profile is different from those reported by Nabawy and
Corwther and Taha et al. [12,42], who acquired the triangular flapping angle profile. This must be
attributed to the fact that the effect of rotational circulation mechanism and added-mass effect on lift
and power consumption has been neglected in their power consumption estimating model.

Similarly, once acquiring optimal WKP, the pitch power output and flapping power output
of a single wing planform can be estimated again with given fixed WGP of fruit fly (Table 3) and
illustrated in Figure 9b,c. Likewise, the pitch power consumption mainly distributes around the
pitch reversal while flapping power consumption distributes during the large range of the midstroke,
and peaks before the middle of the half stroke due to the peak of flapping inertial power before half of
the forward stroke.

Appl. Sci. 2016, 6, 390  21 of 35 

parameters of fruit fly (as listed  in Table S1 and S2). The optimal results are also listed in Tables 3 

and 4. The optimal wing kinematic pattern  is characterized by round  trapezoidal profile for pitch 

angle, and harmonic shape profile for flapping angle (Figure 9a). The round trapezoidal pitch angle 

signifies the pitch reversal of wing must be completed at certain faster time scale regulated by Cψ. 

Moreover,  the geometry  angle of  attack needs  to be kept  constant during  the  large  range of  the 

midstroke. Here, the optimal harmonic shape flapping angle profile is different from those reported 

by Nabawy and Corwther and Taha et al. [12,42], who acquired the triangular flapping angle profile. 

This  must  be  attributed  to  the  fact  that  the  effect  of  rotational  circulation  mechanism  and 

added‐mass effect on lift and power consumption has been neglected in their power consumption 

estimating model. 

Similarly, once acquiring optimal WKP, the pitch power output and flapping power output of a 

single wing  planform  can  be  estimated  again with  given  fixed WGP  of  fruit  fly  (Table  3)  and 

illustrated  in Figure  9b,c. Likewise,  the  pitch power  consumption mainly distributes  around  the 

pitch  reversal  while  flapping  power  consumption  distributes  during  the  large  range  of  the 

midstroke, and peaks before the middle of the half stroke due to the peak of flapping inertial power 

before half of the forward stroke. 

 

Figure 9. Wingbeat motion  (a), pitch  and  flapping power  output  of single wing  (b,c)  for optimal 

WKP. 
Figure 9. Wingbeat motion (a), pitch and flapping power output of single wing (b,c) for optimal WKP.



Appl. Sci. 2016, 6, 390 22 of 35

For pitch aerodynamic power (Px,total) during the forward stroke (Figure 9b), the added-mass
power (Px,add) has a nearly equivalent peak to the rotational damping power (Px,rd), which arises
from the larger pitch velocity and acceleration induced by faster time scale of pitch angle during
pitch reversal. The translational circulation power (Px,trans) and rotational circulation power (Px,rot)
make minimum contribution to pitch power consumption. Their synergistic effect spans the interval
of pitch reversal, and one positive peak of pitch aerodynamic power occurs at the end of the pitch
reversal, which is mainly contributed by Px,add (Figure 9b). The pitch inertial power (Px,inert) is likewise
reverse to the pitch aerodynamic power, their mutual subtraction results in a minor positive peak of
total pitch mechanical power output (Px,total,posi) around the pitch starting point (Figure 9b). For the
backward stoke, a completely equivalent trend of pitch power distribution can be observed without
any asymmetrical amplitude distribution like the situation in Figure 7b.

For flapping aerodynamic power (PZ,total) during the forward stroke (Figure 9c), the translational
circulation power (PZ,trans) dominates the other three terms, the subdominant term belongs to
added-mass power (PZ,add), and the third one is rotational damping power (PZ,rd), while the rotational
circulation power (PZ,rot) has minimum contribution to flapping power consumption. The flapping
inertial power (PZ,inert) is likewise positive during the translation acceleration and negative during
the translation deceleration. Their synergistic effect results in two positive peaks of total flapping
mechanical power output occurring before the middle of forward stroke and at the middle of
accelerating pitch interval, respectively. The former main peak should be attributed to the influence of
peak of flapping inertial power before half of forward stroke. The latter subordinate peak is contributed
by peak distribution of PZ,add, PZ,rd, and PZ,rot, all of them have peak amplitude around the point
locked by the maximum slope of pitch angle. Eventually, the positive total flapping mechanical power
output (PZ,total,posi) is nearly consumed during large part of the whole stroke except at the interval
before the starting of pitch reversal and short interval of starting of next half stroke. In these two
intervals, the flapping inertial power and added-mass power term are negative and might be stored in
elastic joint or dissipated. A completely equivalent trend of flapping power distribution is observed
for backward stoke. Here, the pitch power and flapping power output distribution is different from
the situation in Figure 7b,c because of the completely different wing kinematic profile adopted.

6.4. Sensitivity Analysis for Optimal WKP

Similarly, given optimized WKP listed in Table 3, the effect of perturbing single parameter
on lift-to-weight ratio and power density is analyzed while keeping other parameters unchanged
(Figure 10). Obviously, there is a sound interplay between some WKP due to the nonlinear constraint
of Re formed by frequency, flapping amplitude and part of the fixed WGP.

The lift-to-weight ratio and power density consistently and monotonically increase with flapping
frequency and amplitude of flapping angle (φm) (Figure 10a,b). Similarly, this indicates that the conflict
between lift-to-weight ratio and power density also occurs. For the regulating parameter of flapping
angle (Kφ), both of lift and power decrease monotonically during large part of the interval of variable
Kφ. The optimal value of Kφ determines the profile of the flapping angle approaching the harmonic
shape such that the lift constraint is met although the power density does not achieve its minimum
value (Figure 10c).

The amplitude of the pitch angle (here, φm = 70.6 deg, Table 3) corresponds to the mid-stroke
value of the angles of attack (α = 19.4 deg), which is an optimal value of aerodynamic efficiency
for translational aerodynamic lift and drag coefficients. This proximate value has been reported in
sole WKP optimization [8,13]. After this optimal value (Figure 10d), the lift constraint cannot be
met although the power density decreases further. The regulating parameter of pitch angle (Cψ),
which strictly controls the variable time scale of pitch reversal, indirectly affects lift and power
density through added-mass force, rotational circulation force and damping force during pitch reversal
interval. The lift firstly decreases monotonically with Cψ during the first approximate half of the
variable interval and then increases monotonically during the second half of the variable interval
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(Figure 10e). The power density decreases monotonically with Cψ until it reaches a constant value
(Figure 10e). The optimal value (Cψ = 4.8, Table 3) approaches the prescribed upper bound of Cψ

(Table 1), which determines the pitch angle featuring the round trapezoidal profile. Lastly, the pitch
phase offset relative to the flapping angle (ζ), which affects rotational circulation effect and unsteady
wake capture [34], targets an optimal value of −π/2 for current power density optimization model.
Any deviation from this value will dissatisfy the lift constraint when other optimal parameters are
fixed (Figure 10d).
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6.5. Combined Optimization Results for WGP and WKP

Lastly, for the combined optimization of WGP and WKP, the single objection function including
nonlinear penalty for lift-to-weight constraint, penalty of boundary constraints, linear penalty of AR
constraint, and nonlinear penalty of Re constraint is performed to minimize specific power output by
using 3D translational aerodynamic coefficients (refer to Equation (47)). Here, both WGP and WKP are
variable and constrained in particular boundary listed in Table 1. As seen from the optimal results
listed in Tables 3 and 4, the pitch angle is also characterized by round trapezoidal profile but with
lower flapping frequency and shorter pitch time scale controlled by Cψ than for those for sole WKP
optimization, and the flapping angle also varies with harmonic shape profile (Figure 11a). Here, it is
worth noting that the trapezoidal pitch angle profile might not be an optimal solution in engineering.
Since this profile is not easy to be realized on account of the actuator mode selection for the wingbeat
motion of FWMAV [13]. Thus, the dynamics problem for this kind of pitch motion needs to be probed
deeply in theory, and the feasible design for FWMAV with active or passive pitch motion may require
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a large amount of elaborate redesign and experiments with or without torsional hinge or/and actuator
along the pitch axis [2,5,33,65,66].
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optimal WGP and WKP.

The pitch angle amplitude determines the geometric angle of attack at the midstroke. Thus, it is
always expected for flapping flight that the optimal angle of attack will bring about the most efficient
translational lift and drag coefficient to minimize power consumption. In this study, the optimal pitch
angle amplitude from the results of sole WKP optimization (ψm = 70.6 deg) and combined optimal
WGP and WKP (ψm = 70.4 or 72.9 deg) is nearly equivalent (Table 3), both of them are approximately
equal to the reported value (ψm = 72.7 deg for fruit fly) [8].

The pitch phase offset mainly influences rotational circulation force and wake capture [34].
Because the current power density model, which is based on extended quasi-steady aerodynamic
model with the absence of some other unsteady lift effect (such as wake capture), is set to achieve the
minimization of power consumption but not the maximum of lift, thus the symmetry pattern between
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flapping angle and pitch angle is dug out when the zero pitch angle crosses to the stroke reversal point.
Here, the optimal values of pitch phase offset from the results of sole WKP optimization and combined
optimal WGP and WKP is approximate to −π/2 (Table 3), and both of them are similar to the reported
value [8]. Moreover, all of the WGPs approach their upper bounds except the non-dimensional location
of the pitch axis, which is near to zero. The combined optimal result with the feature of larger WGP
and lower frequency arises from the fact that the strong linear and nonlinear coupling relationships
between WGP and WKP via AR and Re have an intense effect on the optimization procedure.

Likewise, for the combined optimal WGP and WKP, the pitch power output and flapping power
output of a single wing planform are estimated again and illustrated in Figure 11b,c. The time
histories of those power outputs have similar trend to those from sole WKP optimization but with
different amplitude distribution due to different optimal WGP and WKP adopted (Table 3, Figures 9b,c
and 11b,c). For pitch aerodynamic power (Px,total) during forward or backward stroke (Figure 11b),
the added-mass power (Px,add) dominates the other three terms, the subdominant term belongs to the
rotational damping power (Px,rd), and the third one is rotational circulation power (Px,rot), while the
translational circulation power (Px,trans) makes minimum contribution to pitch power consumption.
The pitch inertial power (Px,inert) is reverse to Px,add but with nearly equivalent amplitude, their
mutual subtraction leads the positive peak of total pitch mechanical power output (Px,total,posi) near
to zero during the whole stroke (Figure 11b), which is not observed in the results from sole WGP
or WKP optimization. Moreover, the main time interval of pitch reversal occupied by pitch power
consumption is wider than that for sole WKP optimization, which results from the fact that the
pitch regulating parameter of Cψ is smaller than the latter one, thus the pitch reversal completes
slowly. For flapping aerodynamic power (PZ,total) during the forward or backward stroke (Figure 11c),
the translational circulation power (PZ,trans) dominates the other three terms, the subdominant term
belongs to added-mass power (PZ,add), and the third one is rotational circulation power (PZ,rot), while
the rotational damping power (PZ,rd) has minimum contribution to flapping power consumption.
All of them may be synergistically generated from lower frequency, larger flapping amplitude, shorter
pitch time scale (Cψ) and larger WGP except non-dimensional location of the pitch axis in comparison
to the situation of sole WKP optimization (Table 3, Figures 9a and 11a). The flapping inertial power
(PZ,inert) is likewise positive during the translation acceleration and negative during the translation
deceleration but with relatively lower amplitude than that for sole WKP optimization. Their synergistic
effect results in two positive peaks of total flapping mechanical power output occurring before the
middle of half stroke and at the middle of the accelerating pitch interval, respectively. The reason
why these positive peaks occurred at these locations is very similar to that analyzed for sole WKP
optimization. The positive value of the total flapping mechanical power output (PZ,total,posi) nearly
spans the whole stroke except at the short interval of starting of next half stroke where PZ,rot and PZ,rd
are negative and might be stored in elastic joint or dissipated.

6.6. Sensitivity Analysis for Combined Optimal WGP and WKP

Similarly, given the combined optimal WGP and WKP listed in Table 3, the effect of perturbing
single parameter on lift-to-weight ratio and power density is also analyzed. As seen in Figure 12,
the distribution feature of some of optimal values in their own constraint boundary is completely
similar to those for sole WGP or WKP optimization although with different peak or amplitude
difference of power density, such as the effective variable wing length (Reff,vari), variable average
chord (Caver,vari), wing-root offset (xr,vari), and non-dimensional location of pitch axis (x̂0,vari) for WGP
(Figures 8 and 12a–d), and flapping frequency, amplitude of flapping angle (φm), amplitude of pitch
angle (ψm) and pitch phase offset (ζ) for WKP (Figures 10a,b,d,f and 12e,f,h,j). Here, the optimal values
for non-dimensional location of the pitch axis, which consistently approach the leading edge for the
optimization involving WGP (Table 3), is only the numerical solution but not reflect the real situation
since the pitch axis might be not a straight line. In engineering design, the location of pitch axis needs
to be determined by experimentally measuring the optimal angle of attack [57]. In order to survive in
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a complex environment such as predation or evading maneuverability with limited energy, fruit fly
might evolve to have pony-size WGP adaptive to its body size in millimeter scale but high flapping
frequency and large flapping amplitude under the strategy of minimum power consumption. For the
design of FWMAV, high frequency will lead to the dilemma of designing actuator and avionics system.
Thus, the optimal large-sized wing length and average chord might be favorable to lower flapping
frequency with minimum power consumption.
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Moreover, the flapping frequency and flapping amplitude are two competitive parameters to
realize the production of high lift and minimum power consumption. The flapping amplitude
determines the travel distance of chordwise section of wing planform, and thus the vortex dynamical
evolutionary process. While high flapping frequency means high frequency evolution of highly
unsteady flow field, namely, the starting vortex, LEV, trailing edge vortex, wing tip vortex, downwash
vortex and wake vortex are interwoven and interact at different instants thus influence the aerodynamic
performance of wing planform [62,67]. As mentioned above, lower flapping frequency and appropriate
flapping amplitude is expected for the designer to successfully solve the engineering problem of
Bio-FWMAV although simultaneously compromising high maneuverability yielded by high lift from
unsteady mechanism.

The distinction of sensitivity trend for optimal regulating parameter of flapping angle (Kφ) and
pitch angle (Cψ) can be observed between Figure 12g,i and Figure 10c,e for sole WKP optimization.
In Figure 12g, the lift decreases monotonically with Kφ during the whole variable interval, but the
power density nearly maintains constant during the approximate front half of variable interval,
and then monotonically increases during the second half of variable interval. The sensitivity trend of
power density about Kφ is different from the situation shown in Figure 10c, which might arise from the
effect of the strong coupling relationship between WGP and WKP via AR and Re when acquiring the
sensitivity data of power density about Kφ with other optimal WGP and WKP unchanged. However,
the flapping angle still manifests harmonic shape profile with an optimal value (Kφ = 0.189, Table 3)
such that the lift constraint is met while the power density achieves the minimum. In Figure 12i, the lift
decreases slowly during approximate front half of variable interval, then increases monotonically with
Cψ during the second half of variable interval, while the power density nearly monotonically decreases
with Cψ. The sensitivity trend of lift and power density about Cψ is also different from the situation
shown in Figure 10e, which might likewise arise from the effect of strong coupling relationship between
WGP and WKP. When the lift constraint is met, the optimal value Cψ is equal to 2.51 (Table 3), which
also determines round trapezoidal pitch angle profile with slower time scale during the pitch reversal
than the one for sole WKP optimization.

Likewise, the combined optimal WGP and WKP for the 2D translational aerodynamic coefficients
(Tables 3 and 4) are also used to plot the instantaneous power output (as seen in Figure S3 of
Supplementary Materials). The sensitivity analysis of a single parameter is shown in Figure S4.
The qualitative similarity of the visualization results involving 3D and 2D translational aerodynamic
coefficients is also observed although with little difference of amplitude.

7. Discussion

Due to the synergistic influence of WGP and WKP on the aerodynamic performance of wing
planform of hovering insect and thus eventual power consumption in linear or nonlinear coupled way
by AR and Re, any parameter set obtained by sole WGP or WKP optimization is not the global optimal
one in global design variable space. This has been verified by the results listed in Table 4.

Table 4. The estimated values of hovering fruit fly and optimization results.

For Original
WGP and WKP

For Optimal WGP with 2D
(Left) and 3D (Right) CF,trans (α)

For Optimal
of WKP

For Combined Optimal WGP and WKP
with 2D (Left) and 3D (Right) CF,trans (α)

AR 3.7643 a 2.9029 2.9506 3.7643 a 2.9417 3.0411
Re 172.8926 a 157.6046 168.8122 171.7340 186.1461 237.6147

LtoW-1 0.2890 3.7 × 10−8 5.2 × 10−8 1.6 × 10−8 3.0 × 10−8 1.9 × 10−8〈1Fvert,z
〉

/
〈

1Fhoriz,x

〉
rms

0.8834 0.8855 0.8960 1.1241 1.1089 1.0173

〈Paero〉 /
〈

Pinertial
〉

8.4327 5.8237 5.7343 1.4711 3.7811 2.4905

P* (Wkg−1) 33.0097 b 20.4839 b 21.1160 b 9.1074 4.7867 6.7156
a Here, AR and Re are obtained by known WGP and WKP of hovering fruit fly; b The value of P* is approximate
to the reported one [8,30,68].
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The values listed in Table 4 are acquired by substituting the original WGP and WKP of hovering
fruit fly and optimized parameters from five cases of optimization into the power density model
without embedding hybrid-GA. It is interesting to find that the linear constraints (AR) and nonlinear
constraints (Re) for five cases of optimization do not manifest substantial variation. The power density
obtained by combined optimal WGP and WKP is lower than that from sole WGP or WKP optimization,
which may be due to the influence of strong coupling constraint of AR and Re on global optimal
parameters. Moreover, the value of power density obtained by solely optimal WKP is less than the one
reported by Berman and Wang [8], which might be due to two factors. The first one is that the stroke
plane deviation angle has been ignored here. The second factor must be the crucial one to improve
the estimation of power density. That is a much more reasonable assumption about non-dimensional
chordwise distribution of COP for translational and rotational circulation force introduced into current
extended quasi-steady aerodynamic model to estimate the rotational circulation power consumption.
This assumption is different from the one made by Berman and Wang. In their work, they also assume
that the translational and rotational circulation forces have a similar chordwise distribution of COP,
but the chordwise location was assumed to be fixed at the middle point of each strip element. This does
not conform to the empirical formula fitted from experimentally measured data [47,48]. Thus, their
result about the power density might be over-estimated except including the power consumption from
stroke plane deviation motion. All of the power density values for optimzation of WGP or/and WKP
are much lower than the estimating value of approximate steady hovering flight of fruit fly (Table 4).
It is worth noting that the difference value between the ratio of lift-to-weight and one (LtoW-1) is
limited by relative toleration of 10−8 (Table 4), which is larger than the one used by Berman and
Wang [8]. We choose this larger relative toleration just by considering the calculation cost. Frankly
speaking, the lower this difference value is prescribed, the better the condition of nonlinear equality
constraint is satisfied.

Moreover, the ratio of vertical force and horizontal force for combined optimal WGP and WKP is
approximate to the one for sole WKP optimization and larger than the one for sole WGP optimization.
This should be attributed to the optimal WKP producing an efficiency wing motion pattern, which
is characterized by the relatively lower geometric angle of attack. Since much more appropriate
translational lift coefficient and lower drag coefficient will be yielded at lower geometric angle of attack
in comparison with the situation of larger geometric angle of attack.

The ratio between aerodynamic power including added-mass component and inertial power
derived from moments of inertia of wing planform for sole WGP optimization is lower than the original
one. This arises from an increase of inertial power induced by the shift of variable non-dimensional
location of pitch axis (x̂0,vari) towards the leading edge, which possesses relatively shorter wing
length and wider average chord length in comparison to the original ones (Figure 13, Tables 3 and 4).
In Figure 13, the original fruit fly wing planform outline is plotted with a black crude solid line,
the dynamically scaled wing planforms for optimal WGP optimized with 2D or 3D translational
aerodynamic coefficients (illustrated by blue and green crude solid line, respectively, ‘wo’ denotes
WGP optimization) and for combined optimal WGP and WKP optimized by the 2D or 3D translational
aerodynamic coefficients (illustrated by red and cyan crude solid line, respectively, ‘co’ denotes
combined optimization) are also illustrated for comparison. The frame of XsOsZs, wing roots, COM
and variable pitch axis for two wing planforms are also included. As seen in Figure 13, for dynamically
scaled wing with non-dimensional conformal feature of fruit fly wing, there is a relatively diminutive
difference between the optimized 2D wing outline and 3D wing outline. Likewise, this little difference
directly indicates that the adopted 3D translational aerodynamic force coefficients have little effect on
the eventual optimization results of WGP (Table 4). And it in turn indirectly shows that the variation
of wing shape only brings little influence on lift and power density by probable way of influencing
translational aerodynamic coefficients. After all, the LEV for translational circulation aerodynamic
force may be maintained and attached even on dynamical scaled insect wings with lower Re and AR
(Table 4) due to the attenuating effect of the downwash induced by the tip vortex and wake vorticity.
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Moreover, the ratio of aerodynamic power and inertial power for combined optimal WGP and
WKP is lower than the one for original and optimal WGP, which should result from an increase of
inertial power with larger WGP except the value of x̂0,vari. Moreover, lower flapping frequency and
faster pitch reversal regulated by Cψ also induced higher inertial power (Figure 13, Tables 3 and 4).
While the ratio of aerodynamic power and inertial power for solely optimal WKP is much lower than
that for combined optimal WGP and WKP in spite of WGP fixed during the optimization of WKP.
This could be mainly attributed to a larger pitch regulating parameter (Cψ) inducing much higher
inertial power (Tables 3 and 4).

8. Conclusions

In this paper, the separate or combined optimizations of wing geometry parameters or/and
wing kinematic parameters are systematically performed to minimize the energy of flapping wing
hovering flight, firstly on the basis of extended quasi-steady aerodynamic model by using hybrid-GA.
Before the elaboration of the optimization problem, the parametrization description of dynamically
scaled wing with non-dimensional conformal feature of insect-scale rigid wing is firstly proposed.
This parametrization method provides an effective simplifying method for aerodynamic analysis based
on insect-scale rigid wings’ non-dimensional outline, and thus the feasibility for optimization involving
WGP. Then, the extended quasi-steady aerodynamic model is derived on basis of previous quasi-steady
aerodynamic model by using 2D or/and 3D translational lift and drag coefficients with consideration of
the possible effect of any variation of wing shape on the aerodynamic coefficients. Further, the objective
function of optimization is formed by hovering flight power density with additional penalty items for
lift-to-weight ratio, boundary constraints, linear constraint of AR and nonlinear constraint of Re.

For five cases of separate or combined optimization for WGP or/and WKP, given unchanged
wing kinematics pattern or WGP or no arguments input, we performed the optimizations of WGP
or/and WKP to minimize the energy of flapping wing hovering flight by using hybrid-GA formed
by the GA and Nelder–Mead simplex algorithm. The optimization results show that the combined
optimization of wing geometry and kinematic parameters can obtain lower flapping frequency, larger
wing geometry parameters and lower power density in comparison with those from other cases of
optimization. The amplitude of flapping angle for the optimization involving WKP is close to their
prescribed upper bound. All of these results arise from the effect of strong coupling relationship
between WGP and WKP via AR and Re when the minimum power density is obtained under the
constraint of lift balancing weight. Moreover, the flapping angle for the solely optimal WKP and
combined optimal WGP and WKP manifests harmonic shape profile, and the pitch angle possesses



Appl. Sci. 2016, 6, 390 30 of 35

round trapezoidal profile with certain faster time scale of pitch reversal controlled by its regulating
parameter. The dynamics problem for flapping motion with or without resonant frequency to the
drivetrain and pitch motion with constant angle of attack around midstroke needs to be studied deeply
in theory, and in the bio-design of FWMAV with active or passive pitch motion through including or
excluding the torsional hinge or/and actuator along pitch axis. In addition, no obvious distinction is
observed in the optimal visualization results involving WGP for the case of 3D and 2D translational
aerodynamic coefficients although there is little difference in amplitude, which directly indicates that
the adopted 3D translational aerodynamic force coefficients have little effect on eventual optimization
results involving WGP and indirectly shows that the variation of wing shape only brings little influence
on lift and power density by probable way of influencing translational aerodynamic coefficients.

The advantage of currently proposed combined optimization framework is obvious: it can
drastically reduce the computational cost for current complicated optimization problem and quickly
provide the fundamental optimized parameters of biomimetic flapping wing micro aerial vehicle at
the stage of conceptual design. However, there are two limitations worthy of being noted. Firstly,
the extended quasi-steady aerodynamic model presented is unable to take some feeble unsteady
effect mentioned above into consideration, thus a much higher fidelity model or efficiency numerical
method, such as CFD, need to be set up to perform the combined optimization with higher computation
accuracy. Secondly, the parametrization description of dynamically scaled wing with non-dimensional
conformal feature of smaller insect-scale wing is based on the assumption of rigid wing, which is
characterized by smaller wing effective length and average chord length, thus lower inertial mass
property relative to the larger wing planform, such as the hawkmoth wing. Thus, the aeroelastic
coupling effect of wing planform under the external acting force from the aerodynamic force and
inertial force of wing planform itself cannot be considered. After all, every kind of material will have
a slight deformation even at a lower external applied load. So once the designers are in pursuit of
combined optimization results with much higher fidelity and accuracy, the aeroelastic problem needs
to be solved during the aerodynamic model. It is well known that the larger the feature size of wing
planform is, the larger the inertial force the wing planform itself will be applied, so the larger wing
planform is more apt to deform. However, in current research for dynamical scaled fruit fly wing
planform with smaller feature size and lower inertial mass property, its upper boundary of spanwise
length shall not exceed four millimeters, thus, the assumption of rigid wing planform is feasible for
the little scale rigid wing planform, which has been confirmed by much previous literatures. In short,
the currently proposed combined optimization framework on the basis of extended quasi-steady
aerodynamic model is more applicable to the situation of predication and optimization of aerodynamic
performance and efficiency of bio-insect scaled flapping wing micro aerial vehicles assembled with
rigid wing planform, which possesses smaller feature size.

From the aspects of theory and experiment, ensuing studies for bio-design of FWMAV should
focus on the optimization involving wing morphology with different outlines of leading edge and
trailing edge bio-inspired by other insect wings or artificial wings with regular shape and broader
wing kinematics pattern. What is more, the problem of energy minimum pertinent to forward flight
and other maneuvering flight need to be probed, although a much more complicated power model
will emerge, since the demand of power-efficient and agile flight is expected for the bio-inspired design
of FWMAV.

Supplementary Materials: The following tables and figures are available online at http://www.mdpi.com/2076-
3417/6/12/390/s1, Table S1: The morphological parameters of fruit fly wing. Table S2: Actual leading-edge
profiles (zle(r)) and trailing-edge profiles (ztr(r)) for fruit fly wing. Figure S1: The wingbeat motion (a), pitch and
flapping power of single wing output (b,c) for the optimal WGP with 2D CF,trans (α). Figure S2: Single-parameter
sensitivity analyses for optimal WGP with 2D CF,trans (α). Figure S3: The wingbeat motion (a), pitch and flapping
power output of single wing (b,c) for the combined optimal WGP and WKP with 2D CF,trans (α). Figure S4:
Single-parameter sensitivity analyses for the combined optimal WGP and WKP with 2D CF,trans (α).
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Appendix A

Time-averaged pitch power for four components arising from translational circulation mechanism,
rotational circulation mechanism, aerodynamic damping and added-mass effect
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Appendix B

Time-averaged flapping power for four components
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Appendix C

Time-averaged pitch and flapping inertial power
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Abbreviations

The following abbreviations are used in this manuscript:

AR Aspect ratio
Caver Mean chord length
Re Reynolds number
Caver,vari Variable mean chord length
Reff,vari Variable wing effective length
Ĉ(r̂) Non-dimensional chord distribution
x̂r,vari Variable non-dimensional wing root offset
x̂0,vari Variable non-dimensional pitch axis location
x̂r Non-dimensional x-root offset
zle,orig(r),ztr,orig(r) Original leading-edge and trailing-edge profiles
ẑle(r̂),ẑtr(r̂) Non-dimensional leading-edge and trailing-edge profiles
ϕ(t), ψ(t) Flapping and pitch angle
ϕm, ψm Flapping and pitch angle amplitude
Kϕ, Cψ Regulating parameters of flapping and pitch angle profiles
ζ Phase offset of pitch angle
P* Power density
LtoW Lift-to-weight ratio
Pφ, Pψ Average flapping and pitch power
CN(α) Normal translational aerodynamic force coefficient
CR Theoretical rotational coefficient
Px,total, PZ,total Flapping and pitch aerodynamic power
Px,trans, PZ,trans Translational circulation power
Px,rot, PZ,rot Rotational circulation power
Px,rd, PZ,rd Rotational damping power
Px,add, PZ,add Added-mass power
Px,inert, PZ,inert Flapping and pitch inertial power
Px,total,posi, PZ,total,posi Positive total flapping and pitch mechanical power

References

1. Wood, R.J.; Finio, B.; Karpelson, M.; Ma, K.; Pérez-arancibia, N.O.; Sreetharan, P.S.; Tanaka, H.; Whitney, J.P.
Progress on ‘pico’ air vehicles. Int. J. Robot. Res. 2012, 31, 1292–1302. [CrossRef]

2. Ma, K.Y.; Chirarattananon, P.; Fuller, S.B.; Wood, R.J. Controlled flight of a biologically inspired, insect-scale
robot. Science 2013, 340, 603–607. [CrossRef] [PubMed]

3. Chirarattananon, P.; Ma, K.Y.; Wood, R.J. Adaptive control of a millimeter-scale flapping-wing robot.
Bioinspir. Biomim. 2014, 9, 025004. [CrossRef] [PubMed]

4. Hines, L.; Campolo, D.; Sitti, M. Liftoff of a motor-driven, flapping-wing microaerial vehicle capable of
resonance. IEEE Trans. Robot. 2014, 30, 220–232. [CrossRef]

5. Roll, J.A.; Cheng, B.; Deng, X. An electromagnetic actuator for high-frequency flapping-wing microair
vehicles. IEEE Trans. Robot. 2015, 31, 400–414. [CrossRef]

6. Hedrick, T.L.; Daniel, T.L. Flight control in the hawkmoth manduca sexta: The inverse problem of hovering.
J. Exp. Biol. 2006, 209, 3114–3130. [CrossRef] [PubMed]

7. Rakotomamonjy, T.; Ouladsine, M.; Moing, T.L. Modelization and kinematics optimization for
a flapping-wing microair vehicle. J. Aircr. 2007, 44, 217–231. [CrossRef]

8. Berman, G.J.; Wang, Z.J. Energy-minimizing kinematics in hovering insect flight. J. Fluid Mech. 2007, 582,
153–168. [CrossRef]

9. Wang, Z.J. Aerodynamic efficiency of flapping flight: Analysis of a two-stroke model. J. Exp. Biol. 2008, 211,
234–238. [CrossRef] [PubMed]

10. Pesavento, U.; Wang, Z.J. Flapping wing flight can save aerodynamic power compared to steady flight.
Phys. Rev. Lett. 2009, 103, 118102. [CrossRef] [PubMed]

11. Kurdi, M.; Bret, S.; Philip, B. Kinematic optimization of insect flight for minimum mechanical power.
In Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and
Aerospace Exposition, Orlando, FL, USA, 4–7 January 2010; AIAA: Reston, VA, USA, 2010.

12. Taha, H.E.; Hajj, M.R.; Nayfeh, A.H. Wing kinematics optimization for hovering micro air vehicles using
calculus of variation. J. Aircr. 2013, 50, 610–614. [CrossRef]

http://dx.doi.org/10.1177/0278364912455073
http://dx.doi.org/10.1126/science.1231806
http://www.ncbi.nlm.nih.gov/pubmed/23641114
http://dx.doi.org/10.1088/1748-3182/9/2/025004
http://www.ncbi.nlm.nih.gov/pubmed/24855052
http://dx.doi.org/10.1109/TRO.2013.2280057
http://dx.doi.org/10.1109/TRO.2015.2409451
http://dx.doi.org/10.1242/jeb.02363
http://www.ncbi.nlm.nih.gov/pubmed/16888060
http://dx.doi.org/10.2514/1.22960
http://dx.doi.org/10.1017/S0022112007006209
http://dx.doi.org/10.1242/jeb.013797
http://www.ncbi.nlm.nih.gov/pubmed/18165251
http://dx.doi.org/10.1103/PhysRevLett.103.118102
http://www.ncbi.nlm.nih.gov/pubmed/19792403
http://dx.doi.org/10.2514/1.C031969


Appl. Sci. 2016, 6, 390 33 of 35

13. Nabawy, M.R.A.; Crowther, W.J. Aero-optimum hovering kinematics. Bioinspir. Biomim. 2015, 10, 44002.
[CrossRef] [PubMed]

14. Jones, M.; Yamaleev, N.K. Adjoint-based optimization of three-dimensional flapping-wing flows. AIAA J.
2015, 53, 934–947. [CrossRef]

15. Lantman, M.P.V.S.; Fidkowski, K.J. Adjoint-based optimization of flapping kinematics in viscous flows.
In Proceedings of the 21st AIAA Computational Fluid Dynamics Conference on Fluid Dynamics and
Co-located Conferences, San Diego, CA, USA, 24–27 June 2013; AIAA: Reston, VA, USA, 2013.

16. Nielsen, E.J.; Diskin, B. Discrete adjoint-based design for unsteady turbulent flows on dynamic overset
unstructured grids. AIAA J. 2013, 51, 1355–1373. [CrossRef]

17. Tuncer, I.H.; Kaya, M. Optimization of flapping airfoils for maximum thrust. AIAA J. 2005, 43, 2329–2336.
[CrossRef]

18. Stanford, B.K.; Beran, P.S. Analytical sensitivity analysis of an unsteady vortex-lattice method for
flapping-wing optimization. J. Aircr. 2010, 47, 647–662. [CrossRef]

19. Culbreth, M.; Allaneau, Y.; Jameson, A. High-fidelity optimization of flapping airfoils and wings.
In Proceedings of the 29th AIAA Applied Aerodynamics Conference, Honolulu, HI, USA, 27–30 June 2011;
AIAA: Reston, VA, USA, 2011.

20. Soueid, H.; Guglielmini, L.; Airiau, C.; Bottaro, A. Optimization of the motion of a flapping airfoil using
sensitivity functions. Comput. Fluids 2009, 38, 861–874. [CrossRef]

21. Gogulapati, A.; Friedmann, P.P.; Martins, J.R.R.A. Optimization of flexible flapping-wing kinematics in hover.
AIAA J. 2014, 52, 2342–2354. [CrossRef]

22. Milano, M.; Gharib, M. Uncovering the physics of flapping flat plates with artificial evolution. J. Fluid Mech.
2005, 534, 403–409. [CrossRef]

23. Khan, Z.A.; Agrawal, S.K. Design and optimization of a biologically inspired flapping mechanism for
flapping wing micro air vehicles. In Proceedings of the IEEE International Conference on Robotics and
Automation, Roma, Italy, 10–14 April 2007; IEEE: New York, NY, USA, 2007; pp. 373–378.

24. Khan, Z.A.; Agrawal, S.K. Optimal hovering kinematics of flapping wings for micro air vehicles. AIAA J.
2011, 49, 257–268. [CrossRef]

25. Whitney, J.P.; Wood, R.J. Aeromechanics of passive rotation in flapping flight. J. Fluid Mech. 2010, 660,
197–220. [CrossRef]

26. Wood, R.J.; Whitney, J.P.; Finio, B.M. Mechanics and actuation for flapping-wing robotic insects.
In Encyclopedia of Aerospace Engineering; Blockley, R., Shyy, W., Eds.; John Wiley & Sons, Ltd.: Chichester, UK,
2010; pp. 1–14.

27. Muijres, F.T.; Elzinga, M.J.; Melis, J.M.; Dickinson, M.H. Flies evade looming targets by executing rapid
visually directed banked turns. Science 2014, 344, 172–177. [CrossRef] [PubMed]

28. Whitney, J.P.; Wood, R.J. Conceptual design of flapping-wing micro air vehicles. Bioinspir. Biomim. 2012, 10,
036001. [CrossRef] [PubMed]
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