
 

Appl. Sci. 2015, 5, 1904-1921; doi:10.3390/app5041904 
 

applied sciences 
ISSN 2076-3417 

www.mdpi.com/journal/applsci 

Article 

Thermal Lattice Boltzmann Simulation of Entropy Generation 
within a Square Enclosure for Sensible and Latent  
Heat Transfers  

Alissar Yehya 1,2 and Hassane Naji 1,2,* 

1 Laboratoire Génie Civil et géo-Environnement (LGCgE, EA 4525), University of Artois,  

Béthune F-62400, France; E-Mail: alissar.yehya@gmail.com 
2 Laboratoire Génie Civil et géo-Environnement (LGCgE, EA 4525), Lille University Northern 

France, Lille F-59000, France 

* Author to whom correspondence should be addressed; E-Mail: hassane.naji@univ-artois.fr;  

Tel.: +33-3-2163-7141 or +33-6-1126-7983; Fax: +33-3-2163-7101. 

Academic Editor: Takayoshi Kobayashi 

Received: 7 November 2015 / Accepted: 8 December 2015 / Published: 17 December 2015 

 

Abstract: This paper deals with the numerical simulation of heat transfer and entropy 

generation in a 2D square enclosure for convective melting. A thermal lattice Boltzmann 

method (TLBM) is used to handle the study, which has been conducted for Prandtl 

numbers from 0.02 to 70 at Rayleigh numbers of 104 and 105. The results are presented in 

terms of the total entropy generation, average Bejan number and average Nusselt number. 

Within the range considered for the key parameters, the entropy generation is found to be 

controlled by the heat transfer loss for low Prandtl numbers. However, for the large Prandtl 

numbers, its variation is dominated by shearing losses. Moreover, the presence of the latent 

heat state decreases the overall thermodynamic losses while increasing the quantity of  

heat transferred. 

Keywords: thermal lattice Boltzmann method; entropy generation; natural convection; 

phase change; melting; Bejan number 
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1. Introduction 

Convective flows have been widely investigated for various applications in engineering, such as 

heat exchangers, drying processes, solar collectors, nanofluids, etc. With the recent development and 

interest in nano-fields, studies on convection were extended to include electrohydrodynamic and 

magnetohydrodynamic convection flows [1,2], besides natural convection, which is widely treated in 

the literature. Despite this, natural convection problems [3,4] are still of considerable interest in many 

applications, especially in heat transfer systems. 

In natural convection problems, hydrodynamic and thermal mechanisms are coupled and strongly 

affected by the fluid thermo-physical properties and the temperature gradients present in the system. 

Thermal gradients, shearing, phase changes, chemical reactions, etc., are irreversible processes that are 

frequently encountered in thermodynamic systems. They are generally provoked by losses emanating 

from two main causes: the transmission of heat through a limited temperature difference and the 

pressure drop caused by friction [5]. The sum of all of these losses induces what is called the entropy 

generation within the system. Therefore, design criteria and optimum efficiency for thermodynamic 

systems can be obtained by analyzing the entropy production. Therefore, this production should be 

better understood [6]. Indeed, the quest for deeper understanding of the entropy generation in 

enclosures has been underway for a long time and gave rise to fruitful research. However, up to date, 

studies involving entropy generation during phase changes remain sparse. All of this motivates this 

paper to perform the current research. Concerning entropy generation in natural convection, one can 

quote the works of Magherbi et al. [7], Abu-Hijleh et al. [8], Mahmud and Island [9] and  

Ellahi et al. [10], among others. 

The main aim of the present work is to study the entropy generation during melting with natural 

convection in a cavity via a numerical simulation. Here, we intend to analyze variations of the entropy 

generation in relation to the relevant parameters of the study, namely the Rayleigh number, the Prandtl 

number and the irreversibility’s coefficient. With this parametric study, we seek to deepen our 

understanding of these mechanisms to better assess the performance of the considered system. The 

objective here is to depict the effect of the presence of a phase change on the variation of entropy 

generation. Note that any achieved decrease in the total entropy production would give a further 

advantage of the use of latent heat over the sensible heat in mechanical systems. Furthermore, given that 

the analysis of the entropy production was used as a thermodynamic optimization tool, it seems advisable, 

hence, to give a new perspective based on the second law of thermodynamics to the heat transfer. 

To perform simulations of heat transfer with convection and phase change, we use the single 

relaxation lattice Boltzmann model (SRT-LBM). This approach is a discrete particle-based method that 

numerically solves the Boltzmann equation as opposed to conventional methods that are based on the 

Navier-Stokes (NS) equations. Its principle is to assign a distribution function (DF) that provides the 

probability to find a pseudo-particle at a position with a given velocity [11]. However, its extension to 

flows with heat transfer is not straightforward due to the numerical instabilities engendered. In the 

thermal lattice Boltzmann method (TLBM), a separate DF is used to solve for the temperature [12,13]. 

In other words, two sets of distribution functions are defined, one for the velocity field and the other 

for the temperature. Thereby, such an approach can easily handle arbitrary Prandtl numbers. This 

double distribution function (DDF) approach has been successfully used to solve thermal problems in 
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two dimensions [3,14]. Nevertheless, it only applies when the fluid density depends weakly on the 

temperature. This is the approach we have adopted here to conduct this work. However, to simulate the 

phase change process, the partial bounce-back approach was employed, with a modification of the 

velocity field to mimic the solid, liquid and mushy zones. This approach is considered an enhancement 

of the existing models based on the full bounce-back approach [15,16]. 

The layout of this paper is as follows. The problem description and mathematical formulation are 

introduced in Section 2. This is supplemented by the definition of local and total entropy generation 

and the Bejan number. Subsequently, the numerical model is outlined in Section 3. In this section, the 

TLBM method and related issues are briefly introduced and completed by the relevant equations and 

boundary conditions. Afterwards, in Section 4, a validation of the adopted numerical approach via 

available results has been performed. Section 5 presents and comments on our investigations for a 

range of relevant parameters, such as Rayleigh, Prandtl and the irreversibility’s distribution. Finally, 

some conclusions are drawn in Section 6. 

2. Problem Description and Formulation 

Figure 1a depicts the cavity and coordinate system along with the boundary conditions considered 

in this study. It concerns a 2D square cavity differentially heated with a width L and a height H. In the 

present study, we set L = H. The confined fluid in the cavity is assumed incompressible and 

Newtonian, and the flow occurring inside is laminar. The Cartesian coordinate system is labeled (x, y) 

of which the x-axis is horizontal and the y-axis upwardly directed in the direction opposite gravity. 

During the numerical simulation process, the lower and upper walls are assumed perfectly insulated 
(adiabatic), and the two vertical walls are isothermal and held at uniform temperatures hT  and cT   

( hT  > cT ). 

(a) (b) 
Figure 1. Schematic view of the differentially-heated square cavity with initial and 

boundary conditions (a) Natural convection (no melting); (b) melting with convection. 

Recall that the temperature difference between the vertical sides produces a temperature gradient in 

the cavity and a consequent density difference that induces a fluid motion, that is the convection. In 
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addition, all thermo-physical properties of the fluid are assumed constant, except the density, which 

varies in so far as the Boussinesq’s approximation is respected. When dealing with convection melting, 

Figure 1b shows the solid-liquid phase change problem, also called the melting by convection 
problem. The left vertical side is kept at hT  with h mT T> , mT  being the melting temperature. As for the 

right side, it is kept at ( )c mT T= . Meanwhile, the top and bottom sides remain adiabatic. Initially, the 

medium is in a solid state at mT . 

2.1. Mathematical Model 

To solve the entropy generation problem due to natural convection under the conjectures stated 

above, the governing equations, in the transient state, are the following: 

. 0U∇ =


 (1)

( )2
0

D
ν β

D ρ

U p
U T T g

t

 
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where ∇  is the nabla operator, /D DT  is the material derivative, ( ),U U V


 is the velocity vector, p  is 

the pressure, T  is the temperature, 0T  is the reference temperature ( ( ) / 2)h cT T= + , ρ  is the fluid 

density, ν  is the kinematic viscosity, β  is the thermal expansion coefficient, α  is the thermal 

diffusivity, g


 is the gravity downward and 
ε

( )f
h

p

L
S

c t

∂=
∂

 is the latent heat term (source or sink),  

ε  being the liquid fraction. Note that this quantity is negative for melting, positive for solidification 

and zero in the absence of a phase change. 

To cast the above equations in a dimensional form, we employ the following  

dimensionless variables: 
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Equations (1)–(3), which govern the convective melting problem, then take the following 

dimensionless form: 
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2 1D
ε /

D

T
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t
−= ∇ − ∂ ∂

  
  (7)

where the symbol ( ) indicates that the quantity concerned is dimensionless and Y

  is the dimensionless 

vertical direction. Therefore, this problem involves the Prandtl number, the Rayleigh number and the 
Stefan number, defined by Pr ν / α= , 3β( ) / νh cRa g T T L= − α , ( ) /p h c fSte c T T L= − , respectively. 
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These equations are subjected to the following boundary (BCs) and initial conditions (ICs): The 

non-slip boundary condition for the hydrodynamic problem is applied at all cavity walls. For the 

thermal problem, the hot wall was kept with 0.5T =  and the cold wall with 0.5= −T . As for 

horizontal sides, the Neumann boundary condition (zero heat flux) is applied, i.e., / 0.0T Y∂ ∂ = . In the 

cavity, the initial conditions (ICs) are as follows: zero for the velocity field and 0.5T = −  for the 

temperature field. 

2.2. Entropy Generation 

It should be noted that the entropy production in a system is a key thermodynamic parameter that 

can improve the performance of such a system. In other words, the determination of this parameter is 

used to analyze the total losses and, hence, to propose an optimization procedure. In the natural 

convection process, the entropy generation is associated with the heat transfer and with the fluid 
friction. According to Bejan [17], the local entropy generation ( loS ) can be expressed as: 

( )2

2
0 0

2μ
lo ij ij

k
S T S S

T T
= ∇ +  (8)

where k  is the thermal conductivity of the fluid, μ  is the dynamic viscosity and ijS  is the rate of the 

deformation tensor. In this expression, the first term (right-hand) is due to the heat transfer ( ,l hS ), 

while the second term is due to the viscous effects of the fluid ( ,l dS ). A dimensionless form of their 

expressions can be obtained as follows: 

, ,lo l h l dS S S= +    (9)
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Explicitly, ,l hS  and ,l dS can be expressed as: 
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(10b)

Here, 0T  is ( ) / 2h cT T+ ; ijS  is the dimensionless deformation rate; and φ  ( , ,/l d l hS S=   ) is the 

irreversibility distribution ratio [6] that informs about the relative importance of the two mechanisms 
of irreversibility, i.e., ,l dS  and ,l hS . A further parameter that reflects the irreversibility distribution is 

the average Bejan number ( Be ) defined as [6,7]: 

,Be l h

lo

S

S
=

  (11)
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Therefore, Be 0.5>>  indicates the dominance of the heat transfer irreversibility; Be 0.5<<  reflects 

the dominance of the fluid viscous effects; and Be 0.5=  means that the two phenomena do  

not compete. 
The dimensionless total entropy generation ( TS ) is obtained via the integration of the local entropy 

generation ( loS ) throughout the entire domain, namely: 

T loV
S S dv=    (12)

For the sake of clarity, henceforth, we will omit any symbol indicating dimensionless quantities. 

3. Numerical Model 

3.1. Thermal Lattice Boltzmann Equations 

The TLBM consists of simulating the statistical behavior of a set of particles on a lattice with finite 

velocities. It stems from the discrete Boltzmann equation and allows providing macroscopic fluid 

properties, such as density, velocity, pressure, etc., through weighted averages, or moments, of the 

particle distribution for all discrete lattice velocities. The SRT-LBM (also called the  

Bhatnagar-Gross-Krook (BGK) model) for incompressible thermal flows builds on two distribution 
functions (DFs), if  and ig , and their corresponding evolution equations [18,19]. As such, these are 

given here (Equations (13) and (14)) in the form of two steps, which are collision and streaming 

(advection) processes: 

( ) ( ) ( ) ( )( )1, 1 , , , Boussinesq force effecteq
i i i f i if x e t f x t f x t f x t−+ + = − τ − +  (13)

( ) ( ) ( ) ( )( )1, 1 , , ,eq g
i i i h i i hg x e t g x t g x t g x t S−+ + = − τ − +  (14)

where ie  is the microscopic particle velocity in the i -direction, fτ  and hτ  are the dimensionless 

relaxation times and eq
if  and eq

ig are local equilibrium distributions functions that can be  

computed from: 

2
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are, respectively, the weight coefficient and the velocity vector of the D2Q9  model; ( ),u u v


 is the 

macroscopic velocity, with u  and v  representing velocities in the x - and y -directions, respectively. 

Note that the relaxation times fτ  and hτ  can be determined via ( )2 0.5lattice s fc tν = Δ τ −  and 

( )2 0.5lattice s hc tα = Δ τ − , sc  being the lattice sound speed. It should be noted that, the lattice viscosity 

and diffusivity are selected so as to conform to the intended Prandtl number Pr ( / )lattice lattice= ν α . 

Likewise, the additional force term related to Boussinesq force Fb is incorporated in the model by 
shifting the velocity field by a term of b fF τ ρ , as proposed by Shan and Chen [20], where 

bF  ( ) ( )( )0 / h cg T T T T= −β − − . By this treatment, there is no need to add a force term to the collision 

operator. On the other hand, in the g distribution function, the source term is treated as per the method 
proposed by Luo [21]. Hence, the resulting force in the LBM frame will be: g

h i hS S= −ω  with  

hS ( )1 /Ste t−= ∂ε ∂  being the source (or sink) term that handles the phase change. 

The liquid fraction ( ε ) is computed from [15,16]: 

0

1

s p m

s
s l s f

l s

l

h h c T

h h
h h h h L

h h

h h

< =
 −ε = ≤ ≤ = + −
 >

 (18)

where h  is the local enthalpy defined, at a time step j, by: ( )1j j j j
p fh c T L−= + ε − ε . 

It is useful to recall that in the current model, the solid and liquid phases are defined according to 

the liquid fraction value. Therefore, a mushy zone state is assigned when the value of ε is between zero 

and one. In this case, the velocity field is partially bounced back and the macroscopic velocity is 

modified as in Equation (19) [22]. The procedure of the implementation of the partial bounce-back 

approach is described in [23]. Note that, to implement BCs in the current method, we are led to convert 

them, at the mesoscopic level, in terms of the distribution function. 

3.2. Boundary Conditions 

In the LBM framework, implementing boundary conditions is a delicate task, because of the 
necessity of imposing conditions in terms of particle distributions if  and ig . 

For the velocity field, the non-slip boundary conditions are used for all four walls of the cavity. 

They are realized by the on-grid bounce-back (BB) boundary conditions. The procedure for this rule is 
to reverse the distribution function of the particle as ( , 1) ( , )i w j wf x t f x t+ = , where wx  is a fluid node 

adjacent to the wall, and i  and j  represent two opposite lattice directions on the boundary site. Note 

that the BB conditions apply to the DF in non-parallel directions at a solid wall. 

To specify a constant temperature at the left and right walls, we use the method proposed by 

Inamuro et al. [24]. Its principle is to substitute unknown DFs for a boundary point with local 

equilibrium values using an adjusted temperature to set the defined temperature at that point. 

Specifically, the adjusted temperature on the left side can be expressed as ( )
,

1
'

1 3 h k
w x

T T g
v

= −
−  , 

,w xv  being the computed near-wall velocity, and kg  represents a known distribution function. Hence, 
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the unknown DFs pg  are computed by 2' 1 . /p i i sg T e u c = ω + 


. As for the adiabatic BCs, the 

Neumann BCs are achieved using the BB boundary conditions for the distribution ig , as prescribed for if . 

3.3. Macroscopic Quantities 

Finally, the basic thermo-hydrodynamic properties, such as density, ρ , momentum density, uρ , and 

temperature, T , are defined as moments of the DFs, if  and ig , as follows, 

8

0

N

i
i

f
=

=

ρ = , 
8

0

N

i i
i

u e f
=

=

ρ = , 
8

0

N

i
i

T g
=

=

=  (19)

The velocity field is then modified in the mushy zone as, 

*u u= ε  (20)

This modified velocity is in accordance with the requirements of the partial bounce-back  

approach [23]. Accordingly, the flow in the mushy zone will be treated as flow in a porous medium 

and, thus, will be governed by the Darcy law, as proven by the derived analytical solutions in [23]. 

4. Model Validation 

The current model has been implemented to carry out the 2D natural convection and the melting 

with natural convection. The obtained results have been compared with selected models that have 

adopted the same LBM scheme: Huber et al. [15] and Jourabian et al. [16]. 

4.1. Melting with Convection 

4.1.1. Comparison with Similar LBM Schemes 

This subject was extensively treated in the literature with sound benchmarks presented in the works 

of Jany and Bejan [25] and Bertrand et al. [26], to name a few. However, for an LBM implementation, 

one can refer to the works of Miller et al. [27], Semma et al. [28] and, recently, Su and Davidson [29]. 

Note that our scheme is close to the bounce-back approach proposed by Huber et al. [15] and recently 

used by Jourabian et al. [16] to define the solid regime; however, our enhancement is to adopt a partial 

bounce-back approach rather than a full bounce-back. Hence, to check out our model, we resumed the 

convection melting problem handled in these references, keeping the same settings (see Table 1). Here, 

the key parameters governing this problem are the Stefan number, the Prandtl number, the Fourier 
number and the dimensionless time, whose definitions are: Ste ( ) /P h c fc T T L= − , Pr /= ν α , 

2/t t Lθ = = α  and ζ = Ste × θ, respectively. 

Table 1. The melting benchmark parameters as in [15,16]. 

Parameter Pr Ra Ste Grid 

Value 1 1.7 × 105 10 150 × 150 
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Figure 2 shows the average position evolution of the melting front mX  ( )0
/

H

mx dY H=   versus ζ , 

mx  being the position of the melting front at each value of Y . From this figure, it is obvious that our 

current model reproduces quite closely the results already reported [15,16]. In addition, the shape of 

melting fronts confirms the expected scaling theory proposed by Jany and Bejan [25]. 

As time proceeds, the upper portion recedes faster due to convection, while the lower part remains 
upright while being dominated by the conduction ( 0.05ζ =  of Figure 3). However, thereafter, the 

advection part expands to govern the entire height of the front ( 0.2ζ =  and 0.3  of Figure 3). At the 

end, a shrinking solid regime is attained as the front reaches the cold wall. 

 

Figure 2. The average position evolution of the melting front versus ζ . Comparison with 

the results of [15,16]. 

 

Figure 3. Position and shape of the melting front at different dimensionless times ζ . 

4.1.2. Comparison with Experimental Results and the Finite Volume Method 

To further check the model considered here, we conducted a comparison with the experimental 

results of Gau and Viskanta available for Gallium [30]. Moreover, we compared our results for the 

same problem (melting of a pure Gallium) with the finite volume method (FVM), based on the 

enthalpy-porosity approach, proposed by Brent et al. [31]. The considered problem seeks to examine 

the 2D melting of pure Gallium in a rectangular cavity heated from one side, while its other sides are 

adiabatic. The used parameters are gathered in Table 2. 
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Table 2. The melting benchmark parameters of pure Gallium [30,31]. 

Parameter Pr Ra Ste Aspect Ratio 
Value 0.021 6 × 105 0.039 H/L = 1.4 

In their work, Gau and Viskanta [30] presented detailed traces of the morphology of the melt front 

at various times. For the propagation of the melting front using this model, our obtained findings via 

the current model are compared to the results already published (see [30,31]). This comparison is 

exhibited in Figure 4. As inferred, our results are close to the experimental data, especially in the upper 

portion of the cavity. However, more discrepancy is exhibited in the lower portion. Thereby, this 

comparison demonstrates the effectiveness of the approach used here for the melting by  

convection problems. 

 

Figure 4. Position and shape of the melting front at selected times: (a) 2t =  min, (b) 6 min 

and (c) 10 min compared to [30,31]. 

4.2. Entropy Generation 

Unless otherwise stated, the entropy generation is computed by integrating the local entropy 

production over the whole simulation domain. To achieve this, we have considered the case already 

handled by Magherbi et al. [6]. Here, too, we have adopted the same parameters as those of these 

authors (see Table 3). Figures 5 and 6 depict temporal evolutions of the total entropy generation and 

the Bejan number, respectively. It should be noted that this latter parameter remains a constant for each 

simulation. As can be seen, our results match those of [6]. Note that these two parameters exhibit 

oscillations before reaching the steady state. To sum up, we can state that such a comparison verifies 

and validates the present model. 

Table 3. The entropy generation parameters as in [6]. 

Parameter Pr Ra φ ΔT 
Value 0.7 104 10−3 1.0 
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Figure 5. Total entropy production vs. dimensionless time θ  ( 2/t L= α ). 

 

Figure 6. Bejan number (Be) vs. dimensionless time θ . 

5. Results and Analysis 

It is useful to recall that the numerical prediction of heat transfer and entropy generation in a 2D 

square cavity is the main concern of this work. This has been performed for different Pr from 
2Pr 2.10−=  to Pr 70=  and at a fixed Rayleigh number ( 4Ra 10= ) with irreversibility distribution 

710−ϕ = . Figure 7a, b illustrates the evolution of TS , ,l dS , ,l hS  and Nu  (on the hot wall) according to 

the Prandtl number. A careful review of this figure shows that the effect of Pr  on ,l hS  and Nu  is 

obvious for low values of Pr . For small Pr  ( 1< ), the thermal boundary layer becomes very thin, 
indicating that the heat transfer irreversibility ( ,l hS ) is dominative in the vicinity of boundaries, 

although the inner part of the simulation domain is dominated by the fluid friction irreversibility. We 
find that ,l hS  decreases quite sharply until Pr 5= , from which it reaches its constant value, which stays 

up to 70. As for ,l dS , it remains insignificant until Pr 30= , from which it starts to increase 

substantially. Furthermore, the effect of Pr on ,l hS  is more significant for the range of 0.02 Pr 30< < . 

Beyond Pr 30= , the effect of Pr  on ,l dS  becomes very important. This is well reflected in Figure 8, 

where we plot the influence of the Bejan number versus Pr . On the other hand, the Nu  varies 
inversely to ,l hS , especially in the case of low Pr . This shows that an enhanced heat transfer 

coefficient contributes to decreasing losses in the system. 
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(a) (b) 

Figure 7. (a) TS , ,l hS , ,l dS  and Nu  vs. Pr ; (b) zoom on TS , ,l hS , ,l dS  and Nu  vs. Pr  (= 0.02 till 10). 

 

Figure 8. Bejan number vs. Prandtl number. 

In what follows, we focus on the transient entropy generation with phase change. It is well known 

that during melting, the material undergoes an isothermal phase with a release of latent heat. Here, we 

ask the question about the effect of this phenomenon on the evolution of the generation of entropy 

through time. For this purpose, two models with different Pr  have been investigated. Following this 

simulation, a comparison of the losses between the transfer of sensible and latent heat is carried out. 

Single-Phase and Solid-Liquid Phase Change with High Prandtl Number 

To investigate the effect of phase change on the entropy generation, we conduct the simulations on 

octadecane, whose parameters are summarized in Table 4. Octadecane is known for having a relatively 

high convective coefficient. This increases the heat transfer and the fluid velocities. The generation of 

latent heat during the melting process increases the energy stored in the system. However, we will 

investigate whether this is provoked by an increase or decrease in the total entropy generation. 

Table 4. The simulation parameters of Octadecane. 

Parameter Pr Ra φ Ste (Figure 1b) 
Value 50 104 − 105 10−5 1.0 
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Figures 9 and 10 show the temporal evolution of the entropy generation during heat transfer with no 

phase change (the problem described in Figure 1a). Here, these quantities further exhibit oscillations 

due to the high value of Ra  before reaching their asymptotic values. Such behavior is due to boundary 

conditions [3]. At first, the isotherms are almost vertical and parallel to the walls since the heat transfer 

is dictated by the conduction. As time passes, the advection mode becomes more dominant and distorts 

isotherms, inducing vertical temperature gradients. This will result in a decrease in horizontal 

temperature gradients, which eventually become locally negative. Consequently, the central streamline 

elongates to give rise to a second eddy. Thus, for smaller Rayleigh numbers, the steady state is 

sufficiently close to the equilibrium state, allowing the system to return towards the steady state. 

Thereby, Prigogine’s theorem of minimum entropy production is satisfied. However, for larger Ra ’s, 

the equilibrium state being relatively far, the system oscillates increasingly. Note that this finding has 

already been reported by Magherbi [6]. 

 

Figure 9. Entropy generations with no phase change (problem in Figure 1a) for Pr 50=  and 5Ra 10= . 

 

Figure 10. Entropy generations with no phase change (problem in Figure 1a) for Pr 50=  

and 5Ra 10= . 

We also observe that the steady state is reached sooner at larger Ra  (Figure 10), whereas at lower 

Ra  (Figure 9), oscillations of transient entropy generation are both apparent and smooth. This is due 

to the effect of the heat transfer coefficient. For more information on this, we plot in Figures 11 and 12 

the Nusselt number (Nu) versus the dimensionless time for the cases of 4Ra 10=  and 510 . The rate of 
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variation of Nu affects the losses due to heat transfer. However, the increase of Nu values at steady 

state has a significant effect on the fluid velocities and, hence, fluid friction losses. Figure 13 shows 

the Nusselt number (Nu) versus the different values of (Ra). We deduce that somewhere after  
4Ra 10= , the heat transfer coefficient at steady state increases dramatically. This leads to higher fluid 

velocities and, therefore, higher fluid friction losses, as revealed in Figure 10. 

Figure 14 shows the temporal variation of the entropy generation in the case of melting with 

convection. Note that the entropy generation oscillates at the beginning with about a 25% decrease 

compared to the case of heat transfer with no phase change. Nevertheless, at the steady state, the total 

entropy generation decreases by more than 50% with the presence of phase change and latent heat 

dissipation, as illustrated in Figure 14. This is also justified by tracing the Nu versus time in Figure 15. 

The values of Nu decrease in comparison with the case of no phase change. The reason for that is that 

the fluid volume increases with time as the melting front recedes. Here, we note that, in reality, we can 
define a Rayleigh number at each time step depending on the position of the melting front ( mX ) by 

( )3
Ram mg T X= β Δ αν . 

 

Figure 11. Nu versus dimensionless time (see Figure 1a) for Pr 50=  and 5Ra 10= . 

 

Figure 12. Nu versus dimensionless time (see Figure 1a) for Pr 50=  and 5Ra 10= . 
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Figure 13. Variation of Nu with Ra (problem in Figure 1a) for Pr 50= . 

 

Figure 14. Entropy generation for melting with convection (problem in Figure 1b) for 

Pr 50=  and 5Ra 10= . 

 

Figure 15. Nu versus dimensionless time (problem in Figure 1b) for Pr 50=  and 5Ra 10= . 

It also can be stated that, as the melting interface proceeds, the total entropy generation keeps 

decreasing until reaching a stable state. This is likely due to the relatively low diffusivity, where the 

system exhibits higher losses due to the small distance between temperature gradients at the beginning 

of the melting, as illustrated in Figure 16. 
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Figure 16. Entropy generation versus mX  during latent heat transfer with Pr 50=  and Ra = 105. 

6. Conclusions 

This study deals with the analysis of entropy generation during natural convection within a 

differentially-heated cavity. In this process, the entropy generation for sensible and latent heat transfers 

has been investigated at different Prandtl numbers via a thermal lattice Boltzmann method. The 

influences of the Rayleigh number, the Prandtl number and the irreversibility distribution on the 

entropy generation are assessed. Within the range considered for the key problem parameters, it is 

shown that entropy generation is controlled by the heat transfer losses for low Pr . However, for large 
for large Prandtl numbers, the variation of TS  is dominated by ,l dS , because ,l hS  has reached its 

asymptotic value. In addition, it turned out that the increase of the Rayleigh number is required to 

ensure better heat transfer. Yet, the system will be prone to more losses. Likewise, a suitable choice of 
the Rayleigh number ( Ra ) and the irreversibility distribution ( ϕ ) will permit getting an indication of a 

possible optimum design of the enclosure. Moreover, the presence of the latent heat state decreases the 

overall thermodynamic losses while increasing the quantity of heat transferred. 
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