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Abstract: We report on a possibility of efficient engineering of the acoustic phonon energy 

spectrum in multishell tubular structures produced by a novel high-tech method of  

self-organization of micro- and nano-architectures. The strain-driven roll-up procedure 

paved the way for novel classes of metamaterials such as single semiconductor radial  

micro- and nano-crystals and multi-layer spiral micro- and nano-superlattices. The acoustic 

phonon dispersion is determined by solving the equations of elastodynamics for InAs and 

GaAs material systems. It is shown that the number of shells is an important control 

parameter of the phonon dispersion together with the structure dimensions and acoustic 

impedance mismatch between the superlattice layers. The obtained results suggest that 

rolled up nano-architectures are promising for thermoelectric applications owing to a 

possibility of significant reduction of the thermal conductivity without degradation of the  

electronic transport. 

Keywords: multishell tubular structures; rolled-up micro- and nano-architectures;  

acoustic phonon energy spectrum 
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1. Introduction 

Spatial confinement of acoustic and optical phonons in semiconductor thin films, superlattices, and 

nanowires changes their properties in comparison with bulk materials [1–15]. Phonon confinement in 

nanostructures leads to emergence of the quantized energy sub-bands with corresponding modification 

of the phonon density of states [1–4,10–15]. The changes in the phonon dispersion give rise to changes 

in the electron-phonon scattering rates [15–21], optical properties of the nanostructured  

materials [5,22–28], and phonon scattering on defects, boundaries, and other phonons [10,12,13,29–31]. 

It was predicted that the electron mobility can be increased in the phonon engineered core-shell 

nanowires and planar heterostructures with the barrier shell materials, which are acoustically harder 

than the core materials [32,33]. The experimentally-measured reduction of the phonon thermal 

conductivity in thin films and nanowires usually results from the increased phonon-rough  

boundary scattering. Another mechanism of the thermal conductivity reduction is related to the phonon 

spectrum modification and decrease of the phonon group velocity in thin films [10,29,34] and 

nanowires [12–14,30,31,34]. The predicted decrease of two orders of magnitude of the thermal 

conductivity in silicon nanowires at room temperature [31] has recently found experimental 

confirmation [35]. It has been determined that the thermal conductivity of the sub-20 nm diameter 

nanowires is suppressed by the phonon confinement effects beyond the diffusive boundary scattering 

limit [35]. The acoustic phonon confinement effects theoretically predicted for thin films and 

nanowires [6–34] have been directly observed experimentally using the Brillouin light scattering 

technique using suspended silicon thin films with the thickness H ≈ 7 nm [36] and gallium nitride 

nanowires with the diameters D ≈ 150 nm [37].  

The initial work on the phonon confinement effects in thin films and nanowires was performed 

using the elastic continuum approximation [10,11,14,29–31,38]. The results obtained with the elastic 

continuum approach have been confirmed using other techniques such as lattice dynamics [34,39] and 

molecular dynamics (MD) [40–42]. All computational approaches proved that the acoustic impedance 

η = ρ × v of the barrier shells of nanostructures presents an important tuning parameter for phonon 

transport, which can be used together with the lateral dimensions and shape for phonon engineering of 

material properties (ρ is the mass density and v is the sound velocity of the material). In the core-shell 

nanostructures with the acoustically mismatched barrier shells new types of phonon modes appear.  

Some of them are mainly concentrated in the nanostructure core while others are localized in the shell 

layers [11,14,34,38,39]. Controlling the acoustic impedance mismatch and thickness of the shell layers 

one can tune the electron-phonon interaction and the electron mobility [32,33]. Similarly, one can 

engineer the phonon group velocity and thermal conductivity in such nanostructures [11,14,34,38,39].  

Further progress in phonon engineering of material properties depends on availability of 

nanostructures with layered structures and substantial acoustic impedance mismatch. Multilayer tubes 

have attracted a special attention in newly developed acoustic metamaterials and phononic crystals at 

the micro- and nanoscale [43,44]. In particular, a cylindrical structure from 40 alternating layers of  

0.36 mm thick natural latex rubber film and 0.38 mm thick silicone elastomers containing boron nitride 

particles serves as a thermal shield [45]. In a two-layered tube with the weak interfaces between the 

layers, the dispersion characteristics of longitudinal guided acoustic wave provide a tool for detecting 
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and exploring defects [46]. The microstructures are shown to play a decisive role in the dispersion of 

both flexural and longitudinal waves in single- and multiwall carbon nanotubes [47].  

Acoustic metamaterials and phononic crystals are formed by periodic variation of the acoustic 

properties of the materials (elasticity and/or density), what leads to the occurrence of the phononic 

band gaps and provides powerful tools to control the phonon velocity spectra. The phonon crystals 

were proposed theoretically for elastic waves propagating in a composite material consisting of 

identical spheres [48] and infinite cylinders [49,50] with parallel axes embedded in a periodic way 

within a host. First, sonic materials with effective negative elastic constants were fabricated as  

lead-coated spheres arranged in a simple cubic crystal [51]. They acted as total wave reflectors within 

certain adjustable acoustic frequency ranges. Split-ring resonator periodic arrays [52] and  

double-negative (with the negative effective bulk modulus and the negative effective density) acoustic 

metamaterials [53] were suggested in a close analogy with electromagnetic metamaterials. For diverse 

experimental realizations of phononic crystals and their applications, see [44]. 

A novel method of self-assembly of micro- and nanoarchitectures was designed on the base of the 

strain-driven roll-up procedure [54,55]. It paved the way for novel classes of metamaterials: single 

semiconductor micro- and nanotubes (or radial crystals) [56] and multilayer spiral micro- and 

nanotubes (or radial superlattices) [57]. A comprehensive structural study was provided for 

semiconductor/oxide, semiconductor/organic, as well as semiconductor/metal hybrid radial 

superlattices [58]. A combined “roll-up press-back” technology has been recently presented to 

fabricate novel acoustic metamaterials/mechanically-joined nanomembrane superlattices [59], which 

reveal a significant reduction of the measured cross-sectional phonon transport compared to a single 

nanomembrane layer.  

The optical phonon spectra in multilayer cylindrical quantum wires manifest a geometric structural 

effect [4], which is of immanent importance for understanding of the pairing of charge carries in 

quantum wires [60], as well as the electron-phonon phenomena in multilayer coaxial cylindrical 

AlxG1−xAs/GaAs quantum cables [61] and double-coupled nanoshell systems [62]. The aim of the 

present work is to investigate the feasibility of controlling the acoustic phonon energy spectra and 

corresponding phonon velocity dispersion in rolled-up micro- and nanoarchitectures. Of fundamental 

importance in this context is the experimental evidence [63], that due to oxide formation during 

fabrication, a single period of a radial superlattice is represented by a semiconductor/amorphous 

oxide/polycrystalline metal/amorphous oxide layer rather than a semiconductor/metal layer.  

This implies a necessity to investigate multilayer tubes. The elastodynamic boundary conditions on 

spiral interfaces of a rolled-up microtube with multiple windings or on cylindrical interfaces of a 

multilayer tube, which consists of coaxial cylindrical shells, (multishell) immediately affect the 

acoustic phonon energy spectrum and, hence, phonon group velocities for propagation along the tube. 

Since the effect of these boundary conditions depends on the number of shells along with the 

geometric parameters, multishells are qualified into acoustic metamaterials. This introduces, in 

particular, extra capability for tuning the phonon spectrum, engineering the phonon transport and 

advancement of thermoelectric materials [9]. 
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2. Theoretical Model  

Spiral interfaces of a rolled-up microtube with multiple windings (Figure 1a,b) are modelled by 

cylindrical interfaces of a multilayer tube that consists of coaxial shells (multishell) as shown 

schematically in Figure 1c. We use the elastic continuum model because it works well for the 

considered dimensions of the structures. It was shown previously that such a model gives results in 

good agreement with the lattice dynamics and MD simulations [34,39–42]. Moreover, we are primarily 

interested in the acoustic phonon confinement energies near the Brillouin zone (BZ) center. These 

phonon modes are primarily responsible for heat transfer and can be directly studied with Brillouin 

spectroscopy. The elastic continuum model is particularly accurate for the BZ center phonons. We 

consider theoretically infinitely long structures because, practically, the length of micro- and  

nano-tubes is much larger than their diameter. The effect of the finite length on the phonon energies is 

negligible in our case. 

 
(a) (b) 

 
(c) 

Figure 1. Microtube with multiple windings fabricated using roll-up technology, a scheme 

(a) and a STEM image of a radial superlattice from a rolled-up 20 nm InGaAs/10 nm  

Ti/46 nm Au layer (b) (From Ref. [58] © IOP Publishing. Reproduced with permission. 

All rights reserved.). Cross-section in the plane orthogonal to the X-axis of a multilayer 

tube consisting of coaxial shells (multishell) (c). The tube core and the outer medium are 

vacuum. The axis of the structure is selected as the X-axis. The polar coordinates in the  

YZ-plane are (r,φ). The picture corresponds to a multishell with a periodic alternation of 

two materials. 
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The displacement vector um in each layer (m = 1,…, N), treated as an elastic continuum, obeys the 

equations of elastodynamics [64]: 
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At the internal boundary r0, the following three boundary conditions represent vanishing of the stress 

tensor components: 
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Similarly, at the external boundary rN, the following three boundary conditions represent vanishing of 

the stress tensor components: 
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In total, there are 6N boundary conditions. The boundary problem described by the Equation (1) and 

the boundary conditions (2) to (5) for an arbitrary number of the shell pairs satisfies the 

correspondence principle with respect to the case of a two-shell composite coaxial tube [65,66]. 

The solutions to the equations of elastodynamics are sought in the form of a combination of 

dilatational waves and shear (equivoluminal) waves: 

.m m m  u H  (6) 

Here the scalar potential of the dilatational motion and the vector potential of the shear motion along 

the axis of the structure (which has only two independent components) satisfy the equations: 
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The velocities ν1m and ν2m correspond to dilatational and shear waves in the material of the  

m-th layer. The solutions to the wave equations are sought as plane waves traveling along the axis of 

the structure.  
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Every neighboring layers are assumed to be perfectly bonded. Therefore, the eigenwaves in all 

layers will have the same longitudinal wave vector ζ and circular frequency : 

( )cos( )cos( ζ ),

( )sin( θ)sin( ζ ),

( )cos( θ)sin( ζ ),

( )sin( θ)cos( ζ ).
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A multishell with a periodic alternation of two materials is further assumed (see Figure 1, lower 

panel) with r0 = 100 nm. All odd shells (m = 2k + 1) consist of one and the same material with elastic 

properties λ1, μ1, density ρ1 and have the same thickness: Δr1. All even shells (m = 2k) consist of the 

same material with elastic properties λ2, μ2, density ρ2 and have the same thickness: Δr2. They are 

represented in Table 1. In what follows, the number of layers is denoted by NL. 

Table 1. Geometric and materials parameters of the multishell. 

Parity i of the layer number 
m 

1 2 

Material InAs GaAs 
λi, dyn/cm2 4.54  1011  5.34  1011 
μi, dyn/cm2 1.90  1011 3.285  1011 
ρi, g/cm3 5.68  5.317  

Δri, nm 5 5  

The wave characteristics in the materials are defined in Table 2.  

Table 2. Definitions of the wave characteristics in the materials. 

Characteristic of the layer 
with parity i of the number m 

Denotation 

Velocity of a dilatational wave  v1i = [(λi + 2μi)/ ρi]1/2 

Velocity of a shear wave  v2i  = [μi/ ρi]1/2 

Squared radial wave number 
for a dilatational wave 

αi
2 = ω2/v1i

2 − ζ2 

Squared radial wave number 
for a shear wave 

βi
2 = ω2/v2i

2 − ζ 2 

Dispersion of the Rayleigh 
waves αi

2 = 0 
ω = v1iζ 

Dispersion of the Rayleigh 
waves βi

2 = 0 
ω = v2iζ 

The further procedure is a generalization of that in [65] for a two-shell tube onto an arbitrary 

number of shells. Substituting the eigenwaves of Equation (8) into the differential equations of  

motion (7), we exclude three coordinates (t, x, and ) and arrive at a set of differential equations with 

respect to the radial coordinate r for the amplitude functions fm(r) and hxm(r) at m = 1, 2,…, NL: 
  



Appl. Sci. 2015, 5 734 

 

 

2 2
2

2 2

2 2
2

2 2

1
α 0,

1
β 0

m m
m m

xm xm
m xm

f f n
f

r r r r

h h n
h

r r r r

  
       

  
       

 (9) 

and two similar equations for the amplitude functions hrm(r) and hm(r). Due to gauge invariance of the 

vector potential, one of the functions hrm(r), hm(r), hxm(r) can be selected arbitrarily; we use, like  

in [65], the calibration hrm(r) = −hm(r) ≡ h1m(r). The differential Equations (9) are Bessel equations  

(see Chapter 9 in [67]). Their solutions can be represented in the general form: 
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where Zn (Wn) are the Bessel functions of the first kind Jn (second kind Yn) (p. 358 of [67])  

for the real radial wave numbers αm and βm and the modified Bessel functions In (Kn)  

(p. 374 of [67]) for the imaginary wave numbers αm and βm. In the set of solutions (10), there are in 

total 6NL unknown coefficients, which can be represented as a 6NL-dimensional vector 
 L332211 ,…1,2,=,,,,, NmBABABA mmmmmmΞ . After substituting the solutions (10) in the set of 6NL 

boundary conditions (2) to (5), we arrive at a homogeneous system of 6NL linear algebraic equations 

with respect to 6NL components j (j = 1,…, NL) of the vector : 
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A non-trivial solution to this system exists under the condition that its LL 66 NN    

determinant vanishes: 

.6,...,1,      ,0)det( LNjiC ji   (12) 

A numerical solution to the secular Equation (12) is found using Intel® Visual Fortran with 

Microsoft Visual Studio 2008 [68]. It provides phonon eigenfrequencies as a function of the 

longitudinal wave vector ζ. The resulting phonon dispersion curves are represented below in the  

non-dimensional form, using the units, which are defined in Table 3. 

Table 3. Units for wave characteristics. 

Physical quantity Unit 

Longitudinal wave vector ζ   1/Δr2  
Frequency ω  πv22/Δr2 

Group velocity dω/dζ  πv22 

3. Results for NL = 2 

The lowest phonon dispersion curves (in the window of eigenfrequencies [0, 1.5]) are shown for 

axially-symmetric waves n = 0, NL = 2 in Figure 2. (More time-consuming calculations for flexural 

waves with n = 1,… are ongoing.) There are anticrossings of torsional or non-torsional modes, but 
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there might occur crossings of torsional (ux = ur = 0, uθ  0) and non-torsional (associated with the 

displacement components ux and ur, u = 0) modes. Dispersion of the phonon group velocity for the 

dispersion curves in Figure 2 is represented in Figure 3 (see Figure A1 for a detailed graph). A group 

velocity dispersion curves stops when the eigenfrequency ω goes beyond the window [0, 1.5]. 

 

Figure 2. Phonon dispersion curves for n = 0, NL = 2. The inner and outer radii of a 

multishell are r0 = 100 nm and r2 = 110 nm, respectively. Non-torsional and torsional 

modes are represented with filled and empty circles, correspondingly. Dashed lines 

indicate the dispersion curves for dilatational (αI = 0) ans shear (βI = 0) waves in the 

material with parity i of the number m. 

 

Figure 3. Phonon group velocity dispersion curves for n = 0, NL = 2. Denotations of  

non-torsional and torsional modes are the same as in Figure 2. 
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4. Results for NL = 4 and NL =6 

The lowest phonon dispersion curves are shown for axially symmetric waves n = 0, NL = 4 in  

Figure 4. For clarity, dispersion curves for non-torsional and torsional waves are represented  

also separately. 

 
(a) 

 
(b) (c) 

Figure 4. Phonon dispersion curves for n = 0, NL = 4 (a). The inner and outer radii of a 

multishell are r0 = 100 nm and r4 = 120 nm, respectively. Phonon dispersion curves for 

non-torsional (b) and torsional (c) waves. 

A larger number of dispersion curves in multishells with four shells emerge within the same interval 

of energies and wave vectors as for multishells with two shells in Figure 2. Dispersion of the phonon 

group velocity for the lowest dispersion curves in Figure 4 is represented in Figure 5 (see Figure A2 

for a detailed graph).  



Appl. Sci. 2015, 5 737 

 

 

 
(a) 

 
(b) (c) 

Figure 5. Phonon group velocity dispersion curves for n = 0, NL = 4 (a). Phonon group 

velocity dispersion curves for non-torsional (b) and torsional (c) waves. 

The lowest phonon dispersion curves are shown for axially symmetric waves n = 0, NL = 6 in Figure 6.  

 
(a) 

Figure 6. Cont. 
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(b) (c) 

Figure 6. Phonon dispersion curves for n = 0, NL = 6 (a). The inner and outer radii of a 

multishell are r0 = 100 nm and r6 = 130 nm, respectively. Phonon dispersion curves for 

non-torsional (b) and torsional (c) waves. 

A larger number of dispersion curves in multishells with six shells emerge within the same interval 

of energies and wave vectors as for multishells with four shells in Figure 4 and even more so for 

multishells with two shells in Figure 2. Dispersion of the phonon group velocity for the lowest 

dispersion curves in Figure 6 is represented in Figure 7 (see Figure A3 for a detailed graph).  

 
(a) 

Figure 7. Cont. 
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(b) (c) 

Figure 7. Phonon group velocity dispersion curves for n = 0, NL = 6 (a). Phonon group 

velocity dispersion curves for non-torsional (b) and torsional (c) waves. 

5. Geometric Effects in the Phonon Dispersion and Group Velocities for  

Different Numbers of Layers  

For the axially-symmetric waves (n = 0), as follows from Figures 2, 4 and 6, the lowest group of the 

phonon dispersion curves, containing one torsional and two non-torsional modes, at the small wave 

vectors ζ is only slightly changed by the number of layers NL. In the same region of wave vectors, the 

second, consisting of one torsional and one non-torsional modes (the third, consisting of one torsional 

and two non-torsional modes) group of the phonon frequencies  significantly decreases from  

0.57 (1.17) for NL = 2 to 0.29 (0.57) for NL = 4 and 0.19 (0.38) for NL = 6. Within the numerical 

accuracy, the decrease of the phonon frequencies in the long-wave limit is inversely proportional to 

NL. Away from the long-wave limit, a general trend of “compression” of the phonon energy spectrum 

towards lower values of phonon frequencies persists. 

As seen from Figures 3, 5 and 7, the phonon group velocity related to the fundamental (lowest) 

torsional mode is a weakly varying function of the wave vector ζ, while for the higher torsional modes 

it monotonously increases with the wave vector ζ, apparently towards a saturation. For a fixed value  

ζ = 0.05, the phonon group velocity related to the lowest (second lowest) torsional mode depends on 

the number of layers NL as follows: 1.17 (0.13) for NL = 2; 1.17 (0.27) for NL = 4; 1.17 (0.37) for  

NL = 6. Within the numerical accuracy, the increase of the phonon group velocity for the second lowest 

torsional mode is directly propotional to NL.  

The phonon group velocity related to the lowest two non-torsional modes is a weak function of the 

wave vector ζ, while for higher torsional modes it always strongly depends on ζ. For the same fixed 

value ζ = 0.05 as above, the phonon group velocity related to the lowest (second lowest and third 

lowest) non-torsional mode depends on the number of layers NL as follows: 0.75 (2.02 and 0.43) for  

NL = 2; 0.75 (1.98 and 0.82) for NL = 4; and 0.78 (1.94 and 1.06) for NL = 6. Within the numerical 

accuracy, the phonon group velocity for the third lowest torsional mode reveals a sublinear dependence 

on NL. 
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Finally, in order to clearly vizualize the overall impact of the number of layers in a multishell on the 

group velocity dispersion, the average and rms phonon group velocities are calculated for the branches 

available from the results of the previous section. The results, shown in Figure 8, demonstrate that an 

increase of NL from two to four leads to an appreciable decrease of the average and rms phonon group 

velocities. A further increase of NL from four to six has a smaller impact on the average and RMS 

phonon group velocities. For the wave vector ζ = 0.05, the average phonon group velocity decreases 

from 0.82 for NL = 2 to 0.54 for NL = 4 and further to 0.53 for NL = 6. At the same time, the RMS 

phonon group velocity is reduced from 0.95 for NL = 2 to 0.71 for NL = 4 and further to to 0.65 for  

NL = 6. At small wave vectors the trend persists: the average and RMS phonon group velocities 

decrease with increasing NL. 

 

Figure 8. Average (left) and rms (right panel) phonon group velocity dispersion curves for 

n = 0 at NL = 2, 4, and 6. 

6. Conclusions  

We established a possibility of efficient engineering of the acoustic phonon energy dispersion in 

multishell tubular structures produced by a novel method of self-assembly of micro- and  

nano-architectures. A dependence on the number of layers in a multishell structure is a manifestation 

of geometric effects on phonon energy spectrum. Such geometric effects are features pertinent to 

acoustic metamaterials and phonon crystals. Based on the calculated energies, the phonon confinement 

effects should be directly observable using Brillouin spectrometry. The changes in the acoustic phonon 

spectrum affect phonon transport and can be experimentally detected in thermal conductivity 

measurements. The reduction of the phonon group velocity and phonon thermal conductivity can be 

achieved without significant roughness scattering and degradation of electron transport. Our results 

suggest that arrays of rolled-up multishell tubular structures are prospective candidates for 

advancement in thermoelectric materials and devices.  
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Appendix 

Figures A1–A3 represent the detailed phonon group velocity for the wavevector window [0, 0.5]. 

Step-like features provide a measure of precision for the exploited numerical procedure of solving the 

boundary problem of Equations (1–5). 

 

Figure A1. Detailed phonon group velocity dispersion curves for n = 0, NL = 2. 

Denotations of non-torsional and torsional modes are the same as in Figure 2. 

 
(a) (b) 

Figure A2. Detailed phonon group velocity dispersion curves for n = 0, NL = 4 for  

non-torsional (a) and torsional (b) waves. 
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(a) (b) 

Figure A3. Detailed phonon group velocity dispersion curves for n = 0, NL = 6 for  

non-torsional (a) and torsional (b) waves. 
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