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Abstract: We present an improved line search method of the carrier frequency offset
(CFO) estimate technique for OFDM systems aided with pilots. Unlike the conventional
approaches, prior knowledge of channel order is unnecessary for the presented scheme,
because we apply an interpolation technique for obtaining the extended channel frequency
response. The search mechanism of the proposed approach is primarily based on the criterion
that CFO can be found by discovering the frequency that achieves the minimum value of
the well-defined channel residual energy. In addition, we substitute the line search method
with an iterative approach to reduce the proposed estimator’s complexity. Analytical and
simulation results have been conducted to verify the efficacy of the proposed schemes in
this paper.
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1. Introduction

In wireless communications, the carrier frequency offset (CFO) [1,2] is primarily caused when the
frequencies of the oscillators between the transmitting and receiving ends do not match or there is
a Doppler frequency shift that is proportional to the carrier frequency, as well as to the moving speed
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of the mobile unit. For orthogonal frequency division multiplexing (OFDM) systems [3,4], the quality
of the signal transmission is liable to degrade in the case of the existence of CFO. This is because
CFO destroys the orthogonality between the subcarriers and, thus, brings about the signal distortion in
OFDM systems. Since multi-carrier systems are very sensitive to the subcarrier synchronization error,
it is essential to provide an accurate estimation for compensating the CFO. Otherwise, it is difficult to
develop an OFDM system that is able to meet the elementary requirement of acceptable communication
link quality. Therefore, CFO estimation for OFDM attracts much attention and is an active area
of research.

In the past, a number of works (e.g., [1–17]) have been devoted to the CFO estimation techniques.
The least square (LS) criterion is used in [8] for CFO estimation. Hebley [7] presented a CFO estimator
based on the maximum-likelihood (ML) criterion while assuming the training sequences and channel
statistics are known. In [9], the ML criterion is further employed for the joint estimation of channel
and CFO. In [1,10,11], CFO estimators were developed using a training sequence with two or multiple
identical components. By using one OFDM symbol with M identical components, the CFO estimation
scheme in [11] expands the estimation range to M subcarrier spacing for reducing the implementation
cost, since the wider the estimation range is, the lower the precision of the employed oscillator will be.
However, the expense of the scheme [11] is the increase of the computational complexity, especially
for a large M . The estimation range can be further expanded by using one more OFDM symbol [12]
while sacrificing the transmission efficiency. The CFO estimation algorithms with the cyclic prefix
(CP) technique [13], which either use a special training sequence [14] or a pilot signal [15], have been
presented. One of the most commonly used is to employ the subspace estimation algorithm of the
singular value decomposition (SVD) [16] and the ML criterion [17]. On the other hand, it is commonly
assumed that the channel side information is unavailable to the CFO estimator, and CFO estimation can
also be reached by employing the inherent structure of OFDM signals. This is generally categorized
into the field of blind approaches. For instance, the ML-based CFO estimator is implemented by using
correlation operations, as the training signals are periodic and unknown [1,10]. The blind CFO estimation
has received a great amount of attention because of its bandwidth efficiency. However, the blind schemes
degrade in performance significantly, especially when the length of the channel impulse response is large.
In practice, many channel estimation and space-time coding schemes [18] require the channel statistics
information. For these systems, the availability of channel statistics information can be expected for
CFO estimation in OFDM.

The objective of this paper is to present a CFO estimation technique, which is aided with pilot
symbols, for OFDM transmission. The results obtained from this novel approach would provide two
major contributions. For the traditional line search methods of CFO, it is often assumed that the
channel order is known prior to the CFO estimate. However, this assumption may not be realistic,
while the channel characteristic is difficult to be acquired promptly. First, we discard the assumption
and modified the traditional CFO line search method by introducing an interpolation technique to
attempt reconstructing full-dimensional channel frequency responses for an OFDM system with pilots.
We derived the theoretical analysis in this study and reached some beneficial statistics of the estimation
scheme. Based on these obtained analytical results, it can be found that the CFO estimate criterion
is equivalent to discovering the frequency that achieves the minimum residual channel energy (CRE).
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Secondarily, we efficiently reduced the implementation complexity of the proposed CFO estimator by
means of developing a simplified scheme without using the exhaustive CFO search method. Such a
scheme allows the estimator to need less amount of computation during the data process than that
required by a conventional line search approach. In spite of providing a lower complexity than that
of a conventional technique, the alternative scheme operates at the expense of a little amount of estimate
accuracy loss. Therefore, we further applied an iteration technique to compensate the estimate accuracy
loss, which results from the necessary approximation in the analytical process of the estimate statistics.

The organization of the rest of the paper is as follows. Section 2 depicts the mathematical models
for the received data while considering the presence of CFO and provides an essential review of the
conventional estimate approach presented by Chung [19]. In Section 3, we first propose an improved
search-based CFO estimator while assuming the channel order is not reached. Next, an iterative
algorithm is presented to reduce the computational complexity of the proposed estimator. To have a clear
insight of how much complexity can be saved, numerical comparison of the computational complexities
among all of the concerned schemes is also included in this section. In Section 4, we provide the
computer simulation results to demonstrate the performance advantages of the proposed schemes over
Chung’s approach. Finally, the conclusion is reported in Section 5.

The notations used in this paper are defined as followed: vectors (matrices) are typed with boldface
letters. In, Om×n and 0n represent an n×n identity matrix, anm×n all-zero matrix and an n×1 all-zero
vector, respectively. Da is a diagonal matrix with the diagonal entries taken from the vector a. (·)∗, (·)T ,
(·)H and Tr{·} the complex conjugate, transpose, Hermitian transpose and trace operations, respectively.
The (i, j)-th entry of matrix A is denoted by [A]ij . In addition, <{·}, E{·} and ‖ · ‖ denote the real part
of a complex number, the taken ensemble average and the Frobenius norm operator, respectively.

2. Signal Model

For a classical OFDM system, we consider that it has a total bandwidth composed of N subcarriers
and employs the technique of pilot-based signal correction, in which quadrature amplitude modulation
(QAM) transmission is utilized over multipath fading channels. Let the total K pilot symbols and
(N − K) data symbols be modulated each by an individual subcarrier, such that the inter-carrier
interference is absent. The modulated symbols X are processed by the inverse fast Fourier transformer
(IFFT), and then transformed into the time-domain signals obtained by x = FHX, where F ∈ CN×N

denotes the FFT matrix with the (k, l)-th entry being ej2π(k−1)(l−1)/N/
√
N . For a channel of maximum

delay spread L, the OFDM symbol requires a cyclic prefix (CP) of length Ng ≥ L so as to eliminate the
inter-symbol interference (ISI). After the CP is removed at the receiver end, the received OFDM symbols
are then FFT processed. In the presence of CFO, the received symbol block is given by:

R = FDa(εd)F
HDXFh + W

= FDa(εd)F
HDXH + W

(1)

where εd is the related frequency offset normalized to subcarrier spacing and the diagonal matrix Da(εd)

represents the CFO effect with a(εd) = [1, ej2πεd/N , · · · , ej2(N−1)πεd/N ]T . The channel impulse response
is given by h = [h(0), h(1), · · · , h(L),0TN−L−1]T , and the N × 1 vector H = Fh is the channel
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frequency response (CFR). W denotes the complex white Gaussian channel noise, which is assumed
to be independent of the transmitted data.

The channel estimation (CE) aims at extracting H/h from the received data in Equation (1).
We briefly review the pilot-based CE technique, which is widely used because of its simplicity. Let
the k-th pilot symbol be modulated on the ck-th subcarrier where k = 0, 1, ..., K − 1. Stacking all of the
K entries in order yields a K × 1 vector RP , which is expressed by:

RP
∆
=
[
Rc0 Rc1 · · · RcK−1

]T
= SR

= SFDa(εd)F
HDXH + SW

(2)

where the K ×N matrix S = [ec0 , ec1 , · · · , ecK−1
]T , with ek being the k-th column vector of an N ×N

identity matrix IN . Based on the pre-known pilot symbols, the CFR estimate associated with the pilot
symbols can be written by:

ĤP = D−1
XP

RP

= D−1
XP

SFDa(εd)F
HDXH + D−1

XP
SW

(3)

where XP = SX is the data vector associated with the corresponding pilot symbols. Clearly, when CFO
is absent (εd = 0), we have Da(εd) = IN , which allows the CFR to be successfully estimated. When the
input signal-to-noise ratio (SNR) is sufficiently large, the estimated CFR reaches:

ĤP = SH + D−1
XP

SW

≈ SH
(4)

However, in mobile environments, CFO usually exists due to Doppler shift and/or mismatch between
the transmitter and receiver oscillators. Even though the CFO is very small, the estimator provided by
Equation (3) may not work properly. To relieve the impact on the system performance caused by CFO,
a variety of approaches have been proposed in the past. Let us consider a typical example, which employs
redundant pilot symbols to perform CFO estimation [19]. Recall that the desired channel response with
a channel length of L can be modeled by h = [h(0), h(1), · · · , h(L) 0TN−L−1]T , where h(i) 6= 0,

i = 0, 1, .., L and the other entries are all zeros. For the estimated channel response ĥ, the last N −L−1

entries of ĥ are negligible, because they are essentially induced by the channel noise while CFO is absent.
Else, the magnitudes of these entries increase with the value of CFO. That is, the minimization of the
energy composed of the last N − L− 1 entries of ĥ can be regarded as a useful criterion for estimating
the CFO. The procedure of Chung’s algorithm [19] is summarized as follows:

(1) Compute the CFO-compensated data:

R̃(ε) = FDH
a(ε)F

HR (5)

(2) Compute the CFR estimate of pilot symbols according to Equation (3):

ĤP (ε) = D−1
XP

SR̃(ε) (6)

(3) By operating K-point inverse discrete Fourier transform (IDFT), the time-domain channel response
estimate of size K is given by:

ĥChung(ε) = SFHST ĤP (ε)

= SFHSTD−1
XP

SR̃(ε)
(7)
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(4) Compute the energy of the last K−L− 1 entries of ĥChung(ε), which is termed the channel residual
energy (CRE), defined by:

f(ε) =
∑K

j=L̂+2

∣∣∣[ĥChung(ε)]j∣∣∣2
=
∣∣∣J ˆhChung(ε)

∣∣∣2 (8)

where J = [O(K−L̂−1)×(L̂+1), IK−L̂−1] and L̂ is the estimate of the channel order L.
(5) Determine the CFO estimate in accordance with:

ε̂d = arg minε f(ε)

= arg minε

∥∥∥JFH
KD−1

XP
SR̃(ε)

∥∥∥2 (9)

where FK denotes the first K columns of F.

In spite of proving good performance, Chung’s method deteriorates in performance while L is not
correctly estimated. Under the condition of L̂ > L, although the last few entries of ĥChung(ε) may be
very small, they result in estimation errors. On the other hand, this scheme fails to provide acceptable
performance when L̂ < L. How to correctly estimate the channel order is a critical challenge for Chung’s
algorithm. What is worse is that this method breaks down as the number of pilot symbols, K, is less than
or equal to the channel order. In addition, the searching granularity for εd in Equation (9) is given by
a heuristic approach, which involves the trade-off of estimate accuracy and computational complexity.
For these considerations, in the next section, we will present a robust CFO estimator for a pilot-based
OFDM system while avoiding these unfavorable factors.

3. Robust Low-Complexity CFO Estimator

In this section, we develop a robust CFO estimator whose computational complexity is greatly
improved. Especially, the proposed CFO estimator is able to promise a reliable performance without
knowledge of the channel order L. To this end, we apply the CP length, Ng, to compute the CRE
instead of L. In spite of avoiding dealing with the estimation of L, the proposed CFO estimator cannot
work properly in a channel with a long delay spread. This is because that large channel order results in
the degree-of-freedom deficiency problem while computing the CRE. Fortunately, here, we present the
reconstruction of a full-dimensional CFR of size N by imposing the interpolation technique on the CFR
of the pilot symbols.

3.1. Proposed Search-Based CFO Estimator

Let Q denote the N × K interpolation matrix. The linear interpolation is widely used, and for the
considered system, the N ×K matrix Q is given by:

Q =


q1 q2

q1 q2

. . . . . .

q1 q2

q1

 (10)
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where:
q1 = 1

N
× [N,N −K,N − 2K, · · · , 2K,K]T

q2 = 1
N
× [0, K, 2K, · · · , N − 2K,N −K]T

(11)

The full-dimensional CFR can be derived from Equation (3) and written by the expression:

Ĥ(ε) = QĤP (ε)

= QD−1
XP

SR̃(ε)
(12)

Applying N -point IFFT to ĥ, the full-dimensional time-domain channel response reaches:

ĥ(ε) = FHĤ(ε)

= FHQD−1
XP

SR̃(ε). (13)

Summing up the energy of the last N −Ng entries of ĥ(ε) in Equation (13), the CRE is given by:

f(ε) =
∑N

j=Ng+1

∣∣∣[ĥ(ε)]j

∣∣∣2
=
∥∥∥J̃FHQD−1

XP
SFDH

a(ε)r
∥∥∥2

= aT (ε)DH
r FHSTD−1

X∗
P
QHFJ̃T J̃FHQD−1

XP
SFDT

r a∗(ε)

= aH(ε)DrT
∗DH

r a(ε)

(14)

where:
J̃ =

[
O(N−Ng)×Ng , IN−Ng

]
T = FHSTD−1

X∗
P
QHFJ̃T J̃FHQD−1

XP
SF

r = FHR

DH
XP

= DX∗
P

(15)

Note that the last equation in Equation (14) holds since the CRE is a positive real number. Clearly, the
value of the expression Equation (14) achieves a minimum value when ε = εd. Thus, the CFO estimate
can be determined in accordance with the criterion shown below:

ε̂d = arg minε f(ε)

≡ arg minε aH(ε)DrT
∗DH

r a(ε)
(16)

From Equation (16), the choice of the granularity, ∆ε, involves the tradeoff between the estimator’s
performance and computational complexity. That is, decreasing ∆ε can improve the estimator’s
performance at the expense of additional computational complexity, which is proportional to ∆−1

ε + 1.

3.2. Performance Analysis

Since f(ε) is a function of the normalized frequency ε and the proposed criterion for determining the
CFO estimate is based on the minimization, which is expressed by Equation (16), the proposed criterion
is similar to that of the minimum variance distortionless response (MVDR) spectrum estimator [20].
Specifically, the CFO estimate ε̂d satisfies the condition:

ḟ(ε̂d) =
d

dε
f(ε)

∣∣∣∣
ε=ε̂d

= 0 (17)
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Let ∆ε = ε̂d − εd denote the error (bias) of the proposed estimator. Expanding the first-order Taylor
series of ḟ(ε) around εd, the approximation expression of ḟ(ε̂d) can be expressed as follows:

ḟ(ε̂d) ≈ ḟ(εd) + f̈(εd)∆εd

= 2×<
{
ȧH(εd)DrT

∗DH
r a(εd)

}
+ 2×<

{
ȧH(εd)DrT

∗DH
r ȧ(εd) + aH(εd)DrT

∗DH
r ä(εd)

}
∆εd,

(18)

where:
ḟ(εd) = 2×<

{
ȧH(εd)DrT

∗DH
r a(εd)

}
f̈(εd) = 2×<

{
ȧH(εd)DrT

∗DH
r ȧ(εd) + aH(εd)DrT

∗DH
r ä(εd)

}
ȧ(εd) = d

dε
a(ε)

∣∣
ε=εd

ä(εd) = d2

dε2
a(ε)

∣∣∣
ε=εd

(19)

Furthermore, substituting the following equalities:

Dra
∗(εd) = FHDXH + v

= s + v

Drȧ
∗(εd) = −Dȧ0(s + v)

Drä
∗(εd) = Dä0(s + v)

(20)

into Equation (18) yields the first and second derivatives of f(εd) in the form:

ḟ(εd) = (s + v)H(Dȧ0T−TDȧ0)(s + v)

= (s + v)HA(s + v)

f̈(εd) = (s + v)H [−2Dȧ0TDȧ0 + TDä0 + Dä0T] (s + v)

= (s + v)HΓ(s + v)

(21)

where, by definition,
s = FHDXH = FHDHX,

v = Dwa∗(εd)

w = FHW

ȧ0 = ȧ(ε)|ε=0

ä0 = ä(ε)|ε=0

A = Dȧ0T−TDȧ0

Γ = −2Dȧ0TDȧ0 + TDä0 + Dä0T

(22)

Recall that the estimate ε̂d is reached by minimizing the CRE, i.e., ḟ(ε̂d) = 0. Hence, the estimation
error ∆εd can be expressed by:

f̈(εd)∆εd = −ḟ(εd) (23)

It is not convenient to solve Equation (23) straightforwardly, because f̈(εd) depends on the received
signals. For sufficiently high SNR, the mean value of f̈(εd) is much larger than the root mean square
fluctuation of ∆εd, and we can reach a good approximation by replacing it with its expected value
obtained by [11]:

E{f̈(εd)} = E
{

(s + v)HΓ(s + v)
}

(24)
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Since the noise vector v is statistically equivalent to w, it follows that E{v} = 0 and
E{vvH} = σ2

nIN . Hence, Equation (24) can be rewritten as:

E{f̈(εd)} = sHΓs + σ2
nTr {Γ}

= sHΓs

= µ

(25)

where, by definition, µ = sHΓs. According to Equations (23) and (25), the estimation error (bias) is
easily shown as:

∆εd ≈ ḟ(εd)

E{f̈(εd)}

= µ−1(s + v)HA(s + v)
(26)

By taking expectation on the estimation error shown in Equation (26), we obtain the result:

E{∆εd} ≈ µ−1sHAs + µ−1E
{
vHAv

}
= µ−1sHAs + µ−1σ2

nTr {A}
= αµ−1

(27)

where α = sHAs. Using the fact of the Gaussian noise v and discarding the self-product term of the
noise, the mean square error is further expressed as:

E{(∆εd)2} ≈ µ−2
{
α2 + 2αE{vHAv}+ E{(sHAv + vHAs)2}

}
= µ−2

(
α2 + 2ασ2

nTr{A}+ σ2
ns
HAAs

) (28)

For high SNR, Equation (28) reduces to:

E{(∆εd)2} ≈ µ−2α2 (29)

3.3. Iterative CFO Estimator

Even though the proposed technique is shown to provide a reliable CFO estimate effectively, how to
reduce the implementation complexity is a real challenge, especially for an OFDM system that has a
large number of subcarriers. Here, we propose an efficient method to further improve the computational
complexity. In comparison with the traditional approaches, the presented scheme applies the Taylor
series expansion technique to simplify the optimum problem instead of using exhaustive search for
finding the minimum value in Equation (14). For a small ε, the CFO-driven diagonal matrix Da(ε)

can be approximated to a first-order Taylor series expansion expressed by:

Da(ε) ≈ IN + εDȧ0 (30)

Substituting Equation (30) into Equation (13), we have:

ĥ(ε) ≈ FHQD−1
XP

S
(
IN + εFDȧ0F

H
)

R (31)

According to Equation (31), we can approximate the CRE in Equation (14) as:

f(ε) ≈
∥∥∥J̃FHQD−1

XP
S
(
IN + εFDȧ0F

H
)

R
∥∥∥2

= rHTr + εrHAr− ε2rHDȧ0TDȧ0r
(32)
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The approximation in Equation (32) reveals that the optimum problem is simplified to a
one-dimension optimization by minimizing the CRE value. Clearly, it can be easily shown that the
optimal selection of ε̂d is derived as:

ε̂d =
rHAr

2× rHDȧ0TDȧ0r
(33)

Because the N × N matrix T is independent of the received data, it can be pre-determined while
performing the CFO estimation.

The above-mentioned method only works on the premise that Da(ε) is well approximated to
(IN + εDȧ0) if CFO is small enough, i.e., εd � 1. However, when εd does not satisfy the condition
of εd � 1, Equation (30) does not hold any more, and thus, we cannot obtain a reliable CFO estimate by
means of Equation (33). For this reason, it is important to find an alternative approach for enhancing the
robustness against CFO when εd is not small. Next, an iteration scheme is proposed instead. Specifically,
we use the current CFO estimate in Equation (33) to compensate for the received data in the next
iteration. Repeating the iterations and using the (j − 1)-th iteration result, denoted as ε̂(j−1)

d , along
with linear algebraic manipulations, the CFO estimate at the j-th iteration is expressed as:

ε̂
(j)
d = r(j−1)HAr(j−1)

2×r(j−1)HDȧ0
TDȧ0

r(j−1)

=
rHΛ(ε

(j−1)
d )AΛH(ε

(j−1)
d )r

2×rHΛ(ε
(j−1)
d )Dȧ0

TDȧ0
ΛH(ε

(j−1)
d )r

(34)

where, by definition,
Λ(ε

(j)
d ) = Da(ε)

∣∣
ε=ε̂

(j)
d

r(j) = ΛH(ε
(j)
d )r

(35)

In general, the iterative approach ultimately achieves a precision CFO estimate. However,
the execution of the iterations frequently involves intensive computations. Recall that, for each
iteration, the CFO estimation of our proposed scheme requires O(2N2) complexity for computing
Λ(ε

(j−1)
d )Dȧ0TDȧ0Λ

H(ε
(j−1)
d ) and Λ(ε

(j−1)
d )AΛH(ε

(j−1)
d ). The major disadvantage of the iterative

approach is that the implementation complexity strongly depends on the CFO estimate ε̂(j)d . This prevents
it from being used in practical applications, especially when the number of subcarriers N is large. By
using the commutative law of linear algebraic, we have:

rHΛ(ε
(j−1)
d ) = aT (ε̂

(j−1)
d )Dr∗ (36)

Substituting Equation (36) into Equation (34), an alternative expression for ε̂(j)d is rewritten by:

ε̂
(j)
d =

aT (ε̂
(j−1)
d )DH

r ADra∗(ε̂
(j−1)
d )

2×aT (ε̂
(j−1)
d )DH

r Dȧ0
TDȧ0

Dra∗(ε̂
(j−1)
d )

=
aT (ε̂

(j−1)
d )Φa∗(ε̂

(j−1)
d )

2×aT (ε̂
(j−1)
d )Ψa∗(ε̂

(j−1)
d )

(37)

where:
Φ = DH

r ADr

Ψ = DH
r Dȧ0TDȧ0Dr

(38)

Since the Hermitian matrices Φ and Ψ are independent of the CFO estimate, they are computed only
once during the whole iteration process.
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3.4. Computational Complexity

In this subsection, we investigate the computational complexity for Chung’s and our proposed
schemes, respectively, where the complexity is evaluated by counting the numbers of their required
complex multiplications. For construction of the CFO-compensated data in Equation (5), it require
2N2 + N complex multiplications. In addition, the calculation of JFH

KD−1
Xp

SR̃(ε) and the vector
norm needs K(K − L̂ − 1) and (K − L̂ − 1) complex multiplications, respectively. As a result, the
required complex multiplications for Chung’s estimator using an Nu-section search are approximately
expressed as:

CMChung ≈ Nu

[
N(2N + 1) + (K − 1)(K − L̂− 1)

]
(39)

As regards the proposed search-based scheme, the computation of the (N − Ng) × N matrix
J̃FHQDXP

SF, which is independent of the received data, can be pre-computed and saved in a
lookup-table (LUT) ROM. Thus, the proposed search-based estimator only requiresN(N−Ng) complex
multiplications for computing J̃FHQDXP

SFDr. In addition, the calculation of CRE in Equation (14)
needs (N+1)(N−Ng) complex multiplications for each of ε. Given anNu, the total number of complex
multiplications for the proposed search-based estimator is approximately:

CMSearch−based ≈ (N −Ng) [N(Nu + 1) +Nu] (40)

To reach the j-th CFO estimate in Equation (37), the construction of the N × N matrices Φ and
Ψ requires 2N2 complex multiplications. In addition, we require N2 + N complex multiplications to
compute either aT (ε̂j−1

d )Φa∗(ε̂j−1
d ) or aT (ε̂j−1

d )Ψa∗(ε̂j−1
d ). Consequently, the total number of complex

multiplications for the proposed iterative estimator is about:

CMIterative ≈ 2N [N(J + 2) + J ] (41)

Table 1 lists the computational complexity for the three CFO estimation approaches. SinceNu�1, the
proposed search-based estimation requires much lower computational complexity than Chung’s scheme.
Besides, inasmuch as J � N , it is shown that the proposed iterative estimator significantly outperforms
both Chung’s and the proposed search-based schemes in computational complexity.

Table 1. Comparison for the computational complexities among the proposed and
conventional schemes.

Algorithm Numbers of Complexity Multiplications (CMs)

Chung’s estimator in Equation (9)
Nu

[
N(2N + 1) + (K − 1)(K − L̂− 1)

]
≈ 2NuN

2, N � 1

Proposed search-based estimator in Equation (16)
(N −Ng) [N(Nu + 1) +Nu]

≈ NNu(N −Ng), N � 1

Proposed iterative estimator in Equation (37)
2N [N(J + 2) + J ]

≈ 2N2(J + 2), N � J
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4. Computer Simulations

In this section, we provide computer simulations to verify the efficacy of the proposed CFO estimate
technique. Consider an OFDM system with 256 subcarriers (N = 256) that employs QPSK modulation
and a CP of length 64 (Ng = N/4 = 64) over a multipath fading channel. For the simplicity
of implementation, here, the 64 pilot symbols (K = 64) are equally interlaced with an interval of
four-subcarrier spacing in the span of frequency. The characteristic of the background channel is
described as the standard wireless exponential decay model given in [21]. Suppose that the channel
impulse response is composed of complex Gaussian samples with unit power, and the l-th delay path has
an average power given by:

σ2
l = (1− e−1/τ )e−l/τ (42)

where τ is the root-mean square (RMS) of the delay spread. Assume that the channel order L = Ng = 64

is sufficiently large such that the impulse response tail can be neglected. The signal-to-noise ratio (SNR)
is defined as SNR = −10 log10 σ

2
N , where σ2

N is the average power of the noise. In the following
simulations, the CFO search granularity used in Equations (9) and (16) is set to be 2−7 of the complete
search interval. For the sake of comparison, the results of Chung’s method [19] are also included while
considering that the estimated channel order L̂ is selected out of the set {2, 16, 62}. Without loss of
generality, the parameter settings, including SNR = 30 dB, τ = 4, εd = 0.3 and J = 5, are used
throughout this section.

The performance of the proposed CFO estimation is evaluated by the mean square error (MSE), which
is expressed by:

MSE =
1

Ns

Ns∑
i=1

|ε̂d(i)− εd|2 (43)

where εd is the actual CFO, ε̂d(i) is the estimated CFO obtained through the i-th trial and Ns is the
overall number of Monte Carlo trials. To investigate the MSE performance of the proposed iterative
CFO estimation, in Figure 1, we demonstrate the convergence characteristic of the proposed iterative
CFO estimation while assuming εd = 0.3. Although in Section 3, the iterative estimator is shown to
cost much less complexity than the search-based scheme, the resultant expense is the reduction of the
MSE convergence rate. When compared with the search-based scheme, the iterative method requires
two more iterations to achieve the MSE convergence for all considered SNR values. It is noteworthy
that at high SNR, say 40 dB, the approximation error in Equation (30) cannot be neglected in relation
to the noise effect. This is why the performance of the iterative scheme is somewhat inferior to the
search-based estimation in the convergence performance. Figure 2 shows the MSE versus the iteration
number for several specific CFO values. The figure indicates that the MSE using the iteration technique
converges and approaches that for the search-based approach after three iterations when εd = 0.4. The
larger the actual CFO is, the more iterations for achieving an estimate close to that of the proposed
search-based scheme there will be. In Figure 3, we evaluate the MSE while considering certain RMSs
of the channel delay spread. For J > 1, it can be seen that the proposed iterative estimator provides
distinguished robustness against the variation of the RMS of the delay spread and achieves a performance
close to that of the search-based scheme. In addition, the MSE increases as the RMS becomes larger
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and larger, because a long delay spread will bring about a significant variation in the channel response
between subcarriers.
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Figure 1. Convergence behavior of the proposed iterative CFO estimation for different
SNRs. N = 256, K = 64, εd = 0.3 and τ = 4.
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Figure 2. Convergence behavior of the proposed iterative CFO estimation for different
CFOs. N = 256, K = 64, SNR = 30 dB and τ = 4.
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Figure 3. Convergence behavior of the proposed iterative CFO estimation for different
RMSs of channel delay spread, τ . N = 256, K = 64, SNR = 30 dB and εd = 0.3.

In the next series of simulations, we compare the performance of the proposed two schemes with
Chung’s approach [19]. Figure 4 plots the MSE curves versus the input SNR when εd = 0.3 for
all of the considered schemes. As expected, the MSE is shown to decrease as we increase the input
SNR. The proposed iterative estimator requires five iterations to reach a performance comparable to our
proposed search-based estimator while achieving the substantial reduction of computational complexity
shown in Section 3. It can be found that Chung’s method fails to offer a reliable estimate when the
estimate of the channel order L is not correctly provided. The MSE characteristics in response to
the normalized CFO are presented in Figure 5 given SNR = 30 dB. It can be observed that the MSE
performance is almost invariant to the actual CFO values regardless of the employed methods. However,
in case an erroneous estimate on the channel order is made, there is significant performance degradation
in the MSE of Chung’s estimator. Figure 6 presents the MSE curves versus the RMS of the channel
delay spread for all of the considered schemes. It shows that the MSE performances for both of the
iterative and search-based estimators are nearly the same and gradually degrade while TRMS is getting
larger. This is because the interpolated and actual channel responses do not coincide when the linear
interpolation prevents the proposed schemes from acquiring a perfect time-domain channel response.
The other way round is that Chung’s method is strongly dependent on TRMS . Especially, for the case
with a large TRMS , say TRMS > 3, the proposed schemes have much better performances than that using
Chung’s scheme. Note that there is a distinguished degradation in the MSE performance once again for
using Chung’s method when the channel response order L is not well estimated in Figure 6.



Appl. Sci. 2015, 5 1786

20 22 24 26 28 30 32 34 36 38 40
10

−6

10
−5

10
−4

10
−3

10
−2

Input SNR (dB)

M
ea

n
 S

q
u

ar
e 

E
rr

o
r 

(M
S

E
)

 

 

Chung: L̂=2

Chung: L̂=16

Chung: L̂=62

Search-based
Iteration: J=5

Figure 4. MSE performance of the proposed and Chung’s CFO estimators for different
SNRs. N = 256, K = 64, εd = 0.3, τ = 4 and J = 5.
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Figure 5. MSE performance of the proposed and Chung’s CFO estimators for different
CFOs. N = 256, K = 64, SNR = 30 dB, τ = 4 and J = 5.
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Figure 6. MSE performance of the proposed and Chung’s CFO estimators for different
RMSs of channel delay spread, τ . N = 256, K = 64, SNR = 30 dB, εd = 0.3 and J = 5.

5. Conclusions

Based on the analytical and simulation investigation presented in this paper, the conclusion may be
made as follows. We have ameliorated the traditional search-based CFO estimator without using the
prior knowledge of channel order. This contribution is made by exploiting an interpolation technique
to reconstruct the channel frequency response, which is used to assist the CFO estimation algorithm.
It is shown that not only the search-based, but also the iterative CFO estimators outperform Chung’s
method in the estimate performance. Besides, the numerical results verify that the employment of the
iterative technique indeed reduces the estimator’s complexity at the expense of the convergence rate of
MSE. Fortunately, MSE will quickly converge after a couple of iterations. From the point of view of
implementation complexity, the proposed schemes benefit principally from two factors. One is that we
remove the limitation of knowledge of channel order, and the other is the replacement of the brute-force
search. For realistic wireless applications, the proposed approaches appear to be more feasible than the
conventional ones, such as Chung’s method.
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