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Abstract: A series of novel 2-phenyl-4-trifluoromethyl thiazole-5-carboxamide derivatives have been
synthesized and evaluated for their anticancer activity against A-549, Bel7402, and HCT-8 cell lines.
Among the tested compounds, highest activity (48%) was achieved with the 4-chloro-2-methylphenyl
amido substituted thiazole containing the 2-chlorophenyl group on the two position of the heterocyclic
ring. Other structurally similar compounds displayed moderate activity. The key intermediates have
been fully characterized.
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1. Introduction

Substituted thiazole compounds play an important role in nature and have a diverse range
of biological effects such as antitumor [1–3] antibacterial [4], antimicrobial [5], anti-viability [6],
anti-inflammatory [7], Syk inhibitor [8], antiviral [9], antiproliferative [10], and anticandidal
activity [11]. In past decades, amide containing heterocycles are reported as a class of compounds
displaying extensive biological activities, which consist of a large number of natural and synthetic
products and are extremely versatile building blocks for the manufacture of bioactive compounds in
pharmaceutical drug design and agrochemical industry [12–18]. We noticed that most optimizations
focused on the pyridine [19], pyrazole [20], piperazine [21] and oxadiazole [22] heterocycles, but the
thiazole ring, as an active moiety widely used in pesticides and medicine, has not been fully reported.
For example, phthalic diamides [23] and anthranilic diamides [24] were reported by Nihon Nohyaku
(Tokyto, Japan), Bayer CropScience (Monheim, Genmany) and DuPont (Delaware, USA), respectively.

In view of all these facts and as continuation of our research on bioactive compounds [25–37], the
promising bioactive diversity of this class of heteroaryl compounds encourage us to synthesize
and biologically evaluate a series of novel structural variants of 2-phenyl-4-trifluoromethyl
thiazole-5-carboxamide derivatives and related intermediates. Their antitumor activity was tested in
A-549 lung cancer cell lines, Bel7402 liver cancer cell lines and HCT-8 intestine cancer cell lines.
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2. Results and Discussion

2.1. Synthesis

Surprisingly, in the synthesis process of 4 (Scheme 1), an unprecedented structure 5 was obtained
at the same time. To identify their structures, the single crystal of 4b (Figure 1) and 5b (Figure 1) were
recrystallized. The possible mechanism of intermediate 4 is shown in Scheme 2.
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Figure 1. The crystal structure of 4b (a) and 5b (b). 
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Due to the incomplete dehydration to form the thiazole ring, the yield of 4 was low (4a: 39.5%,
4b: 56.2%). The yield could not be significantly improved by extending the reaction time or increasing
the reaction temperature (using DMF (Dimethyl Formamide) as solvent, when T > 120 ˝C, 5 would
disappear in 1 h, which was accompanied by the decomposition of 4a, reducing the yield down to
30%). Compared with the yield using trifluoroacetyl ethyl acetate and substituted bentiamine (<40%)
in our experiments, a much better yield (81.5%) using acetyl ethyl acetate and bentiamine was reported
by relevant literature [38], which probably results from the strong electron withdrawing properties
of the CF3 moiety. However, under the same condition, by-product 5 could also be hydrolyzed to
get the key intermediate 5 in yield of 50%. After by-product 5 hydrolyzed under basic conditions,
the acidification process with dilute hydrochloric acid might promote the dehydration reaction of 5.
Therefore, 4 and 5 could be hydrolyzed together to get 6, avoiding the need for separation.

Based on the above mechanism, we analyzed the transformation process: When 2 and 3 were
reflexed in EtOH directly, the formation of HCl would make the reaction system acidic, dehydrating a
portion of product 5 to obtain compound 4. However, due to the strong electron withdrawing effect
of the CF3 moiety, coupled with the weak acidity of the reaction system, the transformation would
not be complete. Therefore, we propose that, in the synthesis of compounds 4, the HCl gas could be
introduced into the system to facilitate the generation of the thiazole ring.

The final amide derivatives 7 (Scheme 4) and 8 (Scheme 5) were produced by reaction of the acyl
chloride of 6 with appropriate arylamines at room temperature in dichloromethane. The reaction
to produce compounds 7 and 8 required N,N-diisopropylethylamine as a base to give acceptable
yields. In addition, pyridine, triethylamine and some inorganic bases (Na2CO3, K2CO3, NaHCO3)
were trialed and gave decreased yields. Inorganic bases were not suitable for the organic reaction
system used.

2.2. Anticancer Activities

The anticancer results of title compounds are listed in Table 1, 5-fluorouracil was used as controls.
As shown in Table 1, some of the title compounds showed good inhibitory against A-549 at a
concentration of 5 µg/mL, such as compound 8c (48%) and 8f (40%), which is a little lower than
that of control, while some of them exhibited low activity against A-549. Furthermore, compound
7d and 7f can increase the A-549 cell growth. All the title compounds exhibited no inhibition or low
inhibitor effect against Bel7402 and HCT-8. Only compound 7f (40%) displayed moderate inhibitory
against HCT-8.
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Table 1. The anticancer activity of title compounds at 5 µg/mL (%, inhibitory).

No. A-549 Bel7402 HCT-8

7a 36 10 2
7b 24 0 19
7c 16 0 ´7
7d ´2 6 ´5
7e 4 9 17
7f ´19 12 40
8a 27 6 1
8b 27 22 2
8c 48 5 28
8d 37 16 8
8f 40 16 2

5-Fluorouracil 57 75 79

3. Experimental Section

3.1. Instruments

Chemicals and solvents were procured from commercial sourced in analytical grade purity.
Melting points were determined in open capillaries on a Mel-Temp apparatus and are uncorrected.
Thin-layer chromatography (TLC) was carried out on aluminium-supported silica gel plates
(Merck 60F 254) (Darmstadt, Genmany) with visualization of components by UV light (254 nm).
Column chromatography was carried out on silica gel (Merck 230–400 mesh) (Darmstadt, Genmany).
The IR spectra were recorded on a Thermo Nicolet IR 200 FT-IR spectrometer as KBr pellets and
the wave numbers were given in cm´1. The 1H NMR spectra were recorded in CDCl3/DMSO-d6

on a Bruker-400 spectrometer (400 MHz). All chemical shifts are reported in δ (ppm) using TMS
(Tetramethylsilane) as an internal standard. The microanalyses were performed on a Perkin-Elmer
240C elemental analyzer (Waltham, MA, USA).

3.2. Synthesis

3.2.1. Preparation of 1

To a suspension of benzoic acid (40 mmol) in CH2Cl2 (50 mL) was added oxalyl chloride
(120 mmol), two drops of DMF followed by stirring at room temperature for 12 h. After the reaction was
complete and the solvent was evaporated under vacuo and the residue added into ammonia solution
to obtain 1. Compound 1a (2-fluorobenzamide): white solid (88%); m.p. 111–112 ˝C. Compound 1b
(2-chlorobenzamide): white solid (95%); m.p. 111–112 ˝C (140–142 ˝C) [39].

3.2.2. Preparation of 2 [40]

To a solution of THF (100 mL) was added 1 (20 mmol), Lawesson’s Reagent (20 mmol) and
refluxed for 3 h under the nitrogen protection. After the reaction was complete, THF was evaporated
under vacuo. The crude residue was purified by column chromatography (EtOAc/ Petroleum ether)
to get 2. Compound 2a (2-fluorobenzothioamide): yellow solid (93%); m.p. 80–81 ˝C (83 ˝C) [41].
Compound 2b (2-chlorobenzothioamide): yellow solid (82%); m.p. 56–59 ˝C.

3.2.3. Preparation of 3 [42]

To a solution of CCl4 (100 mL) was added ethyl 4,4,4-trifluoro-3-oxobutanoate (0.2 mmol), SO2Cl2
(0.24 mmol), the solution was heated at reflux for 24 h. After the reaction was complete, CCl4
was evaporated under vacuo. The residual liquid was distilled under reduced pressure, collecting
60–62/20 mmHg fraction to get 3. Compound 3 (ethyl 2-chloro-4,4,4-trifluoro-3-oxobutanoate):
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transparent liquid (66%); m.p. 60–62/20 mmHg (67–71/35 mmHg) [43]. Compound 2b
(2-chlorobenzothioamide): White solid (82%); m.p. 56–59 ˝C.

3.2.4. Preparation of 4 [44]

To a solution of 2 (35 mmol) in EtOH (100 mL) was added 3 (35 mmol) and refluxed for 24 h.
After the reaction was complete, the solvent was evaporated under vacuo. The residue was allowed to
stand until white needle like crystals precipitated, then the solution filtered to isolate compound 4.

Ethyl 2-(2-fluorophenyl)-4-(trifluoromethyl)thiazole-5-carboxylate (4a) White solid (40%); m.p.
109–110 ˝C; 1H NMR (400 MHz, CDCl3) δ: 1.42 (t, J = 7.2 Hz, 3H, OCH2CH3), 4.43 (q, J = 7.2 Hz, 2H,
OCH2CH3), 7.23–7.27 (m, 1H, Ar–H), 7.30–7.34 (m, 1H, Ar–H), 7.48–7.54 (m, 1H, Ar–H), 8.37–8.41
(m, 1H, Ar–H).

Ethyl 2-(2-chlorophenyl)-4-(trifluoromethyl)thiazole-5-carboxylate (4b) White solid (56%); m.p.
96–97 ˝C; 1H NMR (400 MHz, CDCl3) δ: 1.42 (t, J = 7.2 Hz, 3H, OCH2CH3), 4.43 (q, J = 7.2 Hz,
2H, OCH2CH3), 7.43–7.45 (m, 2H, Ar–H), 7.53–7.55 (m, 1H, Ar–H), 8.42–8.44 (m, 1H, Ar–H).

3.2.5. Preparation of 6 (Scheme 3)

To a solution of 4 (10 mmol) in MeOH (50 mL) and distilled water (10 mL) was added NaOH
(12 mmol) and stirred at room temperature for 12 h. After the reaction was complete, the solvent
was evaporated in vacuo followed by the addition of water (50 mL) and the pH was adjusted to 1.5
with diluted hydrochloric acid (2 mol/L). After stirring for 30 min, the mixture was filtered to isolate
compound 6.
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2-(2-Fluorophenyl)-4-(trifluoromethyl) thiazole-5-carboxylic acid (6a) White solid (71%); m.p. > 190 ˝C;
1H NMR (400 MHz, DMSO-d6) δ: 7.41–7.53 (m, 2H, Ar–H), 7.64–7.68 (m, 1H, Ar–H), 8.22–8.26 (m, 1H,
Ar–H), 14.43 (br, 1H, COOH).

2-(2-chlorophenyl)-4-(trifluoromethyl)thiazole-5-carboxylic acid (6b) White solid (84%); m.p. > 200 ˝C;
1H NMR (400 MHz, DMSO-d6) δ: 7.54–7.64 (m, 2H, Ar–H), 7.70–7.72 (m, 1H, Ar–H).

3.2.6. Synthesis of Target Compounds (7a–f)

To a suspension of 6 (1 mmol) and oxalyl chloride (3 mmol) in CH2Cl2 (20 mL) was added two
drops of DMF and stirred at room temperature for 6 h. After the reaction was complete by TLC,
the solution was evaporated in vacuo to get the crude residue. The crude residue was dissolved in
CH2Cl2, then was slowly added into a solution of o-amino-benzamide (1.2 mmol) in CH2Cl2 (20 mL).
After stirring for 20 min, the solution was neutralized using (i-Pr)2EtN (1 mmol). After the reaction
was complete, a great quantity of white solid was precipitated and 20 mL distilled water was added.
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After thorough stirring, the mixture was filtered to get the white solid, which was washed with CH2Cl2
(10 mL) and distilled water (10 mL) to obtain 7 (Scheme 4).
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CH(CH3)2), 2.24 (s, 3H, CH3), 3.94–4.01 (m, 1H, CH(CH3)2), 7.34–7.55 (m, 4H, Ar–H), 7.64–7.69 (m, 1H,
Ar–H), 8.23–8.27 (m, 1H, Ar–H), 8.31–8.33 (m, 1H, NHCH(CH3)2), 10.53 (br, 1H, NH). Anal. Calculated
for C22H18ClF4N3O2S: C 53.37, H 4.10, N 8.60; found: C 52.86, H 3.63, N 8.41.

N-(4-chloro-2-(cyclohexylcarbamoyl)-6-methylphenyl)-2-(2-fluorophenyl)-4-(trifluoromethyl)thiazole-5-carboxamide
(7c) White solid (68%); m.p. 157–159 ˝C; 1H NMR (400 MHz, DMSO-d6) δ: 1.21–1.84 (m, 10H,
cyclohexyl-H), 2.24 (s, 3H, CH3), 3.62–3.67 (m, 1H, CH), 7.32–7.33 (m, 1H, Ar–H), 7.42–7.56 (m, 3H,
Ar–H), 7.64–7.69 (m, 1H, Ar–H), 8.23–8.27 (m, 1H, Ar–H), 8.31 (d, J = 7.6 Hz, 1H, NHCH), 10.53 (br, 1H,
NH). Anal. Calculated for C25H22ClF4N3O2S: C 55.44, H 3.86, N 7.93; found: C 55.61, H 4.11, N 7.78.

N-(4-chloro-2-methyl-6-(methylcarbamoyl)phenyl)-2-(2-chlorophenyl)-4-(trifluoromethyl)thiazole-5-carboxamide
(7d) White solid (81%); m.p. 247–249 ˝C; 1H NMR (400 MHz, DMSO-d6) δ: 2.24 (s, 3H, CH3), 2.71 (d,
J = 4.4 Hz, 3H, NHCH3), 7.37–7.75 (m, 5H, Ar–H), 8.23–8.36 (m, 2H, Ar–H), 8.24 (br, 1H, NHCH), 10.58
(br, 1H, NH). Anal. Calculated for C20H14Cl2F3N3O2S: C 49.05, H 3.39, N 8.59; found: C 49.19, H 2.89,
N 8.61.

N-(4-chloro-2-(iso-propylcarbamoyl)-6-methylphenyl)-2-(2-chlorophenyl)-4-(trifluoromethyl)thiazole-5-carboxamide
(7e) White solid (91%); m.p. 277–280 ˝C; 1H NMR (400 MHz, DMSO-d6) δ: 1.12 (d, J = 6.4 Hz, 6H,
CH(CH3)2), 2.24 (s, 3H, CH3), 3.92–4.01 (m, 1H, CH(CH3)2), 7.33–7.34 (m, 1H, Ar–H), 7.51–7.62 (m, 3H,
Ar–H), 7.72–7.74 (m, 1H, Ar–H), 8.23–8.26 (m, 1H, Ar–H), 8.31 (br, 1H, NHCH), 10.56 (br, 1H, NH).
Anal. Calculated for C22H18Cl2F3N3O2S:C 50.92, H 3.90, N 7.98; found: C 51.17, H 3.51, N 8.14.

N-(4-chloro-2-(cyclohexylcarbamoyl)-6-methylphenyl)-2-(2-chlorophenyl)-4-(trifluoromethyl)thiazole-5-carboxamide
(7f) White solid (67%); m.p. 279–281 ˝C; 1H NMR (400 MHz, DMSO-d6) δ: 1.12–1.88 (m, 10H,
cyclohexyl-H), 2.26 (s, 3H, CH3), 3.66–3.68 (m, 1H, CH), 7.32–7.77 (m, 5 H, Ar-H), 8.27–8.29 (m, 1H,
Ar–H), 8.32 (d, J = 7.6 Hz, 1H, NHCH), 10.53 (br, 1H, NH); Anal. Calculated for C25H22Cl2F3N3O2S:
C 54.36, H 3.65, N 7.57; found: C 53.96, H 3.99, N 7.55.

3.2.7. Synthesis of Target Compounds (8a–g)

To a suspension of 6 (1 mmol) and oxalyl chloride (3 mmol) in CH2Cl2 was added two drops
of DMF and stirred at room temperature for 6 h. After the reaction was complete, the solution was
evaporated in vacuo to get the crude residue. The crude residue was dissolved in CH2Cl2, then was
slowly added into a solution of o-amino-benzamide (1.2 mmol) in CH2Cl2. After stirring for 20 min,
the acid binding agent (i-Pr)2EtN (1 mmol) was added and kept stirring in room temperature for 12 h.
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After the reaction was complete, the solution was added 20 mL CH2Cl2. Combined organic layers
were washed with dilute hydrochloric acid (20 mL), saturated Na2CO3 solution (20 mL) and saturated
NaCl solution (20 mL) respectively, dried with anhydrous Na2SO4. The mixture was filtered under
reduced pressure, the filtrate was evaporated under vacuo. The crude residue was purified by column
chromatography to get compounds 8 (Scheme 5).
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N-(4-chloro-2-methylphenyl)-2-(2-fluorophenyl)-4-(trifluoromethyl) thiazole-5-carboxamide (8a) White
solid (69%); m.p. 226–227 ˝C; 1H NMR (400 MHz, DMSO-d6) δ: 2.24 (s, 3H, CH3), 7.29–7.32
(m, 1H, Ar–H), 7.39–7.56 (m, 4H, Ar–H), 7.65–7.69 (m, 1H, Ar–H), 8.23–8.27 (m, 1H, Ar–H), 10.55
(br, 1H, NH). Anal. Calculated for C18H11ClF4N2OS: C 51.61, H 3.21, N 6.79; found: C 52.12, H 2.67, N
6.75. IR (KBr, vmax) cm´1: 3249 (N–H stretch); 3026~3121 (aliphatic C–H stretch); 1633 (C=O stretch);
1436~1548(aromatic and thiazole C=C stretch); 1126(C–S stretch).

N-(2,4-dichlorophenyl)-2-(2-fluorophenyl)-4-(trifluoromethyl) thiazole-5-carboxamide (8b) White solid
(58%); m.p. 195–196 ˝C; 1H NMR (400 MHz, DMSO-d6) δ: 7.43–7.56 (m, 3H, Ar-H), 7.65–7.76 (m, 3H,
Ar–H), 8.24–8.28 (m, 1H, Ar–H), 10.87 (br, 1H, NH). Anal. Calculated for C17H8Cl2F4N2OS: C 46.85,
H 2.36, N 6.21; found: C 46.91, H 1.85, N 6.44.

N-(4-chloro-2-methylphenyl)-2-(2-chlorophenyl)-4-(trifluoromethyl) thiazole-5-carboxamide (8c) Yellow
solid (44%); m.p. 228–229 ˝C; 1H NMR (400 MHz, DMSO-d6) δ: 2.25 (s, 3H, CH3), 7.30–7.49 (m, 3H,
Ar–H), 7.59–7.65 (m, 2H, Ar–H), 7.73–7.75 (m, 1H, Ar–H), 8.25–8.27 (m, 1H, Ar–H), 10.59 (br, 1H, NH).
Anal. Calculated for C18H11Cl2F3N2OS: C 49.91, H 2.87, N 6.59; found: C 50.13, H 2.57, N 6.50.

2-(2-Chlorophenyl)-N-(2,4-dichlorophenyl)-4-(trifluoromethyl)thiazole-5-carboxamide (8d) White solid
(65%); m.p. 204–205 ˝C; 1H NMR (400 MHz, DMSO-d6) δ: 7.493–7.52 (m, 1H, Ar–H), 7.56-7.64 (m, 2H,
Ar–H), 7.69–7.76 (m, 3H, Ar–H), 8.25–8.27 (m, 1H, Ar–H), 10.90 (br, 1H, NH). Anal. Calculated for
C17H8Cl3F3N2OS: C 45.02, H 2.09, N 6.29; found: C 45.21, H 1.79, N 6.20.

2-(2-Chlorophenyl)-4-(trifluoromethyl)-N-(2-(trifluoromethyl)phenyl)thiazole-5-carboxamide (8e) White
solid (68%); m.p. 158–160 ˝C; 1H NMR (400 MHz, DMSO-d6) δ: 7.56–7.65 (m, 4H, Ar–H), 7.73–7.83
(m, 4H, Ar–H), 10.92 (br, 1H, NH). Anal. Calculated for C18H9ClF6N2OS: C 47.67, H 2.51, N 6.39;
found: C 47.96, H 2.01, N 6.21.

2-(2-Chlorophenyl)-N-(2,4,6-trichlorophenyl)-4-(trifluoromethyl)thiazole-5-carboxamide (8f) White solid
(58%); m.p. 120–122 ˝C; 1H NMR (400 MHz, DMSO-d6) δ: 7.56–7.66 (m, 2H, Ar–H), 7.88 (s, 2H,
Ar–H), 7.75–7.77 (m, 1H, Ar–H), 8.29–8.31 (m, 1H, Ar–H), 11.18 (br, 1H, NH). Anal. Calculated for
C17H7Cl4F3N2OS: C 42.19, H 1.78, N 5.49; found: C 42.00, H 1.45, N 5.76.

N-(2-bromo-4,6-dichlorophenyl)-2-(2-chlorophenyl)-4-(trifluoromethyl)thiazole-5-carboxamide (8g) White
solid (60%); m.p. 250–251 ˝C; 1H NMR (400 MHz, DMSO-d6) δ: 7.59–7.67(m, 2H, Ar-H), 7.75–7.77
(m, 1H, Ar–H), 7.91 (d, J = 2.4 Hz, 1H, Ar–H), 7.98 (d, J = 2.4 Hz, 1H, Ar–H), 8.29–8.31 (m, 1H, Ar–H),
11.17 (br, 1H, NH). Anal. Calculated for C17H7BrCl3F3N2OS: C 38.15, H 1.81, N 5.03; found: C 38.48,
H 1.33, N 5.28.
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3.3. Anticancer Activity

Three different human cancer cell lines, A-549, Bel7402 and HCT-8, were obtained from the
National Center for Pharmaceutical Screening, Institute of Materia Medica (Beijing, China), and
cultured on RPMI1640 medium at 37 ˝C in a humidified atmosphere with 5% CO2 for 24 h. All cells to
be tested in the following assays had a passage number of 3–6.

For the drug treatment experiments, the cancer cells were treated with the compounds
(predissolved in DMSO) at 5 µg/mL for a period of three days. At the end of the drug treatment period,
MTT (4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) solution (150 µL, 0.5 mg/mL)
in PBS (PBS without MTT as the blank) was fed to each well of the culture plate. After 4 h incubation,
the formazan crystal formed in the well was dissolved with 150 µL of DMSO for optical density reading
at 544 nm.

4. Conclusions

Some interesting amide derivatives containing thiazole moiety were designed and synthesized.
Their structures were confirmed by NMR and elemental analysis. The primary bioassay showed some
of them exhibited moderate anticancer activities.
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