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Abstract: In orthogonal frequency division multiplexing (OFDM), sidelobes of the 

modulated subcarriers cause high out-of-band (OOB) radiation, resulting in interference to 

licensed and un-licensed users in a cognitive radio system environment. In this work, we 

present a novel technique based on a generalized sidelobe canceller (GSC) for the reduction 

of sidelobes. The upper branch of the GSC consists of a weight vector designed by multiple 

constraints to preserve the desired portion of the input signal. The lower branch has a 

blocking matrix that blocks the desired portion and preserves the undesired portion  

(the sidelobes) of the input signal, followed by an adaptive weight vector. The adaptive 

weight vector adjusts the amplitudes of the undesired portion (the sidelobes) so that when 

the signal from the lower branch is subtracted from the signal from the upper branch, it 

results in cancellation of the sidelobes of the input signal. The effectiveness and strength of 

the proposed technique are verified through extensive simulations. The proposed  

technique produces competitive results in terms of sidelobe reduction as compared to  

existing techniques. 
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1. Introduction 

The rapid growth in wireless communication methods and devices is a major reason for spectrum 

scarcity. Cognitive radio (CR) is an encouraging solution to tackle such a problem and has received 

special attention in the research community. CR has the ability to dynamically permit secondary users 

(SU) to operate in those spectral domains that are not being used by the primary users (PU) at certain 

times and localities (interweave mode) [1–3]. Efficient techniques are needed at the transmitter side to 

control the shapes of the transmitted signal so that both SU and PU can share the same spectrum 

resources with minimum interference. 

Orthogonal frequency division multiplexing (OFDM) is the best candidate for the CR [4–6], with the 

ability to divide the available wideband channel into multiple narrow band orthogonal 

channels/subcarriers and to transmit those subcarriers in parallel. Some attributes of OFDM include 

spectral efficiency, multipath delay spread, robustness to channel fading, etc. On the other hand, due to 

the large sidelobes of the OFDM subcarriers, CR based on OFDM experiences high out-of-band (OOB) 

radiation that may result in considerable interference with the adjacent bands used by either PU or SU. 

To tackle the OOB radiation problem, various techniques are proposed in the literature that can be 

categorized into two groups: time domain techniques and frequency domain techniques. Time domain 

techniques include filtering [7], which suffers from high complexity and lack of guard interval, and 

windowing [8,9], which expands the signal in time domain and results in intersymbol interference (ISI). 

Frequency domain techniques include adaptive symbol transition (AST) [10], which expands the signal by 

injecting additional samples within a specified power threshold between two transmission blocks to reduce 

the interference of these two blocks at definite frequencies, active interference cancellation (AIC) [11–13], 

where a few subcarriers lying at the border of the licensed user band are reserved for reducing the 

interference. These subcarriers, called cancellation subcarriers, are not used for data transmission, but to 

cancel the interference in a specific frequency range. In Cancellation carriers (CC) [14–16] method the 

authors propose the same technique as in AIC, but consider limiting the power to cancellation 

subcarriers. In both cases, finding the optimal complex values for cancellation carriers is a least squares 

(LS) optimization problem. In [17] the weights of cancellation carriers are calculated using Genetic 

Algorithm (GA) and Differential Evolution (DE). In [18] Selim, A., et al. propose a heuristic algorithm 

for calculating the weighting factors for the CCs with few computations. Active and null cancellation 

carriers (ANCC) [19] technique combine active and null cancellation carriers in the guard band. 

Subcarrier weighting (SW) [20] technique suppresses the sidelobes by weighting all the subcarriers with 

an optimal set of real-valued coefficients, advance subcarrier weightings (ASW) [21], in which  

Selim, A. and Doyle, L. propose a heuristic approach for sidelobe suppression for OFDM systems using 

subcarrier weighting, multiple choice sequence (MCS) [22], where the sequence of symbols carried by 

subcarriers is mapped to an optimal sequence that yields lower sidelobe interference, Constellation expansion 

(CE) [23–25] transmits symbols from a higher order constellation set and chooses the sequence that 
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results in the lowest possible sidelobe power level, Insertion of guard bands [26,27] where the 

interference is alleviated by adaptively deactivating the nearby subcarriers, providing flexible guard 

bands between licensed and un-licensed users and spectral precoding schemes [28–32] to reduce the 

interference by designing special precoder matrices, etc.  

In this paper, we propose a novel technique for the reduction of OOB radiation in OFDM-based CR 

by using a generalized sidelobe canceller (GSC) at the transmitter of OFDM. It has been observed that 

so far in OFDM-based CR system, a GSC has not been used to tackle the OOB radiation problem. In the 

proposed technique, the signal is passed through two branches of a GSC. The upper branch consists of 

the weight vector designed by multiple constraints to preserve the desired portion of the signal, while 

the lower branch consists of a blocking matrix followed by a weight vector. The blocking matrix blocks 

the desired portion and preserves the undesired portions (sidelobes). The weight vector adjusts the 

undesired portion (sidelobes) in such a way that when subtracted from the signal of the upper branch, it 

results in significant cancellation of the sidelobes of the OFDM signal. We have compared the 

performance of the proposed technique with already existing techniques via simulations. The proposed 

technique achieves better suppression of the sidelobes as compared to the existing methods. 

The remaining paper is arranged as follows: Section 2 contains the data model and Section 3 gives 

the proposed methodology. In Section 4, simulation results are carried out, while Section 5 concludes 

and gives future work recommendations. 

2. Data Model 

A general illustration of the non-contiguous orthogonal frequency division multiplexing (NCOFDM) 

transmitter that utilizes the proposed method is shown in Figure 1. 

 

Figure 1. NCOFDM transmitter. 

The input bit stream 1 2[ , ,..., ]T
n Nx x x x∈ =x  is first modulated into symbols using Mary phase shift 

keying (PSK) or Mary quadrature amplitude modulation (QAM) 1 2[ , ,..., ]T
k Ns s s s∈ =s . These 

modulated symbols are then divided into N parallel streams using serial to parallel (S/P) converter. An 

NCOFDM system has the ability to activate only those subcarriers that are located in vacant spectral 

bands detected by spectrum sensing techniques. These active subcarriers go through the inverse Fourier 

transform block following parallel to serial (P/S) converter. The cyclic prefix of length Np is added to 

mitigate the impact of inter-symbol interference (ISI). The discrete time baseband transmitted NCOFDM 

signal that is to be transmitted in the time domain can be represented as [33–35]: 
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The spectral shape of the individual subcarrier is obtained by Fourier transform of the time domain 

rectangular window, which is equal to the sinc function. The spectrum u (f) of the kth subcarrier is a sinc 

pulse modulated with data symbol sk and is shifted to the respected subcarrier frequency fk [6]. 

( ) sin ( ( ) )k k k ou f s c f f Tπ= −  (2) 

where f denotes the frequency, fk is the center frequency of the kth subcarrier, To is the NCOFDM symbol 

duration, and (f – fk) denotes the normalized center frequency of the kth subcarrier. The spectrum of the 

transmitted NCOFDM signal is then the summation of the spectrum of all the active subcarriers, given by 
1

0
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N
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The signal given in Equation (3) has large sidelobes, which results in high OOB radiation, as shown 

in Figure 2 [14]. 

The main focus of this paper is to preserve the portion of NCOFDM signal from frequencies f1 to fN 

and to suppress the sidelobe, i.e., the remaining portion of the NCOFDM signal. 

 

Figure 2. Transmitted NCOFDM signal in frequency domain. 

3. Proposed Methodology 

In this section, we propose a novel technique by using GSC at the transmitter of NCOFDM. GSC is 

the simplest version of linearly constrained minimum variance (LCMV), where the constrained 

optimization problem is converted into an unconstrained problem [36–38]. The block diagram of GSC 

is shown in Figure 3, having two branches, the upper branch and the lower branch. The upper branch is 

the main channel of the GSC, usually called a Fixed Beamformer (FBF). It consists of quiescent weight 

vector wq, which preserves the signal coming from SU, i.e., the NCOFDM signal, and provides the 

necessary gain to the desired portion, i.e., the region from f1 to fN satisfying the constraint, as shown in 

Figure 2. The lower branch consists of the blocking matrix B followed by an adaptive weight vector wa. 

The blocking matrix B blocks the desired portion of the signal and preserves the sidelobes of NCOFDM 

signal, as shown by region f < f1 and f > fN in Figure 2. The adaptive weight vector wa adjusts the 

amplitudes of the sidelobes. The sidelobes that are preserved and adjusted in the lower branch are then 
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subtracted from the signal of the upper branch, resulting in the signal of NCOFDM having suppressed 

or zero sidelobes. 

 

Figure 3. Generalized sidelobe canceller (GSC): (a) block diagram of GSC; (b) equivalent 

diagram of GSC. 

To find the expressions for wq, B and wa, consider the NCOFDM signal given in Equation (3), 
represented by M samples, which are collected in the vector 1 2[u , u ,...u ]T

M=u  with uncorrelated 

elements. After passing through GSC it is given as 

HY = w u  (4) 

where the superscript H represents Hermitian and 0 1 1[w , w ,..., w ]T
M −=w  is a weight vector with 

dimension M × 1.  

LCMV determines the optimal weight vector Hw  that minimizes the output power having multiple 

linear constraints. The optimization problem for LCMV is given by: 

min H
uw

w R w  s.t H H=w C g  (5) 

On solving Equation (5), we obtain: 
1 1 1H H H H

o
− − −= u uw g (C R C) C R  (6) 

where 2[ ]HE σ= =uR uu I  is the correlation matrix, with dimension M × M, I is the identity matrix with 

dimension M × M, 2σ is the variance, while C is the constraint matrix with dimension M × N, having N 

steering vectors given by Equation (7): 

1 2[ , ,..., ]N=C s s s  (7) 

where N represents the total number of frequencies in the desired portion of the signal, as shown in  
Figure 2; 1 2[ , ,... ]i M

Ts s s=s is an ith steering vector with dimension M × 1 containing M samples of the 

ith spectrum; and [1,1,...,1]T=g  is called the gain vector with dimension N × 1, which contains the 

desired gain related to each steering vector. 
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The effective implementation of LCMV is the division of a field with dimension M × M into the 

constraint subfield defined by columns of C, an M × N matrix, and an orthogonal subfield defined by 

columns of B an M × (M − N) matrix such that 

H =C B O  (8) 

where O is a null matrix with dimension N × (M − N) and B is a blocking matrix that blocks the desired 

portion of the NCOFDM signal. 
Now consider the decomposition of H

ow  given in Equation (6) as 

H H H
o o c o o= −w w P w P  (9) 

where H
o cw P  represents the projection of H

ow  onto the constraint subfield and H
o ow P  represents the 

projection of H
ow  onto the orthogonal subfield. cP and oP  are the projection matrices onto the constraint 

and orthogonal subfields with dimension M × M given by 
1[ ]H H

c
−=P C C C C  (10)

1[ ]H H
o

−=P B B B B  (11)

where oP  can also be written as 

o c= −P I P  (12)

where I is an identity matrix with dimension M × M. 

The first component of Equation (9) represents the upper portion of GSC, which on solving becomes 
1 1 1 1[ ] [ ]H H H H H H

o c
− − − −= u uw P g C R C C R C C C C  (13)

1[ ]H H H H H
o c q

−=w P g C C C w
 (14)

where H
qw  is the quiescent weight vector having dimension 1 × M. 

The second component of Equation (9) represents the lower portion of the GSC. On substituting the 
values for H

ow  and oP , Equation (9) becomes 

1 1 1 1[ ] [ ]H H H H H H
o o

− − − −= u uw P g C R C C R B B B B  (15)

As Equation (15) is not particularly useful for implementation, it is divided into two parts. The first 
part consists of blocking matrix B, and the second part consists of an adaptive weight vector H

aw  with 

dimension 1 × (M − N). 

The blocking matrix B can be constructed by first finding the Po as given in Equation (12), then 

orthonormalizing Po and choosing the first (M − N) columns of the orthonormalized matrix that will be 

the resulting blocking matrix B, having the property given by 

H =B B I  (16)

The output of the GSC as shown in Figure 3 after replacing H
ow  with ( )H

q a−w Bw  will become: 

( )H
q aY = −w Bw u (17)
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the output power of which is given by: 

( ) ( )H
q a q aP = − −uw Bw R w Bw

 (18)

Solving Equation (18), we get the adaptive weight vector ( )a optw , given by the following equation: 

( )
1( )H H

a opt q
H −= u uw w R B B R B (19)

4. Simulations and Results 

In this section both the accuracy and the reliability of the proposed technique are discussed for the 

reduction of sidelobe suppression of the OFDM signal. The performance comparison of the proposed 

technique has been done in terms of normalized power spectral density (PSD) with already existing 

techniques in this area. Several cases have been discussed on the basis of spectral white spaces and its 

bandwidth between spectral white spaces. Throughout the simulations, the number of samples M is taken 

as 501, while the number of frequencies N in Case I is taken as 16, in Cases II and IV as 32, while in 

Case III and Case V, it is taken as 16, 32, 64, and 128, respectively. 

4.1. Case I 

In this case, we are considering a spectral white space that is not used by the PU and is available for 

the SU. The total number of OFDM subcarriers used by SU is 16 modulated with BPSK, whose power 

is normalized to |dn|2 = 1. The performance of the proposed technique is compared with different existing 

techniques, including CC [14], CC using GA and DE [17], ACC [18], and ASW [21]. In CC techniques, 

two CCs have been used either side of the data subcarriers, whereas in SW techniques all subcarriers are 

used for weighting. Figures 4 and 5 show the comparison of the proposed technique with the existing 

techniques in terms of PSD. It can be observed from Figures 4 and 5 that the existing techniques give a 

maximum of 36 dB improvement, while the proposed technique gives 92 dB improvement compared 

with the original OFDM spectrum. The proposed technique gives 58 dB improvement compared with 

the spectrum of OFDM using existing techniques. 

 

Figure 4. The PSD comparison between the proposed technique and existing techniques 

including SW, CC (Brandes), CC (GA), and CC (DE). 
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Figure 5. The PSD comparison between the proposed technique and existing techniques 

including ASW and ACC. 

The comparison of the proposed technique with the existing ones is also given in Table 1, which 

shows the effectiveness of the proposed technique. 

Table 1. Comparison of sidelobe suppression between existing and proposed techniques. 

Techniques used 
Sidelobe Powers 

Left Side of the Data Subcarriers Right Side of the Data Subcarriers 

Original −25 dB −25 dB 
CCs (Brandes) −43 dB −43 dB 

CCs (GA) −52 dB −52 dB 
CCs (DE) −61 dB −61 dB 

ACCs −30 dB −30 dB 
ASCW −45 dB −45 dB 

Proposed technique −117 dB −117 dB 

4.2. Case II 

In this case, we are considering nine sub-bands mentioned as regions in Figures 6 and 7. We assume 

that regions I, III, V, VII, and IX are occupied by PUs, while regions II, IV, VI, and VIII are occupied 

by SUs. Each SU has an equal number of subcarriers, i.e., 32 OFDM subcarriers modulated with BPSK, 

whose power is normalized to |dn|2 = 1. The bandwidth allocated to each PU is considered equal in all 

regions. The comparison of the proposed technique is done with already existing techniques including 

CC [14], CC using GA and DE [17], ACC [18], and ASW [21]. In CC techniques, two CCs have been 

used on either side of data subcarriers, while in the SW technique all subcarriers are taken into 

consideration. Figures 6 and 7 show the superiority of the proposed technique in terms of PSD, even in 

a spectrum-sharing scenario. The proposed technique performs well: it outclasses all these techniques 

and gets significant suppression in all regions. 
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Figure 6. The PSD comparison between the proposed technique and existing techniques 

including ACC and ASW. 

 

Figure 7. The PSD comparison between the proposed technique and existing techniques 

including CC (Brandes), CC (GA), and CC (DE). 

The comparison of suppression of the sidelobe power level achieved in a spectrum-sharing scenario 

using the existing technique and our proposed technique are given in Table 2, which also shows the 

performance of our proposed technique in all regions of PU. 

Table 2. Comparison of sidelobe suppression between existing and proposed techniques. 

Techniques used  
Sidelobe Power in Regions 

I III V VII IX 

Original −33 dB −28 dB −28 dB −28 dB −33 dB 
CCs (Brandes)  −47 dB −42 dB −42 dB −42 dB −47 dB 

CCs (GA) −59 dB −57 dB −57 dB −57 dB −59 dB 
CCs (DE) −80 dB −70 dB −70 dB −70 dB −80 dB 

ACCs −38 dB −33 dB −33 dB −33 dB −44 dB 
ASCW −45 dB −38 dB −38 dB −38 dB −45 dB 

Proposed technique −152 dB −130 dB −130 dB −130 dB −152 dB 

4.3. Case III 

In this case, we are considering the spectrum-sharing scenario consisting of a total of nine sub-bands 

mentioned as regions in Figures 8 and 9. We assume that regions I, III, V, VII, and IX are used by PUs, 
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while regions II, IV, VI, and VIII are used by SUs. An equal bandwidth is allocated to each PU, whereas 

it is unequal in the case of SU. The SU operating in region II has 16 subcarriers, region IV has 32, region 

VI has 64, and SU, operating in region VIII, has 128 subcarriers, modulated with BPSK, whose power 

is normalized to |dn|2 = 1. The performance of the proposed technique is compared with different existing 

techniques including CC [14], CC using GA and DE [17], ACC [18], and ASW [21]. 

 

Figure 8. The PSD comparison between the proposed technique and existing techniques 

including ACC and ASW. 

 

Figure 9. The PSD comparison between the proposed technique and existing techniques 

including CC (Brandes), CC (GA), and CC (DE). 

In CC techniques, two CCs have been taken on either side of the data subcarriers, and in SW techniques 

all subcarriers are used for suppression. Figures 8 and 9 show that the proposed technique outclasses all these 

techniques and gives a significant suppression in all regions of the spectrum-sharing scenario. 

Table 3. Comparison of sidelobe suppression between existing and proposed techniques. 

Techniques used 
Sidelobe Power in Regions 

I III V VII IX 

Original −31 dB −30 dB −28 dB −30 dB −30 dB 
CCs (Brandes) −45 dB −43 dB −42 dB −44 dB −43 dB 

CCs (GA) −57 dB −57 dB −57 dB −57 dB −57 dB 
CCs (DE) −82 dB −63 dB −60 dB −70 dB −65 dB 

ACCs −36 dB −34 dB −34 dB −35 dB −34 dB 
ASCW −42 dB −40 dB −39 dB −41 dB −40 dB 

Proposed technique −142 dB −135 dB −130 dB −140 dB −136 dB 
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The performance comparison of reduction of OOB radiation in all PU regions between the existing 

and the proposed technique is given in Table 3. It clearly shows that the proposed technique gives 

significant reduction in sidelobes at all regions of PU and performs better than the rest. 

4.4. Case IV 

In this case, we are considering the spectrum-sharing scenario shown in Figures 10 and 11, consisting 

of nine sub-bands in total. Out of these nine, four are given to SUs designated by regions II, IV, VI, and 

VIII, while regions I, III, V, VII, and IX are given to PUs. Consider that the bandwidth allocated to all 

SUs is equal, while the bandwidths allocated to PUs are unequal. Each SU has 32 OFDM subcarriers. 

Figures 10 and 11 show the comparison of the proposed technique with already existing sidelobe 

suppression techniques including CC [14], CC using GA and DE [17], ACC [18], and ASW [21].  

 

Figure 10. The PSD comparison between the proposed technique and existing techniques 

including ACC and ASW. 

 

Figure 11. The PSD comparison between the proposed technique and existing techniques 

including CC (Brandes), CC (GA), and CC (DE). 

In all CC techniques, two CCs have been taken on both sides of the data subcarriers. In terms of 

normalized PSD, Figures 10 and 11 show that clear reduction of OOB radiation is achieved in all regions 

of PU by the proposed technique. 
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Suppression of the sidelobe power level achieved at regions occupied by PUs using the existing  

and from the proposed technique is given in Table 4, which also shows the effectiveness the  

proposed technique. 

Table 4. Comparison of sidelobe suppression between existing and proposed techniques. 

Techniques used 
Sidelobe Power in Regions 

I III V VII IX 

Original −33 dB −27 dB −26 dB −24 dB −25 dB 
CCs (Brandes) −46 dB −42 dB −40 dB −38 dB −38 dB 

CCs (GA) −59 dB −58 dB −40 dB −52 dB −54 dB 
CCs (DE) −64 dB −68 dB −66 dB −56 dB −58 dB 

ACCs −37 dB −32 dB −30 dB −28 dB −30 dB 
ASCW −44 dB −38 dB −34 dB −30 dB −35 dB 

Proposed technique −152 dB −125 dB −118 dB −114 dB −127 dB 

4.5. Case V 

In this case, five out of nine sub-bands of unequal bandwidth are allocated to the PUs, designated as 

regions I, III, V, VII, and IX. Four sub-bands of unequal bandwidths allocated to SUs, designated as 

regions II, IV, VI, and VIII, are shown in Figures 12 and 13. We consider that the SU operating in regions 

II, IV, VI, and VIII has 16, 32, 64, and 128 OFDM subcarriers, respectively. The comparison of the proposed 

technique is done with the existing techniques. i.e., CC [14], CC using GA and DE [17], ACC [18],  

and ASW [21]. Two CCs have been taken on both sides of the data subcarriers in all cancellation carrier 

techniques. In terms of normalized power spectral density, Figures 12 to 13 show that the proposed 

technique achieved significant suppression when compared to the existing techniques in all regions  

of PUs. 

Suppression of sidelobe power level achieved in a spectrum-sharing scenario at regions allocated to 

PUs, using either the existing techniques or the proposed technique, is given in Table 5, which shows 

that the proposed technique gave outstanding results compared with the existing techniques in all regions 

of PUs. 

 

Figure 12. The PSD comparison between the proposed technique and existing techniques 

including ACC and ASW. 
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Figure 13. The PSD comparison between the proposed technique and existing techniques 

including CC (Brandes), CC (GA), and CC (DE). 

Table 5. Comparison of sidelobe suppression between existing and proposed techniques. 

Techniques used 
Sidelobe Power in Regions 

I III V VII IX 

Original −30 dB −29 dB −20 dB −27 dB −32 dB 
CCs (Brandes) −45 dB −42 dB −35 dB −41 dB −46 dB 

CCs (GA) −56 dB −62 dB −42 dB −52 dB −62 dB 
CCs (DE) −70 dB −68 dB −42 dB −66 dB −68 dB 

ACCs −35 dB −34 dB −26 dB −32 dB −38 dB 
ASCW −40 dB −40 dB −28 dB −36 dB −42 dB 

Proposed technique −135 dB −133 dB −95 dB −125 dB −150 dB 

5. Conclusions and Future Work Recommendation 

We have proposed a novel wave-shaping technique, GSC, for the reduction of sidelobes of OFDM 

signal. The proposed technique allows the desired portion of the signal to pass and blocks the undesired 

portion, i.e., the sidelobes. The performance comparison of the proposed technique in different  

spectrum-sharing scenarios with already existing sidelobe suppression techniques is done through 

simulations, which show that the proposed technique achieves more than 90 dB reduction in sidelobes 

as compared to the existing techniques. 

In the future, one can use the proposed approach for direction of arrival estimation of plane waves, 

as well as spherical waves. Moreover, the proposed scheme can also be tested for independent  

null steering. 
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