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Abstract: The remote center compliance (RCC) mechanism is of great use for practical designs,
especially if a pure rotation about a virtual point is required. The analysis of compliance properties
and rotational precision for RCC mechanisms are very important for mechanical design in applications
where precision is required. This paper formulates an analytical method for the compliance and
rotational precision calculations of a class of RCC mechanisms, combined in parallel with two
round beam-based isosceles-trapezoidal flexural pivots. The analytical model of the mechanism
is established based on the stiffness matrix method to directly obtain the compliance factors
that completely define the elastic response of the mechanism. The rotational precision of the
mechanism—That is, the position of rotation center—Is then derived using screw theory and
a compliance matrix. The validity of this model is demonstrated using finite element analysis
simulation and experimental tests. The results of both simulation and experiment verify that the
analytical model has high accuracy and promising practical applications. Moreover, the influences
of the geometry parameters on the compliance factors and the center shifts are also graphically
evaluated and discussed using the analytical model. The results in this paper provide an effective
configuration and analytical method for the design and optimization of RCC mechanisms, and are of
great practical significance.

Keywords: remote center compliance; stiffness matrix; screw theory; rotational precision; finite
element analysis

1. Introduction

Recently, high-precision parallel alignment between two surfaces has become an important
mechanical problem for pattern fidelity in nanoimprint lithography [1–3] and some electrochemical
micro/nanofabrication techniques [4,5]. The parallel misalignment between the template and the
substrate can lead to non-uniform microstructures fabricated over a large area [1]. The parallel
alignment can be achieved by rotations about the axes that lie in the template surface. If the rotation
axes do not lie in the template surface, a coupled lateral shift of the imprint position can be generated
during the parallel alignment process [2]. Therefore, the parallel alignment can be considered as tip/tilt
motions around two perpendicular axes located in the template surface.

To achieve the alignment motions of the template, the parallel alignment stage with a remote
center compliance (RCC) characteristic is increasingly being adopted for its advantages, such as no
friction, no wear, no need for lubrication, and compact structure. The RCC mechanism was originally
designed as a passive wrist accommodator for automatic assembly to compensate for positioning
errors between a machine and a part. At Draper Laboratory, Watson et al. developed a series of
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representative RCC systems for automatic assembly devices [6,7]. Later, several other new types of
RCC devices were also developed and used in various applications [8–10]. Some RCC mechanisms are
still commercially available from a number of companies.

According to the principle of the RCC mechanism, several orientation stages that borrow features
from the traditional RCC mechanisms have been developed for nanoimprint machines. Choi et al. [2]
first developed a flexure template stage for nanoimprinting by serially assembling two sets of
four-bar-linkage compliant mechanisms. Hiroshima et al. [11] developed an active orientation head
with the function of distributed force feedback control. Qu et al. [12,13] developed two types of
parallelogram-based compliant remote-center-of-motion stages for active parallel alignment. In terms
of the analytical model of RCC mechanism, Ciblak et al. [14] presented an accurate model for the
RCC mechanism using screw theory to characterize the interesting properties of remote compliance.
Pei et al. [15,16] gave a detailed analysis of rotational precision for leaf-type isosceles-trapezoidal
flexural (LITF) pivot used in the one-dimensional RCC mechanism. Su et al. [17] derived a symbolic
formulation of the compliance and stiffness matrices for several RCC mechanisms.

In the design of RCC mechanisms, the compliance properties and rotational precision are two
important specifications determining the range of motion and precision of the RCC mechanisms,
respectively. The rotational precision criterion is especially important for some precision-required
applications of the flexural mechanisms [15]. Therefore, this paper focuses on the analysis of
compliance properties and rotational precision for a class of RCC mechanisms. This kind of RCC
mechanism is combined in parallel with two round beams-based LITF pivots, and can achieve two
rotations around two perpendicular axes in the remote plane. An analytical model of the RCC
mechanism based on the stiffness matrix method is first established to obtain the close-form equations
for compliance factors in all directions. The rotation center locations are then derived using the screw
theory to analyze the rotational precision of the RCC mechanism. The results of the analytical model,
finite elements analysis (FEA), and experimental tests are all compared to validate the high accuracy
of the analytical model, which can be utilized in the design and optimization of the RCC mechanisms.

The main contribution of this manuscript is to establish an analytical model for the calculation
of the structural compliances and position of rotation center for a class of RCC mechanisms. The
modeling method and corresponding theoretical formulas of the compliances and rotational precision
proposed in this paper can accurately reveal the movement and deformation mechanism for the RCC
mechanism, providing a useful and accurate reference for the optimal design and manufacture of
satisfactory RCC mechanism structures.

2. Configuration of the Remote Center Compliance (RCC) Mechanism

The LITF pivot (as shown in Figure 1a) is usually adopted in the one-dimensional RCC
mechanism [15]. The end-effector of the LITF pivot can rotate around the the intersection point O of
the two beam flexures, which can be considered as the remote center point (as shown in Figure 1b).
To enable 3-degrees of freedom (DOFs) rotation, two sets of LITF pivots are combined in parallel to
obtain an RCC mechanism with four round beam flexures uniformly spaced around two circles on
the end-effector and base at intervals of π/2, as shown in Figure 2a. Based on the type synthesis
approach—freedom and constraint topology (FACT)—of the parallel flexure system in [18,19], there
are four constraint lines (blue) that intersect at a common point, as shown in Figure 3. The combination
of the four constraint lines permits three independent rotations. The three independent rotation lines
(red) in Figure 3 are the mechanism’s freedom topology. Therefore, the RCC mechanism in Figure 2a is
a 3-DOFs rotational mechanism, and all three rotations are described with respect to the theoretical
remote rotation center ORC. In other words, the end-effector can be rotated around the point ORC
approximately, when the external loads are applied to the end-effector.

By changing the interval angle of the beam flexures to 2π/3, another RCC mechanism
configuration can be obtained with triple-beam flexures, as shown in Figure 2b. A compliant
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mechanism with four-beam flexures is adopted for analysis in this work, and a mechanism with
triple-beam flexures can be analyzed using the same method.

(a)
ORC X

Y

Z

(b)

Figure 1. The leaf-type isosceles-trapezoidal flexural (LITF) pivot. (a) Structure of the LITF pivot;
(b) Working principle of the LITF pivot.
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Z

(a)
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Y
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(b)

Figure 2. Two kinds of remote center compliance (RCC) mechanism. (a) The RCC mechanism with
four-beam flexures; (b) The RCC mechanism with triple-beam flexures.
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Figure 3. Diagnosis of the RCC mechanism using the Freedom and constraint topology (FACT) method.

3. Analytical Model

In this section, we investigate the modeling of the compliance matrix of the RCC mechanism, and
also analyze its rotational precision based on screw theory.
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3.1. Compliance Modeling

The parallelism alignment between the template and the substrate in the nanoimprint machines
is accomplished by the rotational motions around the remote center of the RCC mechanism when
a constant contact force between the template and the substrate is applied. Because the parallelism
alignment is a quasi-static process, the compliance characteristics that describe the load–displacement
relationship of an RCC mechanism are the key input specifications for the design of an RCC
mechanism—especially in such static applications. The static analytical model of the RCC mechanism
herein is formulated based on the stiffness matrix method [20]. By integrating the compliance
matrix of the single beam flexure together with the geometric and material parameters of the RCC
mechanism, close-form equations are generated to describe the mechanism’s response, and enable
further performance analysis and optimization.

The RCC mechanism consists of four individual round beam flexures connected in parallel. In
order to obtain the compliance model of the entire RCC mechanism, the compliance matrix of a single
beam flexure should be obtained first. The compliance and stiffness matrices for a round beam flexure
with the coordinate frame shown in Figure 4 can be described as [17,21]

C0=



4l
EπD2 0 0 0 0 0

0 l3

3EI 0 0 0 l2

2EI
0 0 l3

3EI 0 − l2

2EI 0
0 0 0 l

2GI 0 0
0 0 − l2

2EI 0 l
EI 0

0 l2

2EI 0 0 0 l
EI


K0 = (C0)−1

(1)

where l is the length of the beam flexure, and D is the diameter of the round cross-section. I = πD4/64
denotes the second moment of the round cross section. E is the elastic modulus, and G denotes the
shear modulus of the material. C0 describes the compliance characteristics of free end Oi with respect
to the other fixed end O, as shown in Figure 4.

Fy

Fx

Mz

X
l

FzZ

Mx

My

O Oi
D

Figure 4. Model of a round beam flexure with specified coordinates.

The coordinate frames of the RCC mechanism are assigned in Figure 5. Because of the small
deformation of the flexure mechanism, the original dimensions of the mechanism are used to make
a reasonable model of the mechanism. The small deformation assumption is determined by the
requirement of the calculation error. For ease of modeling, the origin of the global coordinate system
O−XYZ lies in the centerline of the end-effector, and in the same plane with the ends of the four beam
flexures. When an external force is applied to the end-effector of the mechanism, the displacement

vector of Point O can be described as ∆q =
[

∆x ∆y ∆z ∆θx ∆θy ∆θz

]T
. Transforming the

displacement vector from O− XYZ to O1 − XYZ yields

∆q1 = JT
1 ∆q (2)
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where

J1 =

[
I 0

C
(−−→

OO1

)
I

] [
Ry (∠O/O1) 0

0 Ry (∠O/O1)

]

=

[
Ry (∠O/O1) 0

C
(−−→

OO1

)
Ry (∠O/O1) Ry (∠O/O1)

] (3)

Ry (∠O/O1) is the rotation matrix characterized by the rotating angle−θ (0◦ ≤ θ ≤ 90◦) of the rotated
O1 − XYZ with respect to O− XYZ around the Y axis, and has the form

Ry (θ) =

 cos (−θ) 0 sin (−θ)

0 1 0
− sin (−θ) 0 cos (−θ)

=

 cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

 (4)

where θ is also equal to the geometric parameter of initial inclined angle of the beam flexure, as
shown in Figure 5. C(

−−→
OO1) is the skew symmetric matrix corresponding to the position vector

−−→
OO1 =

[
rx ry rz

]
expressed in O− XYZ, and can be written as

C(
−−→
OO1) =

 0 −rz ry

rz 0 −rx

−ry rx 0

 . (5)
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Figure 5. Coordinate system of the RCC mechanism.

According to the displacement vector ∆q at Point O and the stiffness matrix of the beam flexure,
the 6× 1 force vector F1 applied to O1 can be denoted as

F1 = K0∆q1 = K0JT
1 ∆q (6)

Transforming the force vector F1 from O1 − XYZ to O− XYZ yields the equivalent force vector F10

applied to O, which can be represented as

F10 = J1F1 = J1K0JT
1 ∆q (7)
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There are four beam flexures connecting to the end-effector with a radius of |OO1| and an interval
angle of π/2. Hence, the relationship of the force and displacement with respect to the O− XYZ is
derived as [17]

F =
4

∑
i=1

JiK0JT
i ∆q (8)

where
J2 = diag(Rz(90◦), Rz(90◦))J1,
J3 = diag(Rz(180◦), Rz(180◦))J1,
J4 = diag(Rz(−90◦), Rz(−90◦))J1.

(9)

Rz(θz) is the the rotation matrix around the Z axis of O− XYZ, which is written as

Rz(θz) =

 cos θz − sin θz 0
sin θz cos θz 0

0 0 1.

 . (10)

The symmetric compliance matrix C of the RCC mechanism is derived as

C =

(
4
∑

i=1
JiK0JT

i

)−1

=



CX, FX 0 0 0 CX, MY 0
0 CY, FY 0 CY, MX 0 0
0 0 CZ, FZ 0 0 0
0 CθX , FY 0 CθX , MX 0 0

CθY , FX 0 0 0 CθY , MY 0
0 0 0 0 0 CθZ , MZ


. (11)

The first subscript in the compliance factors of Equation (11) indicates the deformation about a
particular degree of freedom, while the second one points out the load producing the corresponding
deformation [22].

3.2. Rotational Precision Analysis

According to the principle of the RCC mechanism, the motion of the end-effector is expected
to rotate around the fixed center without producing any lateral shifts. However, the actual rotation
center does not precisely coincide with the theoretical remote rotation center ORC. In order to reveal
the rotational precision of the RCC mechanism precisely, the concept of instantaneous rotational
center (which could reflect the essential of rigid-body rotation) is adopted as an evaluation criterion of
rotational precision [15].

In Equation (11), six column vectors of the compliance matrix are regarded as six screw
motions [23]. For instance, when a unit force FX = 1 is applied to the end-effector at Point O, the

applied force vector can be written as F =
[

1 0 0 0 0 0
]T

, and the displacement vector of

the O-XYZ can be calculated as
[

x1 0 0 0 θ1 0
]T

=
[

CX,FX 0 0 0 CθY ,FX 0
]T

, which
is the first column vector of the compliance matrix. According to the displacement generated by the
applied force FX , the homogeneous representation of the rigid body transformation can be given by

g1 =

[
R1 p1

0 1

]
=


cos θ1 0 sin θ1 x1

0 1 0 0
− sin θ1 0 cos θ1 0

0 1 0 1

 (12)
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This relative motion of a rigid body can be given by the exponential map for a twist ξ̂1, which can be
represented as [24]

g1 = eξ̂1θ1 =

[
eω̂1θ1 (I− eω̂1θ1)(ω1 × ν1) + ω1ω1

Tν1θ1

0 1

]
(13)

where the twist ξ̂1 is

ξ̂1 =

[
ω̂1 ν1

0 0

]
(14)

The axis ω1 ∈ R3 which satisfies exp(ω̂1θ1) = R1 is

ω1 =
[

0 1 0
]T

(15)

To find ν1, we must solve [
(I− eω̂1θ1)ω̂1 + ω1ω1

Tθ1

]
ν1 = p1 (16)

Expanding the left-hand side of the equation yields sin θ1 0 1− cos θ1

0 θ1 0
cos θ1 − 1 0 sin θ1

 ν1 =

 x1

0
0

 (17)

The solution is given by

ν1 =


sin θ1

2(1−cos θ1)
0 − 1

2

0 1
θ1

0
1
2 0 sin θ1

2(1−cos θ1)


 x1

0
0

=


x1 sin θ1

2(1−cos θ1)

0
x1
2

 (18)

Due to the small deformation of the RCC mechanism, the value of x1 and θ1 can be regarded as nearly
zero. The first element in ν1 can be calculated as

x1 sin θ1

2(1− cos θ1)
=

x1

2 tan θ1
2

≈ x1

θ1
=

CX,FX

CθY ,FX

(19)

ν1 can be rewritten as

ν1 ≈
[

CX,FX

/
CθY ,FX 0 0

]T
(20)

Thus, the twist coordinates for g1 are

ξ1=
[

ν1 ω1

]T
=
[

CX,FX

/
CθY ,FX 0 0 0 1 0

]T
(21)

The pitch h and the rotation axis l of the twist ξ̂1 can be calculated as

h1 = ω1
Tν1 = 0 ;

l1 = {ω1 × ν1 + λω1 : λ ∈ R}
=
{[

0, λ,−CX,FX

/
CθY ,FX

]T : λ ∈ R
} (22)
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The twist coordinates corresponding to the other five column vectors of the compliance matrix
can be obtained in the same way:

ξ2=
[

ν2 ω2

]T
=
[

0 CY,FY

/
CθX ,FY 0 1 0 0

]T

ξ3=
[

ν3 ω3

]T
=
[

0 0 1 0 0 0
]T

ξ4=
[

ν4 ω4

]T
=
[

0 CY,MX

/
CθX ,MX 0 1 0 0

]T

ξ5=
[

ν5 ω5

]T
=
[

CX,MY

/
CθY ,MY 0 0 0 1 0

]T

ξ6=
[

ν6 ω6

]T
=
[

0 0 0 0 0 1
]T

(23)

All the other pitches can be obtained as

h2 = ω2
Tν2 = 0 ; h3 = ω3

Tν3 = 0 ;
h4 = ω4

Tν4 = 0 ; h5 = ω5
Tν5 = 0 ; h6 = ω6

Tν6 = 0 ;
(24)

All the axes for the other twists can be further obtained as

l2 =
{[

λ, 0, CY,FY

/
CθX ,FY

]T : λ ∈ R
}

l3 = l6 =
{
[0, 0, λ ]T : λ ∈ R

}
l4 =

{[
λ, 0, CY,MX

/
CθX ,MX

]T : λ ∈ R
}

l5 =
{[

0, λ,−CX,MY

/
CθY ,MY

]T : λ ∈ R
} (25)

In order to validate that the actual rotation center is very close to Point ORC, let l = 12.5 mm,
D = 1.5 mm, θ = 45◦, and |OO1| = 10 mm. The material for the mechanism is chosen as nylon PA
2200 with a Young’s Modulus of 1646 MPa and a Poisson’s ratio of 0.33. From Equations (1)–(11), we
obtain the factors of the compliance matrix:

CX,FX = CY,FY=3.1929× 10−5 (m/N)

CX,MY = CY,MX=2.956× 10−3 (m/Nm)

CθX ,FY = CθY ,FX=− 2.956× 10−3 (rad
/

N)

CθX ,MX = CθY ,MY=3.1459× 10−1 (rad
/

Nm)

(26)

Because all the pitches of the six twists are zero, the motions of the end-effector can be regarded
as pure rotations about the axes l1 − l6 of the six twists. The real twist axes l1 − l6 and the ideal twist
axes are illustrated in Figure 6. The distance between the real twist axes and ideal twist axes is∣∣2.956× 10−3/3.1459× 10−1 − 10× 10−3

∣∣ = 0.6× 10−3 m∣∣3.1929× 10−5/2.956× 10−3 − 10× 10−3
∣∣ = 0.8× 10−3 m

(27)

which is defined as the center shift or the parasitic error of the remote center of the RCC
mechanism [15,17]. It can be seen from Figure 6 that the real twist axis does not overlap with the ideal
twist axis, which goes through point ORC, and the distance between the two axes is 0.6 mm (or 0.8
mm), which cannot be neglected in precision-required applications.
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ORC X
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Z

Figure 6. Illustration for real twist axes and ideal twist axes.

4. Finite Element Analysis Validation

Finite element analysis (FEA) was performed to validate the analytical model of the RCC
mechanism. The ANSYS Workbench finite element software was utilized to construct the FEA model
of the mechanism. In order to validate the efficiency of the analytical model sufficiently, three samples
with different geometrical parameters were set for the comparisons with FEA results, as shown in
Table 1. The material of the mechanism was selected as nylon PA 2200 with a Young’s Modulus
of 1646 MPa and a Poisson’s ratio of 0.33. The three-dimensional (3D) model was generated by
Solidworks as a monolithic part, and was subsequently imported to ANSYS in parasolid format. The
3D tetrahedron element was used to mesh this model, and the upper rigid body of the mechanism
was fixed.

Table 1. Geometrical parameters of different samples.

Sample l (mm) D (mm) θ (◦) |OO1| (mm)

1 12.5 1.5 45 10
2 15 2 60 15
3 20 1.2 30 20

The compliance factors in the compliance matrix shown in Equation (11) were obtained using
the static analysis module of the ANSYS Workbench. By respectively applying the four different sets
of forces (lateral forces FX , FY, pure moments MX , MY, vertical forces FZ, and pure moments MZ) at
Point O, the corresponding displacements of Point O from the FEA results (shown in Figure 7) can be
used to calculate the compliance factors. All of the applied loads and moments were 1 N and 1 Nm,
respectively, in FEA. The compliance factors calculated from the analytical model and the FEA model
are listed in Table 2. The analytical results and FEA results are in good agreement. The relative errors
between the two results are less than 8%. The maximum error of 7.83% between the two results is
mainly caused by the strong non-linearities of beam flexure when the end-effector undergoes the Z
axis force.



Appl. Sci. 2016, 6, 388 10 of 15

FX

ORC

(a)

MY

ORC

(b)

Figure 7. Finite element analysis (FEA) results of the RCC mechanism in different loading cases of
(a) Direction fixed force FX and (b) Pure Moment MY .

Table 2. Comparison of the compliance factors between analytical (An) and Finite element analysis
(FEA) results.

Sample 1 Sample 2 Sample 3

Compliance factors An FEA Err (%) An FEA Err (%) An FEA Err (%)
CX, FX , CY, FY (µm/N) 31.93 32.23 0.93 29.93 31.43 4.77 188.9 183.5 2.94

CX, MY , CY, MX (mm/Nm) 2.96 3.07 3.58 1.08 1.13 4.42 15.9 15.4 3.25
CZ, FZ (µm/N) 2.12 2.30 7.83 0.96 1.04 7.69 10.63 11.11 4.32

CθX , FY , CθY , FX (mrad/N) 2.96 3.08 3.89 1.08 1.13 4.42 15.9 15.4 3.25
CθX , MX , CθY , MY (mrad/Nm) 314.6 330.3 4.75 47.35 50.56 6.35 1391.8 1352.3 2.92

CθZ , MZ (mrad/Nm) 452.2 469.3 3.64 147.8 153.6 3.78 1163.6 1136.7 2.37

5. Experimental Verification

To validate the analytical model, experimental tests were also conducted on a prototype of the
RCC mechanism with l = 12.5 mm, D = 1.5 mm, θ = 45◦, and |OO1| = 10 mm, which can be rapidly
manufactured by 3D laser printing technique (selective laser sintering, SLS). The chosen material of
the prototype was nylon PA 2200 with a Young’s modulus of 1646 MPa and the Poisson’s ratio of 0.33.
The photography of the prototype is shown in Figure 8a. A digital dial gage (1 µm resolution) was
employed to measure the displacement, while a series of standard weights were used to apply the pull
forces to the end-effector of the RCC mechanism.

The experimentation includes two steps. In the first step (Figure 8b), the applied force generated
by the weights was parallel to the Z axis of the mechanism. As the applied force does not pass through
the Z axis, a Z directional force and a Y directional moment can be generated. The dial gage can
measure displacement at a certain point, and the displacement originated from the Z axial compression
was neglected, so CθX , MX and CθY , MY can be obtained from the test.

In the second step (Figure 8c), the applied force generated by the weights was vertical to the Z axis
of the mechanism. The digital dial gage is firstly pre-compressed, and then released after the force is
applied. As the force does not pass through the end point O, the variations of X directional force and Y
directional moment can be caused by the hanging weights. Due to the small deformation of the RCC
mechanism, the movements of the fixtures used to hang the weights can be neglected. Therefore, the
theoretical applied force and moment can be calculated by the known hanging weights and moment
arm. Both the applied force and the corresponding displacement at a certain point can be known
from the measurement condition. CθX , MX is obtained from the first test, and CX, MY is equal to CθY , FX ,
so, CX, FX and CX, MY can be calculated in two measurements at different applying and measurement
points [25].
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x

y

z

(a) (b) (c)

Figure 8. The experimental setups. (a) Photo of the prototype, and experimental conditions of (b) the
first step and (c) the second step.

Each step of the experimentation process was repeated three times. The experimental results
obtained from the three repeats was averaged to the final values of the compliances. The comparisons
of analytical and experimental results are listed in Table 3. It can be seen that the errors between the
three results are all small enough to verify the effectiveness of the proposed analytical model.

Table 3. Comparisons of compliance factors between analytical and experimental results.

Compliance Factors Analytical Experimental Error (%)

CX, FX , CY, FY (µm/N) 31.93 32.78 2.59
CX, MY , CY, MX (mm/Nm) 2.96 3.18 6.91
CθX , FY , CθY , FX (mrad/N) 2.96 3.18 6.91

CθX , MX , CθY , MY (mrad/Nm) 314.6 311.8 0.9

6. Performance Analysis

The analytical model was established to analyze the influences of the geometric parameters and
the material properties on the compliance factors and rotation center shifts. The designed geometric
parameters of the mechanism were chosen as l, D, θ, and |OO1|. It can be noticed that all compliance
factors of the mechanism vary inversely with the elastic Young’s modulus E, and increase with the
increase of l and the decrease of D.

To evaluate the influences of the other two parameters θ and |OO1| on the compliance factors,
three dimensional plots of all compliance factors in terms of the two geometric parameters mentioned
above are shown in Figure 9. Each time that the two parameters are varied, the other parameters are
considered to be constant. These constant values are: E = 1646 MPa, l = 12.5 mm, D = 1.5 mm. It can
be seen from Figure 9 that the two geometric parameters also have significant effects on the compliance
factors, and several conclusions can be derived as follows to provide a useful and accurate reference
for the design and manufacture of satisfactory RCC mechanism structures:

(1) The compliance factors CX, FX increase when θ increases. The variation tendency of CX, FX versus
|OO1| is dependent on θ.

(2) |OO1| has no influence on the vertical compliance factor CZ, FZ , which increases sensitively with
the decrease of θ. CθX , MX decreases when the two parameters increase.

(3) CX, MY varies slightly with |OO1|, and presents a maximum in terms of θ, around θ = 45◦.
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Figure 9. Compliance factors plots in terms of mechanism geometry. (a) Compliance CX, FX ;
(b) Compliance CX, MX ; (c) Compliance CZ, FZ , (d) Compliance CθX , MX .

The influences of different geometric parameters of the mechanism on the rotation center shift
were also analyzed by the proposed analytical model. Although the real rotation center is very close
to the ideal rotation center based on the aforementioned analytical results, the RCC mechanism is
expected to minimize its center shift if it is designed for precise rotation. According to Equation (25),
the locations of rotation center are the ratio functions of the compliance factors; hence, the influences
of Young’s modulus E of the material on the center shift are removed. The variation tendencies of
the center shift with respect to the changing dimensions are all graphically represented in Figure 10.
As can be seen from Figure 10a–d, the dimensions of the beam flexure have a significant influence on
the center shift. The center shifts in both loading cases (direction fixed force FX , FY and pure Moment
MX, MY) decrease with the increase of l and the decrease of D, and vary quasi-linearly with |OO1|.
It can be concluded from Figure 10 that the minimization of the center shifts may be achieved by
increasing l or reducing D, |OO1|, and θ.
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Figure 10. The influences of different RCC mechanism parameters on the center shift (solid—pure
moment loading case, dot—direction fixed force loading case. (a) influence of l; (b) influence of D;
(c) influence of |OO1|; (d) influence of θ.

7. Conclusions

In this paper, an analytical model for a class of RCC mechanisms has been made in order to
evaluate the compliance properties and rotational precision of the mechanism. The RCC mechanism
analyzed in this paper combines two sets of isosceles-trapezoidal flexure pivots in a parallel manner to
realize 3-DOFs rotation around a fixed remote center. The stiffness matrix approach was used to model
the statics of the compliant mechanism, providing the close-form equations of the compliance factors
for the compliant mechanism. The rotation center locations of the RCC mechanism were also analyzed
using the analytical model and screw theory to evaluate the rotational precision of the mechanism. In
order to verify the analytical model, both FEA simulations and experimental tests were performed.
The comparison shows that the FEA, experimental, and analytical results agree with each other with
a deviation of less than 8%. Furthermore, the influences of geometric parameters on the compliance
factors and the rotation center locations were represented graphically, providing a theoretical basis for
practical design.
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