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Abstract: In this paper, we propose a scalable and efficient Active Queue Management 
(AQM) scheme to provide fair bandwidth sharing when traffic is congested dubbed Adaptive 
Filtering Queueing (AFQ). First, AFQ identifies the filtering level of an arriving packet by 
comparing it with a flow label selected at random from the first level to an estimated level 
in the filtering level table. Based on the accepted traffic estimation and the previous fair 
filtering level, AFQ updates the fair filtering level. Next, AFQ uses a simple packet-dropping 
algorithm to determine whether arriving packets are accepted or discarded. To enhance 
AFQ’s feasibility in high-speed networks, we propose a two-layer mapping mechanism to 
effectively simplify the packet comparison operations. Simulation results demonstrate that 
AFQ achieves optimal fairness when compared with Rotating Preference Queues (RPQ), 
Core-Stateless Fair Queueing (CSFQ), CHOose and Keep for responsive flows, CHOose and 
Kill for unresponsive flows (CHOKe) and First-In First-Out (FIFO) schemes under a variety 
of traffic conditions. 
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1. Introduction 

Random Early Detection (RED) detects incipient congestion by computing the average queue  
size [1]. When the average queue size exceeds a threshold, RED drops or marks each arriving packet 
with a probability, where the probability is a function of the average queue size. RED not only keeps 
queuing delays low but also maintains high overall throughput because it can prevent current connections 
from global synchronization. RED should cooperate with transport-layer protocols capable of congestion 
control, such as TCP; unfortunately, it currently does not. Without congestion control, RED has poor 
fairness, especially for heterogeneous traffic environments. To improve the fairness of RED, a CHOose 
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and Keep for responsive flows, CHOose and Kill for unresponsive flows (CHOKe) scheme was  
proposed [2]. When a packet arrives at a router, CHOKe compares it with a packet at random from the 
buffer. If both packets come from the same flow, both are discarded at the same time; otherwise, the arriving 
packet may be discarded with a probability depending on the current degree of congestion. By using 
additional discrimination on flows with heavy traffic, CHOKe demonstrates improved fairness. XCHOKe 
is a revised version of CHOKe [3]. XCHOKe maintains a lookup table to record CHOKe hits. Accordingly, 
it further identifies possible malicious flows. If a flow has many CHOKe hits, this flow has a higher 
probability of being identified as a malicious flow. Therefore, XCHOKe applies a higher dropping 
probability to the arriving packets of this flow. Although XCHOKe achieves better fairness than CHOKe 
and RED, it lacks scalability, making XCHOKe too complicated to be deployed in high-speed networks. 

Considering the trade-off between scalability and fairness, Core-Stateless Fair Queueing (CSFQ) [4] and 
Rainbow Fair Queueing (RFQ) [5] were proposed. In particular, all routers in CSFQ are classified as 
edge or core routers. Edge routers need to maintain per-flow state because they have to estimate the flow 
rate of each arriving packet. Next, the information is inserted into the corresponding packet headers. 
Core routers estimate the fair share rate and then use a simple dropping algorithm to determine whether 
an arriving packet is accepted or discarded. RFQ is similar to CSFQ but with one significant difference: 
the state information that is inserted into the packet headers is the color layers, not the explicit flow rate. 
The operations of the core routers are further simplified, and the application can assign differentiated 
preferences to certain packets. The fairness of both core-stateless schemes could be degraded along with 
the increasing number of traversing nodes. Rotating Preference Queuing (RPQ) consists of a set of FIFO 
output queues that are dynamically rotated [6]. RPQ dispatches qualified arriving packets to adequate 
output queues based on packet distribution and preferences. RPQ has excellent fairness, but it needs a 
large buffer size, which means that RPQ may have a high implementation cost and result in a large 
queueing delay. Compared with RPQ, CSFQ, CHOKe and FIFO, the proposed AFQ scheme in this paper 
is scalable because it is easy to implement. Furthermore, AFQ is efficient because it provides 
approximately perfect fairness under various traffic conditions. 

An interesting research question is whether a scheme can achieve fairness without requiring  
per-flow state. Providing fairness is important because it also contributes to congestion avoidance. In 
this paper, the objective is to achieve fair bandwidth sharing with a simple and scalable AFQ approach. 
The rest of the paper is organized as follows: Section II reviews the related work; Section III describes 
the details of the AFQ scheme with a two-layer mapping mechanism that can simplify the packet 
comparisons; Section IV presents the simulation results that demonstrate the fairness of different 
schemes under various network topologies and traffic conditions; and Section V presents our conclusions. 

2. Related Work 

In general, two types of schemes are used to address fairness among competing flows: AQM and 
packet scheduling. Compared with packet scheduling, AQM has attracted more attention due to its 
simplicity and efficacy. Moreover, AQM can enhance the performance of congestion control algorithms. 
Deficit Round Robin (DRR) is a packet scheduler that can achieve approximately perfect fairness [7]. 
DRR allocates a virtual queue dedicated to each active flow, which accommodates its arriving packets. 
When the packets are enqueued into particular queues, they will be served in a round-robin fashion 
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according to the available quantum sizes. DRR needs to maintain per-flow state. In addition, DRR must 
work with a pushout (PO) buffer management scheme that avoids buffer shortages on certain flows [8]. 
When a packet arrives at a router with a full buffer, PO will push out one or more residing packets from 
the longest virtual queue. In this manner, PO can make room for the new arrival. Otherwise, the arriving 
packet will be accepted without any constraints. PO can make buffer utilization high and packet loss low 
under various traffic conditions. However, PO has two main drawbacks. First, it has to find the longest 
virtual queue out when arriving packets encounter a full buffer. Second, it has to execute frequent 
pushout operations under congested traffic conditions. As a result, it is questionable whether DRR should 
be implemented due to the abundance of active flows in routers [9].  

DRR may suffer from a large delay and jitter due to a long cycle of round robin operations, so several 
variants have been developed to address these issues [10–12]. A customized deficit round robin (CDRR) 
takes care of real-time flows by adding a new queue to schedule real-time traffic just prior to the  
deadline [10]. However, the extra queue increases the delay for non-real-time traffic, particularly when 
the traffic load is heavy. Moreover, assigning weights to the queues may enlarge overall unfairness, 
especially for non-real-time traffic. Another variant, fuzzy-based Adaptive Deficit Round Robin 
(FADRR), uses expert systems based on fuzzy logic to adjust the weights of service queues for  
real-time and non-real-time traffic [11]. Additionally, this scheme sacrifices fairness because it favors 
real-time traffic that may result in bandwidth starvation for non-real-time traffic. 

RED is a well-known AQM scheme employing a single FIFO buffer to accommodate arriving packets 
from all active flows [1]. The arriving packets encounter different drop probabilities according to average 
queue sizes and other parameters. RED discards packets before the buffer is full, so it can prevent the 
TCP connections from global synchronization. Unfortunately, RED is unable to provide fairness, 
especially for heterogeneous traffic. Based on RED, several variants have been proposed that enhance 
the fairness or robustness of RED parameters [13–18]. Self-Configuring RED changes dropping 
probabilities according to the variations in average queue sizes [13]. If the average queue size oscillates 
around the minimum threshold, then the current dropping probability is too high. On the other hand, if 
it oscillates around maximum threshold, then the current dropping probability is too low. Based on the 
dynamics of queue sizes, the scheme adjusts packet dropping probabilities that reduce packet loss while 
maintaining high link utilizations. Another RED variant, weighted Destination-Based Fair Dropping 
(wDBFD), only needs a single queue, and packets are probabilistically dropped before they are enqueued 
instead of tail dropping. Furthermore, by adding weights to the drop probabilities of different destination 
stations, this scheme realizes destination differentiation. Additionally, wDBFD is more robust in terms 
of fairness when subjected to different packet arriving rates. The idea of wDBFD is similar to that of the 
RED, but it relies not only on past measurements of queue size but also on recent observed rates of flows. 
By using this additional information, wDBFD improves RED’s fairness. However, this scheme also 
increases the complexity.  

In CSFQ [4], an edge router has to maintain per-flow state and is in charge of state (flow arrive rate) 
insertion into packet headers. Whenever a core router receives a packet, CSFQ has to estimate the fair 
share rate and uses a simple probabilistic model to accept or discard the new arrival. CSFQ achieves 
reasonable fairness; moreover, it pushes complexity toward the edge routers, which simplifies the 
sophisticated implementation in the core routers. In general, the number of active flows in core routers 
is relatively larger than in edge routers. Therefore, CSFQ can be deployed in network environments 
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consisting of high-speed core routers and moderate-speed edge routers. The architecture of RFQ is 
similar to CSFQ, which mainly consists of packet coloring and buffer management [5]. RFQ transfers 
the flow arriving rate into a set of layers, with a globally consistent color per layer. Next, the edge routers 
insert the color into packet headers. When a packet arrives at a core router, the arrival will be discarded 
only if its color level is over the color threshold. The color threshold dynamically changes in accordance 
with traffic variations. Compared with CSFQ, RFQ has approximate fairness, but it only carries a simple 
color level rather than an explicit flow arriving rate. Furthermore, it wards off exponential averaging 
estimation when a packet is generated. In summary, both CSFQ and RFQ schemes classify the routers 
as edge or core routers, and only the edge routers maintain per-flow state.  

The fairness of RPQ tends to approach that of DRR, and it outperforms several schemes, such as 
CSFQ, DDE, CHOKe and FIFO [6]. In addition, RPQ has a complexity of O(1) and is simple to 
implement in high-speed networks. However, RPQ has an expensive implementation cost and a large 
queue delay. Currently, several TCP variants are adopted by end users, and heterogeneous congestion 
control schemes have thus become a characteristic of newly emerging networks. In contrast to pure TCP 
connections, the fairness of several well-known AQM schemes, such as RED and CHOKe, among 
heterogeneous TCP connections is discussed [19]. We do not consider the effect of TCP variants here, 
but it is an interesting topic as an extension of AFQ applications. 

3. Adaptive Filtering Queueing 

In Figure 1, we depict four main components of AFQ, including accepted traffic estimation, fair 
filtering level estimation, a filtering level table and a packet-dropping algorithm. At the end of this 
section, we propose a mechanism that permits the scalability of AFQ. If the mean arriving rate of a flow 
is larger than the max-min fair rate, such a flow is defined as an aggressive flow; otherwise, this flow is 
defined as a non-aggressive flow. In addition, the flow label is composed of a pair of IP  
source-destination addresses related to a flow. When a packet arrives at a router, AFQ identifies the 
filtering level of the arriving packet by randomly comparing with a flow label from the first level to an 
estimated level in the filtering level table. Based on the accepted traffic estimation and the previous fair 
filtering level, AFQ updates estimates of the fair filtering level. Finally, AFQ uses a simple  
packet-dropping algorithm to determine whether the packet is qualified to be accepted or discarded 
according to estimates of the fair filtering level and the filtering level of the arrival.  
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Figure 1. Adaptive Filtering Queueing (AFQ) scheme. 

In a router, AFQ estimates accepted traffic 𝐴̂𝐴𝑛𝑛𝑛𝑛𝑛𝑛 passing through the packet dropping component in 
a time interval using use Equation (1). The unit of 𝐴̂𝐴𝑛𝑛𝑛𝑛𝑛𝑛 is bits, and 𝑇𝑇𝑑𝑑 denotes the length of such a  
time interval. 

𝐴̂𝐴𝑛𝑛𝑛𝑛𝑛𝑛  =  𝑘𝑘𝑎𝑎𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 + (1 − 𝑘𝑘𝑎𝑎)𝐴̂𝐴𝑜𝑜𝑜𝑜𝑜𝑜 (1) 

𝐴̂𝐴𝑜𝑜𝑜𝑜𝑜𝑜 is the value prior to the updating of 𝐴̂𝐴𝑛𝑛𝑛𝑛𝑛𝑛, and 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 is the amount of traffic accepted in the current 
time interval. In addition, 𝑘𝑘𝑎𝑎 is a coefficient used to balance the short-term and long-term estimates of 𝐴̂𝐴𝑛𝑛𝑛𝑛𝑛𝑛. 
The estimation of the fair filtering level α� is proportional to 𝐶𝐶𝑇𝑇𝑑𝑑/𝐴̂𝐴𝑛𝑛𝑛𝑛𝑛𝑛, as described in Equation (2). 
Similarly, α�𝑜𝑜𝑜𝑜𝑜𝑜 is the value before the updating of α�𝑛𝑛𝑛𝑛𝑛𝑛, and 𝐶𝐶 denotes the router’s link capacity (bits 
per second). If 𝐴̂𝐴𝑛𝑛𝑛𝑛𝑛𝑛 is smaller than the idea output traffic 𝐶𝐶𝑇𝑇𝑑𝑑, then α�𝑛𝑛𝑛𝑛𝑛𝑛 increases. A larger α�𝑛𝑛𝑛𝑛𝑛𝑛 will 
allow more arriving packets to be accepted. By observing the dynamics of accepted traffic, AFQ can 
produce a precise estimate of the fair filtering level. 

α�𝑛𝑛𝑛𝑛𝑛𝑛  =  α�𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝑇𝑇𝑑𝑑/𝐴̂𝐴𝑛𝑛𝑛𝑛𝑛𝑛 (2) 

AFQ compares the flow label of each arriving packet with a flow label in a filtering level table at 
random from filtering level 1 to α�𝑛𝑛𝑛𝑛𝑛𝑛 until there is a hit. The filtering level table consists of multiple 
filtering levels, and each filtering level only keeps flow labels, not whole packets, whose utility is to 
discriminate the dropping probabilities of arriving packets. If both own the same flow label (i.e., are 
coming from the same flow), then a hit occurs. In AFQ, multiple filtering levels work as a hierarchical 
filter that filters out the unqualified arriving packets. AFQ may have insufficient discriminability because 
of traffic dynamics, which leads to fairness degradation; hence, we should enlarge the α�𝑛𝑛𝑛𝑛𝑛𝑛. We readjust 
α�𝑛𝑛𝑛𝑛𝑛𝑛 by 𝑘𝑘𝑏𝑏 times the α�𝑛𝑛𝑛𝑛𝑛𝑛 in Equation (3), denoted by 𝐹𝐹�𝑚𝑚𝑚𝑚𝑚𝑚. 𝑘𝑘𝑏𝑏 is a coefficient whose function is to 
enhance the discriminability of AFQ. Finally, the range of flow label comparisons is altered from 
filtering level 1 to 𝐹𝐹�𝑚𝑚𝑚𝑚𝑚𝑚. In other words, 𝐹𝐹�𝑚𝑚𝑚𝑚𝑚𝑚 contributes to the realization of sufficient discriminability; 
the principle to determine whether arriving packets are accepted or dropped still depends on α�𝑛𝑛𝑛𝑛𝑛𝑛. As a 
result, the complexity of AFQ is of O(𝐹𝐹�𝑚𝑚𝑚𝑚𝑚𝑚).  

𝐹𝐹�𝑚𝑚𝑚𝑚𝑚𝑚  =  𝑘𝑘𝑏𝑏α�𝑛𝑛𝑛𝑛𝑛𝑛, 𝑘𝑘𝑏𝑏 ≥ 1 (3) 

Assuming that packet 𝑖𝑖 has a first hit at filtering level 𝑚𝑚𝑖𝑖, we use Equation (4) to calculate filtering 
level 𝑣𝑣𝑖𝑖. A larger 𝑚𝑚𝑖𝑖 implies that the flow of packet 𝑖𝑖 has fewer residing packets in the buffer, which 
means that the flow label of packet 𝑖𝑖 will be enrolled into filtering level 𝑣𝑣𝑖𝑖. There are two supplementary 
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rules. First, once packet 𝑖𝑖 encounters an empty filtering level at 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒, then 𝑣𝑣𝑖𝑖  =  𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒. Second, if there 
is no hit until 𝐹𝐹�𝑚𝑚𝑚𝑚𝑚𝑚, then 𝑣𝑣𝑖𝑖  =  𝐹𝐹�𝑚𝑚𝑚𝑚𝑚𝑚.  

𝑣𝑣𝑖𝑖  =  { 𝑚𝑚𝑖𝑖 − 1     2 < 𝑚𝑚𝑖𝑖 ≤ 𝐹𝐹�𝑚𝑚𝑚𝑚𝑚𝑚
1         1 ≤ 𝑚𝑚𝑖𝑖 ≤ 2  (4) 

After determining the filtering level of packet 𝑖𝑖, AFQ needs to decide its location in filtering level 𝑣𝑣𝑖𝑖 
according to Equation (5), denoted by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. A circular replacement method is used to update the flow 
labels in each filtering level. Furthermore, we assume that each filtering level has the same capacity, 
denoted by 𝐿𝐿. AFQ updates the filtering level table according to traffic conditions. When the traffic is 
heavier, AFQ updates the filtering level table with a higher frequency. 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  =  𝑚𝑚𝑚𝑚𝑚𝑚((𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1)𝑚𝑚𝑚𝑚𝑚𝑚 (𝐿𝐿 + 1), 1) (5) 

AFQ utilizes a simple packet-dropping algorithm to decide the treatment of packet 𝑖𝑖 , where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 
denotes the dropping probability of packet 𝑖𝑖. Once packet 𝑖𝑖 is accepted, it will be enqueued into the FIFO 
buffer; otherwise, it will be discarded immediately. Thus, only the arriving packets whose filtering levels 
are equal to or larger than the fair filtering level can be admitted to enter the buffer. 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖  =  min (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(α�𝑛𝑛𝑛𝑛𝑛𝑛/𝑚𝑚𝑖𝑖), 1) (6) 

We propose a mechanism to add to AFQ to simplify the packet comparisons (i.e., the flow labels) 
while reducing memory consumption. In this design, the routers are classified as edge or core routers, 
similar to CSFQ. Edge routers use hash algorithms, such as SHA-1, to transfer the flow label of each 
packet into a key 𝑎𝑎𝑗𝑗  that alleviates the IP dependency. Next, the key 𝑎𝑎𝑗𝑗  is inserted into the packet’s 
header. Figure 2 shows that the core routers have to maintain two tables; one is a first-layer table with 
size (𝑏𝑏𝑛𝑛, 𝐿𝐿), and the other is a second-layer table with size (𝑛𝑛,𝑝𝑝). When a packet arrives at the core 
router, AFQ extracts key 𝑎𝑎𝑗𝑗 with size s from the packet header of the arrival and compares it with the 
keys from the first-layer table instead of the flow labels. Next, we use the same circular replacement 
method to maintain the keys in the first-layer table. If there is a hit at filtering level z  
where 𝑧𝑧 ∈ [𝑏𝑏0, 𝑏𝑏𝑛𝑛] , AFQ has to compare its flow label with a flow label at ( 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 ,  𝑎𝑎𝑗𝑗 ) in the  
second-layer table. We use Equation (7) to calculate the 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗.  

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗  =  {𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘) |(𝑧𝑧 < 𝑏𝑏𝑘𝑘) ,𝑘𝑘 ∈ [1,𝑛𝑛]} (7) 

If a packet encounters two hits, a real hit happened; otherwise, no real hit happened. A real hit 
corresponds to previous mentioned hit in the AFQ algorithm. If there is only a hit in the first table, the 
flow label of the arriving packet will replace the flow label at (𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑥𝑥𝑗𝑗, 𝑎𝑎𝑗𝑗) in the second-layer table;  
If different flows have the same key, the flow with more arriving packets has a higher chance to be captured 
in the second-layer table. In other words, its arriving packets will have a higher probability to be constrained. 
Consequently, AFQ can achieve sufficient discriminability. The updating of the  
second-layer table differs from the first-layer table in the use of the frequency-based replacement 
method. The two-layer mapping mechanism imposes additional burden on edge routers, but it can 
efficiently speed up the packet comparisons while reducing memory consumption on core routers. For 
instance, if 𝑠𝑠 = 8 bits (get first 8 bits from160 bits producing by SHA-1), 𝐿𝐿 = 32, 𝑏𝑏  = 2, 𝑛𝑛 = 7 and  
𝑝𝑝 = 128, the original AFQ requires 32 × 8 × 128 = 32,768 Bytes memory. When using the mechanism, 
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AFQ requires approximately 32 × 1 × 128 + 8 × 128 × 7 = 11,264 Bytes. In other words, memory can be 
approximately reduced to two-thirds. 
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Figure 2. Two-layer mapping mechanism. 

To compare the fairness, we define the Normalized Bandwidth Ratio (NBR) for a specific flow based 
on Equation (8). NBRj  denotes NBR; Dj  denotes the mean departure rate; and rj  denotes the Mean 
Arrival Rate (MAR), all related to flow j. Additionally, f denotes the Max-Min Fair Share Rate (MMFSR).  

NBRj  =  Dj/min (rj, f) (8) 

If ∑ rj > Cn
j = 1 , f can be derived from ∑ min�rj, f�  =  Cn

j = 1 , where n denotes the number of active 
flows. Otherwise, f =  max (ri), i ∈ n. If a scheme achieves the optimal fairness, then the NBR of each 
flow is equal to 1. 

4. Simulation Results 

We simulated four well-known schemes (RPQ, CSFQ, CHOKe and FIFO) and compared their 
fairness by analyzing the NBR behaviors. We developed a software simulator to perform all simulations, 
which has been used in our previous study [6]. The traffic types of generating packets in each case are 
described in their respective figures. In Figure 3a,b, we consider two categories of network topologies: 
those with a single congested link and those with multiple congested links. Unless otherwise specified, 
we use the following parameters in the simulations. Each link capacity is of 10 Mbps, and the packet 
size is fixed at 1 KB. The buffer size for all schemes is set to 256 KB. In addition, we neglect the 
propagation delay of each link. In AFQ, the initial value of α𝑛𝑛𝑛𝑛𝑛𝑛 is set to 32, and the other parameters 
are set to 𝑇𝑇𝑑𝑑 = 200 ms, 𝑘𝑘𝑎𝑎 = 0.8 and 𝑘𝑘𝑏𝑏 = 1.5. In RPQ, each output queue is set to 32 KB, and the other 
parameters are set as follows: ∆ = 0.8 ms, α = 0.8, 𝐾𝐾𝑑𝑑 = 200 ms and 𝑁𝑁 = 129. With respect to CSFQ, 𝐾𝐾 
and 𝐾𝐾α are both set to 200 ms. CHOKe’s parameters are set to the following values: 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡ℎ = 120 KB, 
𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡ℎ = 40 KB, 𝑤𝑤𝑞𝑞 = 0.002 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝 = 0.02. Finally, the duration on each simulation is 200 s. 
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Figure 3. Network topologies. (a) A single congested link. (b) Multiple congested links. 

4.1. A Single Congested Link 

We consider four cases where a single congested link is shared by 10 flows, as depicted in Figure 3a. In 
the first case, the flows are indexed from 1 to 10; hence, the MMFSR is 1.4 Mbps. The simulation results 
are depicted in Figure 4. In CHOKe and FIFO, the shared bandwidth of flows 1 to 5 is roughly 
proportional to their MARs. Accordingly, their NBRs are close to constant. Flows 6 to 10 have the same 
MBR at 10 Mbps, so they fairly share the grabbed bandwidth from flows 1 to 5. Again, their NBRs 
maintain a constant value. FIFO is the simplest scheme, but it shows the worst fairness. Although 
CHOKe performs better than the FIFO, it can provide only limited fairness. In AFQ, the NBRs of flows 
1 to 5 reach the largest values, and the NBRs of flows 6 to 10 reach the lowest values. In other words, 
AFQ achieves the best fairness. The NBRs of flows 1 to 5 in AFQ, RPQ and CSFQ all decrease when 
MAR is close to MMFSR because those flows are more likely to be discarded because of traffic 
burstiness. From the simulations, AFQ outperforms RPQ, and RPQ outperforms CSFQ in fairness. 
Therefore, ARQ can effectively protect the fairness of non-aggressive flows from damage due to 
aggressive flows. 
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Figure 4. The Normalized Bandwidth Ratio (NBR) achieved by each of the ten flows sharing 
a bottleneck link; flows 1 to 5 belong to non-aggressive flows, and flows 6 to 10 belong to 
aggressive flows. 

In the second case, we consider that all flows are composed of aggressive flows. The MAR of each 
flow is larger than the MMFSR (1 Mbps). The simulation results are depicted in Figure 5. Compared 
with the first case, flows 6 to 10 can obtain less additional bandwidth from flows 1 to 5 in CHOKe and 
FIFO. However, they have larger NBRs because the MMFSR is smaller in this case. CHOKe and FIFO 
have better fairness for two reasons: flows have approximate MARs, and the MBR of each flow is larger 
than the MMFSR. Similarly, RPQ and CSFQ both demonstrate better fairness; in addition, they both 
demonstrate approaching fairness. Repeatedly, AFQ achieves the best fairness. Consequently, RPQ can 
fairly allocate bandwidth under extreme traffic conditions where all flows are aggressive flows. 

 

Figure 5. The NBR achieved by each of the ten flows sharing a bottleneck link, with all 
flows belonging to aggressive flows. 
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In the third case, we consider flows consisting of three magnitudes of MARs, where the MMFSR is 
1.375 Mbps. The MARs of flows 1 to 3 and flows 4 to 6 equal 0.5 Mbps and 1 Mbps, respectively.  
In addition, the MAR of flows 7 to 10 is 6 Mbps. The simulation results are depicted in Figure 6.  
The MARs of flows 1 to 6 is smaller than the MMFSR, so their NBRs are constant in CHOKe and FIFO. 
In RPQ and CSFQ, the NBRs of flows 1 to 3 are larger than those of flows 4 to 6. Flows 1 to 3 have 
lower MARs, so they have less chance of being mistakenly discarded. The MARs of flows 4 to 6 are 
close to the MMFSR; hence, their arriving packets are more likely to be discarded during traffic 
burstiness. The NBRs of AFQ are better than those of RPQ and CSFQ. As a result, RPQ still keeps the 
best fairness under various traffic conditions. 

 

Figure 6. The NBR achieved by each of the ten flows sharing a bottleneck link, with flows 
consisting of three magnitudes of Mean Arrival Rate (MAR)s. 

 

Figure 7. The NBR achieved by each of the ten flows sharing a bottleneck link, with  
diverse MARs. 
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In the fourth case, we consider that all flows belong to aggressive flows but that their MARs are 
diverse. The simulation results are depicted in Figure 7, and the MMFSR is 1 Mbps. Flow 1 is the only 
non-aggressive flow, which has a lower NBR due to larger traffic burstiness. FIFO still keeps the worst 
NBRs, whose trends are proportional to the MAR of each flow. We find that traffic load dominates the 
fairness of FIFO. Additionally, CHOKe is affected due to the same reason, but its fairness is better than 
that of FIFO. CSFQ has to estimate the MAR of each flow; therefore, traffic variations can influence 
fairness. However, exponential flow rate estimation methods can relieve such an effect. The fairness of 
RPQ is close to that of CSFQ, but it can also enhance fairness by increasing the number of output queues. 
As mentioned previously, this also reduces larger queueing delays. AFQ repeatedly outperforms the 
other schemes. In Figures 4–7, we conclude that AFQ is able to achieve robust and optimal fairness 
under a single congested link, where various traffic conditions are considered.  

4.2. Multiple Congested Links 

We now analyze how the NBRs of five flows with smaller MARs are affected by other flows with 
larger MARs under three congested links. We performed two cases based on the topology shown in 
Figure 3b. Flows 1 to 5 send at 0.2, 0.4, 0.6, 0.8 and 1 Mbps, and the others send at 10 Mbps. The 
capacity of each link is 10 Mbps so that each link between routers is congested. We consider the NBRs 
of flows 1 to 5 here because their fairness can be damaged by other aggressive flows. The simulation 
results are illustrated in Figure 8, and the MMFSR is 0.363 Mbps at the last router. The NBRs of  
flows 1 to 5 are all close to 0 in CHOKe and FIFO. In other words, they both fail to provide fairness. 
When the number of traversing routers increases, CSFQ gradually loses precision on estimates of the 
fair share rate and MAR of each flow. As a result, AFQ performs better than RPQ, while RPQ performs 
much better than CSFQ. AFQ achieves the best fairness because it can dynamically filter the arriving 
packets according to traffic variations.  

 

Figure 8. The NBR achieved by flows 1 to 5 with lower ON-OFF burstiness, with other 
flows all consisting of 10 Mbps. 

In the second case, we increase double traffic burstiness to flows 1 to 5, and the MBR of flows 6 to 
28 change to 8 Mbps. Figure 9 illustrates the NBRs of flows 1 to 5, and the MMFSRs are the same as in 
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the first case. Repeatedly, AFQ proves to be the scheme with the best fairness. Although CSFQ is worse 
than RPQ, it is still much better than CHOKe and FIFO. AFQ, RPQ and CSFQ degrade their fairness 
compared with the first case because the traffic burstiness of flows 1 to 5 is double. According to our 
simulation results, we conclude that AFQ can achieve the best degree of fairness under different network 
topologies and various traffic conditions. 

 

Figure 9. The NBR achieved by flows 1 to 5 with double ON-OFF burstiness, with other 
flows all consisting of 8 Mbps. 

5. Conclusions  

In this paper, we present a scalable and efficient AFQ scheme that achieves fair bandwidth sharing 
under various traffic conditions. The routers employ a simple packet-dropping algorithm to determine 
whether arriving packets are accepted or dropped according to the filtering levels of arriving packets and 
the estimates of fair filtering levels. In addition, we propose a mechanism that can effectively simplify 
packet comparisons while reducing memory consumption. Accordingly, AFQ is suitable for deployment 
in high-speed networks. The mechanism works under the same router environments as CSFQ. We 
analyzed the fairness of AFQ and four other schemes under different network topologies and different 
traffic conditions. The simulation results demonstrate that AFQ is superior to RPQ and CSFQ and 
performs much better than CHOKe and FIFO. In the future, we aim to study the effect of various TCP 
variants on AFQ. Moreover, we plan to study an enhanced AFQ version to ensure that it can support 
real-time applications while keeping fairness using dynamic bandwidth readjustment.  
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