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Abstract: This paper presents a flexible transmission network expansion planning (TNEP) approach
considering uncertainty. A novel hybrid clustering technique, which integrates the graph
partitioning method and rough fuzzy clustering, is proposed to cope with uncertain renewable
generation and load demand. The proposed clustering method is capable of recognizing the actual
cluster distribution of complex datasets and providing high-quality clustering results. By clustering
the hourly data for renewable generation and load demand, a multi-scenario model is proposed
to consider the corresponding uncertainties in TNEP. Furthermore, due to the peak distribution
characteristics of renewable generation and heavy investment in transmission, the traditional TNEP,
which caters to rated renewable power output, is usually uneconomic. To improve the economic
efficiency, the multi-objective optimization is incorporated into the multi-scenario TNEP model,
while the curtailment of renewable generation is considered as one of the optimization objectives.
The solution framework applies a modified NSGA-II algorithm to obtain a set of Pareto optimal
planning schemes with different levels of investment costs and renewable generation curtailments.
Numerical results on the IEEE RTS-24 system demonstrated the robustness and effectiveness of the
proposed approach.

Keywords: transmission network expansion planning; clustering analysis; uncertainty;
multi-objective optimization

1. Introduction

With the rapid development of renewable energy recently, renewable generation will be
extensively utilized in the smart grid of the near future to mitigate environmental pollution and
promote sustainable development. However, owing to the stochastic volatility and intermittency
of renewable energy, the integration of renewable energy sources would possibly exacerbate the
uncertainty of power systems, which brings a series of new challenges to transmission network
expansion planning (TNEP). Hence, it is necessary to present an economic and robust TNEP method
to deal with renewable energy integration in the smart grid.

In the literature, there have been several studies on the TNEP problem under uncertainty by
adopting mathematical optimization methods. For instance, [1] employed methods of stochastic
programming and probabilistic constraints for generation and transmission expansion planning with
consideration of uncertainties in power system operation. In [2], a chance-constrained programming
method was proposed to deal with uncertain load and wind power in TNEP. However, the stochastic
optimization generally requires the accurate probability density function (PDF) of each uncertain
parameter as well as the deterministic form of constraints associated with uncertainties, which are
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difficult to achieve in practice. Apart from stochastic optimization, robust optimization has also been
widely discussed in TNEP. Since robust optimization only requires the lower and upper bounds of
uncertain parameters, uncertainties such as load demand, renewable generation, and transmission
investment cost [3,4] can be easily considered in TNEP through a robust model. Nevertheless, the
robust TNEP method also has the issue of over-conservatism and may lead to uneconomic solutions.

Recently several researchers have employed the multi-scenario method in TNEP, which
considers uncertainties by multiple scenarios. The works by [5,6] adopted a scenario-generation
method to deal with uncertain generation dispatch. [7] applied the Monte Carlo simulation (MCS) to
simulate the uncertainties of outages and load forecasting in the coordinated generation-transmission
expansion planning. In addition, the robust TNEP design based on extreme scenarios was adopted
by [8,9] to improve the robustness of planning schemes. Nevertheless, the above multi-scenario
methods still have limitations, as they tend to generate a large number of scenarios to achieve accurate
simulation of uncertainties, which may cause a heavy computational burden.

With the integration of large-scale renewable energy, the penetration level of renewable
generation is generally high in the smart grid. Under such circumstances, the traditional TNEP
methods, which cater for rated renewable power output, may lead to low utilization rates of
transmission lines and poor economic efficiency [10]. In addition, since the power output of spatially
dispersed renewable power plants tends to be strongly correlated in many geographical regions [11],
the assumption that each renewable power plant is independent is no longer applicable. Recently
several studies have emphasized the necessity of considering spatio-temporal correlation among
renewable energy sources in various fields of the power system, such as wind power forecasting [11],
power market [12], etc. Accordingly, the spatial correlation among different renewable power
plants also needs to be considered in TNEP to improve the simulation accuracy of uncertain
renewable generation.

Although much research has been devoted to the TNEP problem under uncertainty, few studies
have investigated the impact of the peak distribution characteristics of renewable generation on the
economic efficiency of TNEP. Hence, the purpose of this paper is to provide economic and flexible
planning schemes considering uncertainty. A novel scenario-generation method based on clustering
analysis is proposed first to handle uncertain factors. In contrast with the scenario-generation
methods discussed above, the proposed method only requires the raw information of uncertain
factors, and is capable of controlling the number of scenarios to an acceptable range. More
importantly, it can spontaneously take into account the correlation among uncertain factors when
generating typical scenarios, thus improving the accuracy of uncertainty simulation. Furthermore,
on the basis of the typical scenarios, this paper presents a multi-scenario, multi-objective TNEP
model with consideration of uncertain renewable generation and load demand. In order to achieve
the balance between economic efficiency and robustness of TNEP, the curtailment of renewable
generation is considered as one of the optimization objectives. A modified NSGA-II algorithm is
then employed to obtain a set of Pareto optimal planning schemes with different levels of investment
costs and renewable generation curtailments. In consequence, decision makers are allowed to make
an effective choice according to the Pareto optimal front. For validation, the proposed TNEP method
is tested on the modified IEEE RTS-24 system. The numerical results show that the proposed method
can provide planning schemes superior to those from conventional TNEP methods.

2. Uncertainty Processing Based on Clustering Technique

It has been discussed above that an effective set of scenarios can be employed to guide the
TNEP design of a smart grid under uncertainty. Obviously, the accuracy of uncertainty simulation
has a direct effect on the validity of planning results, and the number of scenarios is also related
to the computational efficiency of TNEP problem solving. When dealing with large uncertainties,
the conventional scenario-generation methods can hardly guarantee simulation accuracy while
controlling the scenarios’ number within an acceptable range. In addition, the difficulty of uncertainty
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simulation in the smart grid is also significantly increased due to the large-scale utilization of
renewable energy. Therefore, an effective scenario-generation method is of great importance.

Since it is one of the major characteristics of a smart grid to have massive amounts of data
collected from various measuring devices [13], this paper proposes a novel scenario-generation
method based on clustering analysis to cope with the uncertainty in the form of large datasets.
As one of the most commonly used data mining techniques, clustering analysis has been proven to
be effective to recognize the accurate distribution characteristics of large datasets [14]. In this paper,
the power dataset to be clustered consists of the raw data for each uncertain factor, such as hourly
data of wind power, photovoltaic power, load demand, etc. Through the clustering analysis, the
power dataset can be clustered into several clusters where data samples belonging to the same cluster
have similar values of renewable power output and load demand. This means that each cluster can
represent a typical combination of renewable power output and load demand, while the correlation
among the uncertain factors is considered intuitively. Therefore, a scenario set, which contains the
typical combinations of renewable power output and load demand, can be selected from the clusters
by data sampling.

This paper proposes a novel hybrid clustering method that thoroughly investigates the inherent
characteristics of the TNEP problem. Moreover, an effective strategy for scenario selection is applied
to ensure the typicality of the selected scenario set. The specific procedures are described in the
following subsections.

2.1. Identification of the Number of Typical Combinations of Renewable Power Output and Load Demand

For the power dataset, each data sample represents a deterministic combination of renewable
power output and load demand, while an effective scenario set should contain all the typical
combinations. Since data samples belonging to the same cluster have similar values of renewable
power output and load demand, each cluster can be considered as a specific data subset representing
a typical combination. Thus the optimal cluster number for a power dataset, which corresponds to
the number of typical combinations, needs to be identified first.

This section employs an iterative graph partitioning method to obtain the optimal cluster
number [15]. This method approaches the problem with two kinds of matrix forms: the observation
matrix and the judgement matrix. Suppose the dataset x with n data samples has been already
clustered into h clusters, then an nˆn observation matrix MO is given by:

MO
ij “

#

1 xi, xj P Cluster η
0 xi, xj R Cluster η

pη P r1, hsq (1)

The observation matrix MO represents the clustering relationships among all the data samples
under a defined cluster number. Obviously, a single observation matrix can hardly reveal the accurate
clustering distribution of a complex dataset, especially when the optimal cluster number is unknown.
Thus it is essential to compute the observation matrices with different cluster numbers to obtain more
clustering information. Suppose there is an observation matrix set with the total number c of clusters
ranging from 2 to k, the judgement matrix MJ is defined as follows to extract the key information:

MJ “

k
ÿ

c“2

MO
c (2)

where MO
c is the observation matrix with the cluster number set to c. It can be observed that the

judgement matrix MJ integrates the clustering relationships among data samples under different
cluster numbers. The value of each matrix element indicates the similarity degree between the
corresponding data samples; for example, a large value of MJ

ij means a high similarity degree between
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xi and xj, and in that case there will be a high probability that xi and xj are grouped into the
same cluster.

On the basis of the above two kinds of matrix forms, the steps of the identification method are
given in brief below [15]:

(a) Employ the partitioning clustering algorithm to cluster the power dataset iteratively with the
cluster number ranging from 2 to k, then obtain the observation matrix set according to
Equation (1).

(b) Compute the judgement matrix MJ as the sum of the obtained observation matrix set.
(c) On the basis of Breadth-First Search (BFS) algorithm, record the number of independent

connected sub-matrices in MJ . The recorded number represents the total number of clusters
in the current iteration.

(d) Update the judgement matrix MJ by decreasing the value of each non-zero element as follows:

MJ
ij “

#

MJ
ij ´ 1 i f MJ

ij ě 1
0 otherwise

(3)

(e) If all elements of the updated judgement matrix MJ become zero, then go to the next step.
Otherwise, go to step (c).

(f) Analyze the recorded number of sub-matrices in all iterations. The number with the maximum
stability degree is viewed as the optimal cluster number.

In step (f), the stability degree of a given sub-matrix number c refers to the consecutive
occurrence number of c in all iterations. The number with the maximum stability degree means
that under this number, the connections of the data samples within the sub-matrices (clusters) are the
strongest and hardest to break [15].

It should be noted that the partitioning clustering algorithm is employed as a fast clustering
technique to accelerate the iterative clustering process in step (a). However, its clustering performance
is not sufficiently stable when the cluster number is large. To solve this issue, the above identification
process is repeated sn times in this paper. Based on sn times calculation, the stability degree of each
sub-matrix number can be estimated accurately and the optimal cluster number can be determined
through further statistical analysis.

2.2. Rough Fuzzy Clustering Analysis of Power Dataset

Since the uncertainty level in different TNEP cases may vary significantly, it is important to adopt
a flexible clustering method to ensure good clustering performance under various datasets.

Traditional clustering methods, such as hard clustering, in which the membership degree of each
data sample should only be 0 or 1, are not suitable for TNEP because the power data is inherently
continuous. Although soft clustering can deal with continuous data by fuzzy membership degree,
it also has the shortcoming of producing overlapped clusters.

Considering the intrinsic characteristics of power dataset, this paper adopts a rough-fuzzy
clustering method, which is based on minimizing the following objective function [16]:

f “
h
ÿ

j“1

n
ÿ

i“1

uq
ijdpxi, λjq

q (4)

where h is the cluster number; n is the sample number of the power dataset; uij is the membership
degree of data sample xi to cluster j; q is the fuzzifier parameter set as 2; and d(xi,λj) is the Euclidean
distance between xi and cluster center λj, which represents the similarity degree between the power
values of xi and λj.
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Unlike traditional clustering, the rough-fuzzy membership degree is applied in the adopted
method to guide the clustering analysis. The corresponding membership degree matrix u is obtained
by the following steps [17]:

(a) Calculate the n ˆ h dissimilarity matrix F by measuring the Euclidean distance between each
data sample and each cluster center.

(b) Sort the elements of the matrix F by row in ascending order and obtain a new dissimilarity
matrix F1. Then modify the sorted matrix F1 as follows [17]:

F1pxi, λjq “ `8 i f
F1pxi, λjq

F1pxi, λ1q
ą 1.2 pi P r1, ns, j P r2, hsq (5)

(c) Convert the modified matrix F’ into the matrix F with the original order. Then calculate the
membership degree matrix u by:

uij “ Fpxi, λjq
´

2
q´ 1 {

h
ÿ

k“1

Fpxi, λkq
´

2
q´ 1 (6)

As shown in Equations (5) and (6), the 0–1 membership degree is employed if the data sample
is closed to the cluster center; otherwise the fuzzy membership degree is employed. On the basis of
this mixed membership degree, the rough-fuzzy clustering method integrates the advantages of hard
clustering and soft clustering [16].

The value of cluster center λj is updated with the changes of membership degree matrix u:

λj “

n
ÿ

i“1

uq
ijxi{

n
ÿ

i“1

uq
ij pi P r1, ns, j P r1, hsq (7)

Through the above analysis, the mathematical formulation of the rough-fuzzy clustering analysis
is represented by Equations (4)–(7). A differential evolution algorithm is adopted to solve the above
optimization problem; the detailed solving process can be found in [18].

2.3. Validation of the Hybrid Clustering Method with a Wind Power Dataset

A typical wind power dataset, which is derived from two wind farms in the EWITS study [19],
is employed to validate the proposed clustering method. Figure 1 gives its scatter diagram:
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The identification of cluster number is implemented first. Here the parameter sn is set as 40
by experiments with test databases [20]. Through analyzing the estimated stability degree of each
cluster number in 40 trials, statistical results with the cluster number varying from 3 to 15 are
illustrated in Figure 2.

According to Figure 2, the cluster number 7, which has the maximum stability degree, is
determined as the optimal cluster number. Then the power dataset is clustered into seven clusters
as depicted in Figure 3. It can be seen that the clustering result accurately recognizes seven typical
combinations of wind power output of the two wind farms. Moreover, there are no overlapping
areas among different clusters, showing that the cluster divisions are totally obvious. Hence, the
effectiveness of the hybrid clustering method is verified.
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2.4. Selection Strategy for Power System Planning Scenarios from Clustering Result

In order to ensure that the selected scenarios can contain sufficient information on the whole
power dataset, as well as control the scenarios’ number to an acceptable range, this paper proposes
an effective data sampling strategy as follows:
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(a) On the basis of clustering results, calculate the radius of each cluster as follows:

ri “

ni
ř

k“1
dpxk, λiq

ni
(8)

where ri is the radius of the ith cluster; ni is the data sample number of cluster i; and xk is the
data sample belonging to cluster i.

(b) Set tmin as the minimum sampling number of a single cluster, then determine the sampling
number of each cluster by:

ti “

Z

tmin
ri

rmin

^

(9)

where ti is the sampling number of cluster i and symbol “tu” is the rounded-down value of a
quantity. It can be inferred that a large sampling number will be applied to the cluster with a
large radius. This means that the cluster having the larger distribution range will be sampled
more times, thus fully extracting the corresponding data information.

(c) According to the calculated sampling number, a total of Σti data samples are sampled at random
to generate the typical scenario set. For each scenario, the corresponding occurrence probability
is given by:

αk “
ni

ti
řh

j“1 nj
i f scenario k P cluster i (10)

where αk is the occurrence probability of scenario k; h is the cluster number.
(d) Examine the accuracy of the generated typical scenario set by calculating the correlation

coefficient between the data distribution represented by the typical scenario set and the whole
power dataset.

(e) Repeat steps (c)–(d) sm times. Based on sm times calculation, the scenario set with the largest
correlation coefficient is determined to be the optimal scenario set and is employed in the
subsequent TNEP model.

3. Improved Model of TNEP with Uncertain Renewable Generation and Load Demand

3.1. Classical Multi-Scenario TNEP Model

A scenario set that contains all the typical combinations of renewable power output and load
demand is generated through the previous clustering method. Hence, the planning objective of TNEP
under uncertainty can be simplified to find the most economical planning scheme that satisfies all
typical scenarios.

By incorporating the typical scenario set, the classical multi-scenario TNEP model is formulated
by [6,8]:

min w “
ÿ

ijPΩ

cijnij `β
ÿ

kPΦ

ÿ

iPΨ

plk
i ` rk

i q (11)

subject to
Sˆ f k ` gk

C ` gk
R ` lk “ dk ` rk (12)

f k
ij ´ γijpn0

ij ` nijqpθ
k
i ´ θk

j q “ 0 (13)
ˇ

ˇ

ˇ
f k
ij

ˇ

ˇ

ˇ
ď pn0

ij ` nijq fij (14)

0 ď gC ď gC (15)

0 ď rk ď gk
R (16)

0 ď lk ď dk (17)
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0 ď nij ď nij, nij is integer (18)

where

cij Cost of line that added to right-of-way i-j
n0

ij Number of lines in service on right-of-way i-j
nij Number of lines in planning on right-of-way i-j
Ψ Set of buses
Ω Set of candidate right-of-ways
Φ Set of typical scenarios
β Penalty factor
γij Susceptance of right-of-way i-j
θ Voltage angle at node i
f Vector of active power flow
gC Vector of conventional generation
gR Vector of renewable generation
S Branch-node incidence matrix
l Vector of curtailed load
d Vector of load demand
r Vector of renewable generation curtailment

Denotes the max value of a quantity
k Denotes the value of a quantity in scenario K

The objective of Equation (11) is to find the minimum cost planning scheme that satisfies the
load demand and renewable power consumption in all typical scenarios. It can be observed that
a sufficiently large penalty factor β can effectively drive both the load shedding and renewable
generation curtailment to zero. Constraint Equation (12) is the nodal power balance equation at
each bus. Constraint Equation (13) is the DC power flow balance equation at each right-of-way.
Constraints Equations (14)–(17) are operation limits of power system for the active power flow in
the lines, the conventional generator output, the renewable generation curtailment, and the load
shedding, respectively.

3.2. Multi-Scenario Multi-Objective TNEP Model Considering Distribution Characteristics of Renewable
Power Output

The classical multi-scenario TNEP model caters to the rated capacity of renewable power plants
under all typical scenarios, thus ensuring full consumption of renewable generation. However,
according to previous research [10], the power output of renewable energy, especially wind energy,
is relatively low in most scenarios, whereas the high level output seldom occurs. Therefore, the
planning scheme, which satisfies the rated renewable power output, may lead to poor economic
efficiency due to the huge cost of transmission investment in integrating renewable energy sources.

Taking into account the distribution characteristics of renewable power, an appropriate
curtailment of renewable generation is allowed in this paper to save the transmission investment.
Obviously, the transmission investment conflicts with the curtailment level of renewable generation.
A high investment in TNEP tends to reduce the curtailment of renewable generation, and vice versa.
Consequently, a multi-objective TNEP model is proposed to obtain a Pareto optimal set of planning
schemes with different levels of investment costs and renewable generation curtailments. According
to the classical TNEP model, the proposed multi-scenario multi-objective TNEP model is formulated
as follows:

min tw1, w2u (19)

subject to Equations (12)–(18) and
w1 “

ÿ

ijPΩ

cijnij (20)
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w2 “
ÿ

kPΦ

ÿ

iPΨ

αkrk
i `β

ÿ

kPΦ

ÿ

iPΨ

lk
i (21)

It can be seen that the occurrence probability αk is applied in Equation (21) to compute the
expected renewable generation curtailment under all typical scenarios, which is a new objective to
be optimized. In addition, the penalty factor β is also employed to avoid the load shedding. By
introducing and optimizing two conflicting objectives, decision makers can make a more effective
trade-off between transmission investment cost and renewable generation curtailment according to
the actual situation of TNEP.

4. The Solution Method Based on Modified NSGA-II

Since the evolutionary algorithm has been proven to be efficient to solve the TNEP problem [21,22],
this paper adopted a modified NSGA-II to solve the above multi-objective TNEP problem. Figure 4
shows the solving process of the proposed TNEP model, while the detail of each part is given below.
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4.1. Scenario Preparation for TNEP

In the beginning, the hourly data of each uncertain factor is collected to form the basic scenario
set. Then the proposed clustering method is employed to cluster the basic scenario set and to
recognize all the typical combinations. Furthermore, a typical scenario set is generated from the
clustering results by means of the proposed sampling strategy.

4.2. The Initialization of Population

To speed up the convergence of problem solving, the initial population is generated based on the
typical scenario set. For each individual, its initialization procedures are as follows:

(a) Select a certain scenario with deterministic load demand and renewable generation from the
typical scenario set.

(b) According to the selected scenario, the original TNEP problem is simplified to a single-scenario
single-objective problem, in which Equation (21) or Equation (22) is selected alternatively as the
optimization objective.

w3 “
ÿ

ijPΩ

cijnij `β
ÿ

kPΦ

ÿ

iPΨ

lk
i (22)

(c) Solve the simplified problem by using software for MILP. The linearization method of Equation
(13) can be found in [3]. The obtained planning result is considered as an individual.

It should be noted that the above initialized method may result in similar individuals, which will
affect the global search in the subsequent problem solving. Hence, the idea of the “blocked path” is
adopted to diversify the initial individuals [6]. After each individual is generated, the right-of-ways
where nij “ 0 are selected to form the blocked path set Γ, which is defined by:

i´ j P

#

Γ, nnew
ij “ randr0, nijs i f randr0, nijs ‰ 0

Ω, nij “ 0 otherwise
(23)

where i-j is the right-of-way between nodes i-j; Ω is the set of candidate right-of-ways; rand [0,nij] is
to generate a random integer within [0, nij]. It can be seen that the set of candidate right-of-ways is
updated by removing the right-of-ways in the blocked path set. Moreover, for each right-of-way in
the blocked path set, nnew

ij lines are added to the original transmission network. With the updated
candidate set and transmission network, the new individuals can be guaranteed to be different from
one to another while the initial search area is also expanded.

After all individuals are generated, the diversity check and mutation manipulation are also
conducted to ensure that any two individuals are different in at least two right-of-ways.

4.3. Procedures of Evolutionary Solving

(a) With the planning result determined by each individual, solve the simplified multi-scenario
TNEP problem in turn. The optimization results, which include transmission investment
cost and curtailed renewable generation, are considered as two fitness values for the
corresponding individual.

(b) For all individuals, carry out the non-dominated and crowding sorting according to the
fitness values.

(c) On the basis of the sorting results, tournament selection, single-point crossover and mutation
are implemented to generate offspring. In this paper, the mutation manipulation is to add or
remove a line for a selected right-of-way with 50/50 probability [5,6].

(d) Likewise, solve the simplified TNEP problem for each offspring, and integrate the offspring and
parent population for non-dominated and crowding sorting. Then update the population by
removing the individuals with the lowest ranking.
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(e) If maximum iterations are met, go to step (f). Otherwise, update the parameters of crossover
and mutation as follows, then go to step (c):

PCR “ 0.8´
R

itc

ita

V

ˆ 0.1 (24)

PMU “ 0.2`
R

itc

ita

V

ˆ 0.1 , dMU “ 6´
R

itc

ita

V

ˆ 0.1 (25)

where PCR and PMU are the parameters of crossover probability and mutation probability
respectively; itc is the current number of iterations; ita is an artificial parameter, which is set
to be 20% of the maximum iteration number; symbol “ rs” denotes the rounded-up value of a
quantity; and dMU is the mutation operator, which represents the number of right-of-ways that
should mutate in a mutation manipulation.

(f) Output the planning results from the Pareto optimal front.

According to the idea in [23], this paper proposes an adaptive control strategy for the parameters
of crossover and mutation in step (e). With Equations (24) and (25), large values of PCR and dMU are
employed in the early iterations to diversify the search area and to ensure the global optimization. In
later iterations, as the global optimal area is gradually determined, a large value of PMU is employed
while dMU decreases, which means that a large number of individuals will be mutated and few
right-of-ways (dMU will eventually be decreased to 1) will be changed for each individual. Since
the mutation manipulation is only to add or remove a line for each selected right-of-way, a large
value of PMU is employed in later iterations to enhance the local search; this will not have an adverse
effect on the optimal solution.

5. Case Study

5.1. Case Description

The proposed TNEP approach is tested on the modified IEEE RTS-24 system; the test system
data is available in [24,25]. In this paper, the uncertainties considered in TNEP are load demand and
wind generation. The basic scenario set for clustering analysis consists of 8760 hourly data of load
demand and wind power output. The hourly load data is simulated by adding a 5% disturbance that
follows the normal distribution to the base load data [24]. The hourly wind power data is converted
from the actual annual hourly wind speed data, which is derived from the EWITS study [19].

In the modified IEEE RTS-24 system, all the loads are assumed to be 2.8 times of the original
values, while all the generation capacities are assumed to be 2.5 times of the original values. Three
new buses, Bus-25, Bus-26, and Bus-27, are added, each with a wind capacity of 1000 MW; they can
be integrated into the system by the right-of-way 16–25, 7–26, and 1–27. The network topology of the
modified IEEE RTS-24 system is shown in Figure 5.

The dashed line in Figure 5 represents the new right-of-ways. A total of 44 right-of-ways are
allowed to build new transmission lines, the number of which should be no more than four in each
right-of-way.

The parameters are set as follows: the range of cluster number is set to [2,500]; the repetition
sn for cluster number analysis is set at 40, the repetition sm for scenario sampling is set at 5000;
penalty factor β is set as 106 $/MW; the population number is set as 60 based on [5,8]; the maximum
number of iterations is set as 1500, which is a relatively large value to guarantee the optimality of the
Pareto front.
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As shown in Figure 6, cluster number 19, which has the maximum stability degree in 40 trials, is
determined as the optimal cluster number. Then, with the minimum sampling number tmin set as 3,
the basic scenario set is divided into 19 clusters, while a total of 194 scenarios are generated for TNEP.

By solving the proposed TNEP problem, the Pareto optimal front of planning results is obtained.
In this paper, only the planning result with a wind curtailment percentage less than 5% is considered
as a feasible planning scheme, thus ensuring a certain degree of wind power consumption. Figure 7
shows all feasible planning schemes from the Pareto front. It can be seen that the investment cost in
each planning scheme ranges from 91.3ˆ 105 $ to 165ˆ 105 $, while the wind curtailment percentage
decreases from 4.75% to 0%.
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To further investigate the impact of wind power distribution characteristics on TNEP, four
feasible planning schemes, which have been marked in Figure 7, are selected for comparison. The
detailed information is given in Table 1.

Table 1. Four planning schemes for IEEE RTS-24 system.

Planning
Schemes Cost (ˆ105 $)

Wind Curtailment
Percentage Planning Schemes

R1 165.0 0.00% n 1–2 = 2, n1–5 = 1, n6–10 = 1, n7–8 = 4, n8–9 = 1, n10–12 = 1,
n14–16 = 1, n2–8 = 1, n16–25 = 3, n7–26 = 3, n1–27 = 3

R2 145.1 0.15% n1–2 = 2, n1–5 = 1, n6–10 = 1, n7–8 = 3, n8–9 = 1, n10–12 = 1,
n14–16 = 1, n16–25 = 3, n7–26 = 2, n1–27 = 3

R3 123.8 0.40% n1–2 = 2, n6–10 = 1, n7–8 = 3, n10–12 = 1, n14–16 = 1,
n16–25 = 3, n7–26 = 2, n1–27 = 2

R4 108.2 0.82% n1–2 = 2, n6–10 = 1, n7–8 = 3, n10–12 = 1, n14–16 = 1,
n16–25 = 2, n7–26 = 2, n1–27 = 2

As shown in Table 1, compared with the most robust planning scheme R1, the investment costs
of the other three planning schemes are reduced by 12.06%, 24.97%, and 34.42%, respectively, whereas
the wind curtailment percentages are only 0.15%, 0.40%, and 0.82%, respectively, of the expected wind
power output. It can be observed that the investment cost of TNEP can be substantially reduced by
limiting the wind power output, which only results in an extremely small wind curtailment. As a
result, allowing an appropriate renewable curtailment can effectively improve the economic efficiency
of TNEP for integrating renewable energy sources.

The above analysis demonstrates that the proposed TNEP method can provide a robust planning
scheme and other economic planning schemes simultaneously. Thus decision makers can make an
effective trade-off between robustness and economic efficiency and choose the most suitable planning
scheme based on actual situations.

5.3. Performance Analysis of the Pareto Optimal Planning Results

To illustrate the effectiveness of the obtained planning results, a total of 30,000 testing scenarios,
which are generated by MCS with consideration to wind speed correlation [26], are applied to test the
performance of each planning result.

The robustness of planning schemes R1 is verified by estimating the robustness degree with
testing scenarios [3,8]. Two robust planning schemes R1-A and R1-B, which are obtained by the
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genetic algorithm combined with Taguchi’s orthogonal array testing (TOAT) [8] and robust TNEP
(RTNEP) [3], respectively, are also evaluated for comparison. Table 2 gives the comparison results of
three robust planning schemes.

Table 2. Robustness analysis.

Planning Schemes Solution Cost (ˆ105 $) Robustness Degree

R1 n1–2 = 2, n1–5 = 1, n6–10 = 1, n7–8 = 4, n8–9 = 1, n10–12 = 1,
n14–16 = 1, n2–8 = 1, n16–25 = 3, n7–26 = 3, n1–27 = 3 165.0 99.90%

R1-A by TOAT n1–2 = 2, n1–5 = 1, n2–4 = 1, n6–10 = 1, n7–8 = 4, n8–9 = 1,
n8–10 = 1, n2–8 = 1, n16–25 = 3, n7–26 = 3, n1–27 = 3 162.2 99.48%

R1-B by RTNEP
n1–2 = 2, n1–5 = 1, n2–4 = 1, n3–24 = 1, n5–10 = 1, n6–10 = 1,

n7–8 = 4, n8–9 = 1, n8–10 = 1, n10–12 = 1, n14–16 = 1,
n15–24 = 1, n16–17 = 1, n16–25 = 3, n7–26 = 3, n1–27 = 3

187.4 100%

As shown in Table 2, the planning scheme under RTNEP, which can satisfy the load demand and
wind power consumption in all testing scenarios, has the best robustness. However, owing to the
conservativeness of RTNEP, the investment cost of RTNEP is 13.58% and 15.54% higher than that of
R1 and TOAT, respectively. It can be observed that planning scheme R1 is not only economical but
also has a high robustness degree of 99.90%. The above analysis proves that the proposed method
can be effectively applied to the robust TNEP design.

The effectiveness of the hybrid clustering method in dealing with uncertainty is further analyzed.
For planning schemes R2, R3, and R4, their actual wind curtailment percentages are evaluated
by MCS and are compared with the given wind curtailment percentages simulated by the typical
scenario set. The comparison results are shown in Table 3.

Table 3. Comparison results for wind curtailment percentage.

Planning Scheme Wind Curtailment Percentage
Absolute ErrorTypical Scenario Set MCS

R2 0.1473% 0.1487% 0.0014%
R3 0.4007% 0.4267% 0.0260%
R4 0.8177% 0.8165% 0.0012%

It can be noted that the absolute errors between the typical scenario set and MCS are
extremely small, which indicates that the typical scenario set can accurately simulate uncertain wind
generation. This further proves that the hybrid clustering method can effectively recognize the
typical power distribution characteristics of the basic scenario set and provide accurate clusters for
scenario generation.

5.4. Sensitivity Analysis

In the analysis above, only three wind farms are considered in TNEP. Since the smart grid tends
to have more renewable power plants, it is necessary to investigate the impact of the increasing
number of renewable power plants on TNEP. Here, two additional cases are tested on the modified
IEEE RTS-24 system; the corresponding information of integrated wind farms is given in Table 4.

Likewise, the typical scenario set is generated first for each case. For C1, the basic scenario
set is divided into eight clusters, and a total of 148 scenarios are selected with the tmin set as
8. For C2, the basic scenario set is divided into seven clusters, and a total of 140 scenarios are
selected with tmin set as 10. It can be observed that the number of scenarios is not affected
by the increased uncertainties, which means that the proposed method can maintain the stable
computational efficiency of TNEP solving.
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Table 4. Case information for the integrated wind farms.

Case Number of
Wind Farms

New Bus with
Wind Farm

Wind Capacity
(MW)

Corresponding
Right-of-Way

C1 4

25 600 16–25
26 600 7–26
27 900 1–27
28 900 2–28

C2 5

25 500 16–25
26 500 7–26
27 500 1–27
28 600 2–28
29 900 5–29

Figure 8 gives the feasible planning schemes from the Pareto fronts of C1 and C2, respectively.
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The robustness analysis for the robust planning schemes of two cases is given in Table 5. It can
be noted that both of the planning schemes have good robustness.

Table 5. Robustness analysis for C1 and C2.

Planning Schemes Solution Cost (ˆ105 $) Robustness Degree

C1-R1
n1–3 = 1, n1–5 = 2, n2–4 = 1, n2–6 = 1, n5–10 = 1,
n6–10 = 1, n7–8 = 2, n10–12 = 1, n14–16 = 1, n2–8
= 1, n16–25 = 2, n7–26 = 2, n1–27 = 3, n2–28 = 3

189.0 99.98%

C2-R1
n1–3 = 1, n2–4 = 1, n5–10 = 4, n6–10 = 1, n7–8 = 1,

n10–12 = 1, n14–16 = 1, n16–25 = 2, n7–26 = 2,
n1–27 = 2, n2–28 = 2, n5–29 = 3

197.0 99.99%

MCS evaluation is also conducted on two economic planning schemes, C1-R2 and C2-R2.
The comparison results in Table 6 show that the hybrid clustering method still has good performance
for uncertain simulation under increased uncertainties.

In addition, for the proposed TNEP method, its capability to save transmission investment
by curtailing appropriate wind generation is further discussed. This paper defines the cost-saving
ratio as the ratio of the cost savings of an economic planning scheme to the investment cost of
the corresponding robust planning scheme. To investigate the impact of increased wind farms on
the cost-saving ratio, the planning schemes R3, C1-R2, and C2-R2, which all have a similar wind
curtailment percentage close to 0.4%, are selected for comparison. Figure 9 illustrates the comparison
results of transmission investment cost and cost-saving ratio under different cases.
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Table 6. Two economic planning schemes, C1 and C2.

Planning
Schemes Cost (ˆ105 $)

Wind Curtailment Percentage
Absolute Error Planning Schemes

Typical
Scenario Set MCS

C1-R2 136.6 0.4080% 0.3943% 0.0137%

n1–5 = 2, n2–4 = 1, n4–9 = 1, n5–10 = 1,
n6–10 = 1, n7–8 = 2, n10–12 = 1,
n14–16 = 1, n2–8 = 1, n16–25 = 2,
n7–26 = 1, n1–27 = 2, n2–28 = 2

C2-R2 129.6 0.4097% 0.3669% 0.0428%
n2–4 = 1, n5–10 = 3, n6–10 = 1, n7–8 = 1,

n10–12 = 1, n14–16 = 1, n16–25 = 2,
n7–26 = 1, n1–27 = 1, n2–28 = 1, n5–29 = 2
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As shown in Figure 9, with the increase in the number of wind farms, the investment costs
of robust planning schemes increase monotonically in three cases whereas the economic planning
schemes all keep a reasonable investment cost. The increase of cost-saving ratio further indicates that
the proposed TNEP method can provide more reasonable and economic planning schemes when the
robust planning design is overly conservative under large uncertainties.

6. Conclusions

This paper presents a multi-objective approach for TNEP under uncertainty. A novel hybrid
clustering method is proposed to generate typical scenarios for the consideration of uncertain
renewable generation and load demand. Moreover, through analyzing the distribution characteristics
of renewable power output, an appropriate curtailment of renewable generation is realized in TNEP
to improve the economic efficiency of planning schemes.

Numerical results demonstrate that the transmission investment can be effectively reduced by
curtailing part of the peak renewable power output. The robustness and effectiveness of the proposed
TNEP method are validated through comparing two robust TNEP methods and MCS. Further
analysis indicates that the proposed TNEP method can provide more reasonable and economic
planning schemes under increased uncertainties. In summary, this new TNEP method provides a
flexible and economic way of TNEP, and the typical scenarios obtained by clustering analysis can
accurately simulate the uncertainties.

In this paper, the conventional generation capacities and loads in TNEP are artificially set.
Further work will be carried out on the coordinated generation and transmission planning problem,
considering long-term forecasting of power generation and demand.
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