
Appl. Sci. 2015, 5, 122-135; doi:10.3390/app5020122

applied sciences
ISSN 2076-3417

www.mdpi.com/journal/applsci
Article

Adaptive Filtering Queueing for Improving Fairness

Jui-Pin Yang

Department of Information Technology and Communication, Shih-Chien University,
Kaohsiung 84550, Taiwan; E-Mail: juipinyang@gmail.com; Tel.: +886-9-7535-7705

Academic Editor: Christos Verikoukis

Received: 20 March 2015 / Accepted: 27 May 2015 / Published: 5 June 2015

Abstract: In this paper, we propose a scalable and efficient Active Queue Management
(AQM) scheme to provide fair bandwidth sharing when traffic is congested dubbed Adaptive
Filtering Queueing (AFQ). First, AFQ identifies the filtering level of an arriving packet by
comparing it with a flow label selected at random from the first level to an estimated level
in the filtering level table. Based on the accepted traffic estimation and the previous fair
filtering level, AFQ updates the fair filtering level. Next, AFQ uses a simple packet-dropping
algorithm to determine whether arriving packets are accepted or discarded. To enhance
AFQ’s feasibility in high-speed networks, we propose a two-layer mapping mechanism to
effectively simplify the packet comparison operations. Simulation results demonstrate that
AFQ achieves optimal fairness when compared with Rotating Preference Queues (RPQ),
Core-Stateless Fair Queueing (CSFQ), CHOose and Keep for responsive flows, CHOose and
Kill for unresponsive flows (CHOKe) and First-In First-Out (FIFO) schemes under a variety
of traffic conditions.

Keywords: adaptive filtering; active queue management; fairness; bandwidth

1. Introduction

Random Early Detection (RED) detects incipient congestion by computing the average queue
size [1]. When the average queue size exceeds a threshold, RED drops or marks each arriving packet
with a probability, where the probability is a function of the average queue size. RED not only keeps
queuing delays low but also maintains high overall throughput because it can prevent current connections
from global synchronization. RED should cooperate with transport-layer protocols capable of congestion
control, such as TCP; unfortunately, it currently does not. Without congestion control, RED has poor
fairness, especially for heterogeneous traffic environments. To improve the fairness of RED, a CHOose

OPEN ACCESS

Appl. Sci. 2015, 5 123

and Keep for responsive flows, CHOose and Kill for unresponsive flows (CHOKe) scheme was
proposed [2]. When a packet arrives at a router, CHOKe compares it with a packet at random from the
buffer. If both packets come from the same flow, both are discarded at the same time; otherwise, the arriving
packet may be discarded with a probability depending on the current degree of congestion. By using
additional discrimination on flows with heavy traffic, CHOKe demonstrates improved fairness. XCHOKe
is a revised version of CHOKe [3]. XCHOKe maintains a lookup table to record CHOKe hits. Accordingly,
it further identifies possible malicious flows. If a flow has many CHOKe hits, this flow has a higher
probability of being identified as a malicious flow. Therefore, XCHOKe applies a higher dropping
probability to the arriving packets of this flow. Although XCHOKe achieves better fairness than CHOKe
and RED, it lacks scalability, making XCHOKe too complicated to be deployed in high-speed networks.

Considering the trade-off between scalability and fairness, Core-Stateless Fair Queueing (CSFQ) [4] and
Rainbow Fair Queueing (RFQ) [5] were proposed. In particular, all routers in CSFQ are classified as
edge or core routers. Edge routers need to maintain per-flow state because they have to estimate the flow
rate of each arriving packet. Next, the information is inserted into the corresponding packet headers.
Core routers estimate the fair share rate and then use a simple dropping algorithm to determine whether
an arriving packet is accepted or discarded. RFQ is similar to CSFQ but with one significant difference:
the state information that is inserted into the packet headers is the color layers, not the explicit flow rate.
The operations of the core routers are further simplified, and the application can assign differentiated
preferences to certain packets. The fairness of both core-stateless schemes could be degraded along with
the increasing number of traversing nodes. Rotating Preference Queuing (RPQ) consists of a set of FIFO
output queues that are dynamically rotated [6]. RPQ dispatches qualified arriving packets to adequate
output queues based on packet distribution and preferences. RPQ has excellent fairness, but it needs a
large buffer size, which means that RPQ may have a high implementation cost and result in a large
queueing delay. Compared with RPQ, CSFQ, CHOKe and FIFO, the proposed AFQ scheme in this paper
is scalable because it is easy to implement. Furthermore, AFQ is efficient because it provides
approximately perfect fairness under various traffic conditions.

An interesting research question is whether a scheme can achieve fairness without requiring
per-flow state. Providing fairness is important because it also contributes to congestion avoidance. In
this paper, the objective is to achieve fair bandwidth sharing with a simple and scalable AFQ approach.
The rest of the paper is organized as follows: Section II reviews the related work; Section III describes
the details of the AFQ scheme with a two-layer mapping mechanism that can simplify the packet
comparisons; Section IV presents the simulation results that demonstrate the fairness of different
schemes under various network topologies and traffic conditions; and Section V presents our conclusions.

2. Related Work

In general, two types of schemes are used to address fairness among competing flows: AQM and
packet scheduling. Compared with packet scheduling, AQM has attracted more attention due to its
simplicity and efficacy. Moreover, AQM can enhance the performance of congestion control algorithms.
Deficit Round Robin (DRR) is a packet scheduler that can achieve approximately perfect fairness [7].
DRR allocates a virtual queue dedicated to each active flow, which accommodates its arriving packets.
When the packets are enqueued into particular queues, they will be served in a round-robin fashion

Appl. Sci. 2015, 5 124

according to the available quantum sizes. DRR needs to maintain per-flow state. In addition, DRR must
work with a pushout (PO) buffer management scheme that avoids buffer shortages on certain flows [8].
When a packet arrives at a router with a full buffer, PO will push out one or more residing packets from
the longest virtual queue. In this manner, PO can make room for the new arrival. Otherwise, the arriving
packet will be accepted without any constraints. PO can make buffer utilization high and packet loss low
under various traffic conditions. However, PO has two main drawbacks. First, it has to find the longest
virtual queue out when arriving packets encounter a full buffer. Second, it has to execute frequent
pushout operations under congested traffic conditions. As a result, it is questionable whether DRR should
be implemented due to the abundance of active flows in routers [9].

DRR may suffer from a large delay and jitter due to a long cycle of round robin operations, so several
variants have been developed to address these issues [10–12]. A customized deficit round robin (CDRR)
takes care of real-time flows by adding a new queue to schedule real-time traffic just prior to the
deadline [10]. However, the extra queue increases the delay for non-real-time traffic, particularly when
the traffic load is heavy. Moreover, assigning weights to the queues may enlarge overall unfairness,
especially for non-real-time traffic. Another variant, fuzzy-based Adaptive Deficit Round Robin
(FADRR), uses expert systems based on fuzzy logic to adjust the weights of service queues for
real-time and non-real-time traffic [11]. Additionally, this scheme sacrifices fairness because it favors
real-time traffic that may result in bandwidth starvation for non-real-time traffic.

RED is a well-known AQM scheme employing a single FIFO buffer to accommodate arriving packets
from all active flows [1]. The arriving packets encounter different drop probabilities according to average
queue sizes and other parameters. RED discards packets before the buffer is full, so it can prevent the
TCP connections from global synchronization. Unfortunately, RED is unable to provide fairness,
especially for heterogeneous traffic. Based on RED, several variants have been proposed that enhance
the fairness or robustness of RED parameters [13–18]. Self-Configuring RED changes dropping
probabilities according to the variations in average queue sizes [13]. If the average queue size oscillates
around the minimum threshold, then the current dropping probability is too high. On the other hand, if
it oscillates around maximum threshold, then the current dropping probability is too low. Based on the
dynamics of queue sizes, the scheme adjusts packet dropping probabilities that reduce packet loss while
maintaining high link utilizations. Another RED variant, weighted Destination-Based Fair Dropping
(wDBFD), only needs a single queue, and packets are probabilistically dropped before they are enqueued
instead of tail dropping. Furthermore, by adding weights to the drop probabilities of different destination
stations, this scheme realizes destination differentiation. Additionally, wDBFD is more robust in terms
of fairness when subjected to different packet arriving rates. The idea of wDBFD is similar to that of the
RED, but it relies not only on past measurements of queue size but also on recent observed rates of flows.
By using this additional information, wDBFD improves RED’s fairness. However, this scheme also
increases the complexity.

In CSFQ [4], an edge router has to maintain per-flow state and is in charge of state (flow arrive rate)
insertion into packet headers. Whenever a core router receives a packet, CSFQ has to estimate the fair
share rate and uses a simple probabilistic model to accept or discard the new arrival. CSFQ achieves
reasonable fairness; moreover, it pushes complexity toward the edge routers, which simplifies the
sophisticated implementation in the core routers. In general, the number of active flows in core routers
is relatively larger than in edge routers. Therefore, CSFQ can be deployed in network environments

Appl. Sci. 2015, 5 125

consisting of high-speed core routers and moderate-speed edge routers. The architecture of RFQ is
similar to CSFQ, which mainly consists of packet coloring and buffer management [5]. RFQ transfers
the flow arriving rate into a set of layers, with a globally consistent color per layer. Next, the edge routers
insert the color into packet headers. When a packet arrives at a core router, the arrival will be discarded
only if its color level is over the color threshold. The color threshold dynamically changes in accordance
with traffic variations. Compared with CSFQ, RFQ has approximate fairness, but it only carries a simple
color level rather than an explicit flow arriving rate. Furthermore, it wards off exponential averaging
estimation when a packet is generated. In summary, both CSFQ and RFQ schemes classify the routers
as edge or core routers, and only the edge routers maintain per-flow state.

The fairness of RPQ tends to approach that of DRR, and it outperforms several schemes, such as
CSFQ, DDE, CHOKe and FIFO [6]. In addition, RPQ has a complexity of O(1) and is simple to
implement in high-speed networks. However, RPQ has an expensive implementation cost and a large
queue delay. Currently, several TCP variants are adopted by end users, and heterogeneous congestion
control schemes have thus become a characteristic of newly emerging networks. In contrast to pure TCP
connections, the fairness of several well-known AQM schemes, such as RED and CHOKe, among
heterogeneous TCP connections is discussed [19]. We do not consider the effect of TCP variants here,
but it is an interesting topic as an extension of AFQ applications.

3. Adaptive Filtering Queueing

In Figure 1, we depict four main components of AFQ, including accepted traffic estimation, fair
filtering level estimation, a filtering level table and a packet-dropping algorithm. At the end of this
section, we propose a mechanism that permits the scalability of AFQ. If the mean arriving rate of a flow
is larger than the max-min fair rate, such a flow is defined as an aggressive flow; otherwise, this flow is
defined as a non-aggressive flow. In addition, the flow label is composed of a pair of IP
source-destination addresses related to a flow. When a packet arrives at a router, AFQ identifies the
filtering level of the arriving packet by randomly comparing with a flow label from the first level to an
estimated level in the filtering level table. Based on the accepted traffic estimation and the previous fair
filtering level, AFQ updates estimates of the fair filtering level. Finally, AFQ uses a simple
packet-dropping algorithm to determine whether the packet is qualified to be accepted or discarded
according to estimates of the fair filtering level and the filtering level of the arrival.

Appl. Sci. 2015, 5 126

Figure 1. Adaptive Filtering Queueing (AFQ) scheme.

In a router, AFQ estimates accepted traffic 𝐴̂𝐴𝑛𝑛𝑛𝑛𝑛𝑛 passing through the packet dropping component in
a time interval using use Equation (1). The unit of 𝐴̂𝐴𝑛𝑛𝑛𝑛𝑛𝑛 is bits, and 𝑇𝑇𝑑𝑑 denotes the length of such a
time interval.

𝐴̂𝐴𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑘𝑘𝑎𝑎𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 + (1 − 𝑘𝑘𝑎𝑎)𝐴̂𝐴𝑜𝑜𝑜𝑜𝑜𝑜 (1)

𝐴̂𝐴𝑜𝑜𝑜𝑜𝑜𝑜 is the value prior to the updating of 𝐴̂𝐴𝑛𝑛𝑛𝑛𝑛𝑛, and 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 is the amount of traffic accepted in the current
time interval. In addition, 𝑘𝑘𝑎𝑎 is a coefficient used to balance the short-term and long-term estimates of 𝐴̂𝐴𝑛𝑛𝑛𝑛𝑛𝑛.
The estimation of the fair filtering level α� is proportional to 𝐶𝐶𝑇𝑇𝑑𝑑/𝐴̂𝐴𝑛𝑛𝑛𝑛𝑛𝑛, as described in Equation (2).
Similarly, α�𝑜𝑜𝑜𝑜𝑜𝑜 is the value before the updating of α�𝑛𝑛𝑛𝑛𝑛𝑛, and 𝐶𝐶 denotes the router’s link capacity (bits
per second). If 𝐴̂𝐴𝑛𝑛𝑛𝑛𝑛𝑛 is smaller than the idea output traffic 𝐶𝐶𝑇𝑇𝑑𝑑, then α�𝑛𝑛𝑛𝑛𝑛𝑛 increases. A larger α�𝑛𝑛𝑛𝑛𝑛𝑛 will
allow more arriving packets to be accepted. By observing the dynamics of accepted traffic, AFQ can
produce a precise estimate of the fair filtering level.

α�𝑛𝑛𝑛𝑛𝑛𝑛 = α�𝑜𝑜𝑜𝑜𝑜𝑜𝐶𝐶𝑇𝑇𝑑𝑑/𝐴̂𝐴𝑛𝑛𝑛𝑛𝑛𝑛 (2)

AFQ compares the flow label of each arriving packet with a flow label in a filtering level table at
random from filtering level 1 to α�𝑛𝑛𝑛𝑛𝑛𝑛 until there is a hit. The filtering level table consists of multiple
filtering levels, and each filtering level only keeps flow labels, not whole packets, whose utility is to
discriminate the dropping probabilities of arriving packets. If both own the same flow label (i.e., are
coming from the same flow), then a hit occurs. In AFQ, multiple filtering levels work as a hierarchical
filter that filters out the unqualified arriving packets. AFQ may have insufficient discriminability because
of traffic dynamics, which leads to fairness degradation; hence, we should enlarge the α�𝑛𝑛𝑛𝑛𝑛𝑛. We readjust
α�𝑛𝑛𝑛𝑛𝑛𝑛 by 𝑘𝑘𝑏𝑏 times the α�𝑛𝑛𝑛𝑛𝑛𝑛 in Equation (3), denoted by 𝐹𝐹�𝑚𝑚𝑚𝑚𝑚𝑚. 𝑘𝑘𝑏𝑏 is a coefficient whose function is to
enhance the discriminability of AFQ. Finally, the range of flow label comparisons is altered from
filtering level 1 to 𝐹𝐹�𝑚𝑚𝑚𝑚𝑚𝑚. In other words, 𝐹𝐹�𝑚𝑚𝑚𝑚𝑚𝑚 contributes to the realization of sufficient discriminability;
the principle to determine whether arriving packets are accepted or dropped still depends on α�𝑛𝑛𝑛𝑛𝑛𝑛. As a
result, the complexity of AFQ is of O(𝐹𝐹�𝑚𝑚𝑚𝑚𝑚𝑚).

𝐹𝐹�𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑘𝑘𝑏𝑏α�𝑛𝑛𝑛𝑛𝑛𝑛, 𝑘𝑘𝑏𝑏 ≥ 1 (3)

Assuming that packet 𝑖𝑖 has a first hit at filtering level 𝑚𝑚𝑖𝑖, we use Equation (4) to calculate filtering
level 𝑣𝑣𝑖𝑖. A larger 𝑚𝑚𝑖𝑖 implies that the flow of packet 𝑖𝑖 has fewer residing packets in the buffer, which
means that the flow label of packet 𝑖𝑖 will be enrolled into filtering level 𝑣𝑣𝑖𝑖. There are two supplementary

Appl. Sci. 2015, 5 127

rules. First, once packet 𝑖𝑖 encounters an empty filtering level at 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒, then 𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑒𝑒𝑒𝑒𝑒𝑒. Second, if there
is no hit until 𝐹𝐹�𝑚𝑚𝑚𝑚𝑚𝑚, then 𝑣𝑣𝑖𝑖 = 𝐹𝐹�𝑚𝑚𝑚𝑚𝑚𝑚.

𝑣𝑣𝑖𝑖 = { 𝑚𝑚𝑖𝑖 − 1 2 < 𝑚𝑚𝑖𝑖 ≤ 𝐹𝐹�𝑚𝑚𝑚𝑚𝑚𝑚
1 1 ≤ 𝑚𝑚𝑖𝑖 ≤ 2 (4)

After determining the filtering level of packet 𝑖𝑖, AFQ needs to decide its location in filtering level 𝑣𝑣𝑖𝑖
according to Equation (5), denoted by 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. A circular replacement method is used to update the flow
labels in each filtering level. Furthermore, we assume that each filtering level has the same capacity,
denoted by 𝐿𝐿. AFQ updates the filtering level table according to traffic conditions. When the traffic is
heavier, AFQ updates the filtering level table with a higher frequency.

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚((𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 1)𝑚𝑚𝑚𝑚𝑚𝑚 (𝐿𝐿 + 1), 1) (5)

AFQ utilizes a simple packet-dropping algorithm to decide the treatment of packet 𝑖𝑖 , where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖
denotes the dropping probability of packet 𝑖𝑖. Once packet 𝑖𝑖 is accepted, it will be enqueued into the FIFO
buffer; otherwise, it will be discarded immediately. Thus, only the arriving packets whose filtering levels
are equal to or larger than the fair filtering level can be admitted to enter the buffer.

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 = min (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(α�𝑛𝑛𝑛𝑛𝑛𝑛/𝑚𝑚𝑖𝑖), 1) (6)

We propose a mechanism to add to AFQ to simplify the packet comparisons (i.e., the flow labels)
while reducing memory consumption. In this design, the routers are classified as edge or core routers,
similar to CSFQ. Edge routers use hash algorithms, such as SHA-1, to transfer the flow label of each
packet into a key 𝑎𝑎𝑗𝑗 that alleviates the IP dependency. Next, the key 𝑎𝑎𝑗𝑗 is inserted into the packet’s
header. Figure 2 shows that the core routers have to maintain two tables; one is a first-layer table with
size (𝑏𝑏𝑛𝑛, 𝐿𝐿), and the other is a second-layer table with size (𝑛𝑛,𝑝𝑝). When a packet arrives at the core
router, AFQ extracts key 𝑎𝑎𝑗𝑗 with size s from the packet header of the arrival and compares it with the
keys from the first-layer table instead of the flow labels. Next, we use the same circular replacement
method to maintain the keys in the first-layer table. If there is a hit at filtering level z
where 𝑧𝑧 ∈ [𝑏𝑏0, 𝑏𝑏𝑛𝑛] , AFQ has to compare its flow label with a flow label at (𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 , 𝑎𝑎𝑗𝑗) in the
second-layer table. We use Equation (7) to calculate the 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗.

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗 = {𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘) |(𝑧𝑧 < 𝑏𝑏𝑘𝑘) ,𝑘𝑘 ∈ [1,𝑛𝑛]} (7)

If a packet encounters two hits, a real hit happened; otherwise, no real hit happened. A real hit
corresponds to previous mentioned hit in the AFQ algorithm. If there is only a hit in the first table, the
flow label of the arriving packet will replace the flow label at (𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑥𝑥𝑗𝑗, 𝑎𝑎𝑗𝑗) in the second-layer table;
If different flows have the same key, the flow with more arriving packets has a higher chance to be captured
in the second-layer table. In other words, its arriving packets will have a higher probability to be constrained.
Consequently, AFQ can achieve sufficient discriminability. The updating of the
second-layer table differs from the first-layer table in the use of the frequency-based replacement
method. The two-layer mapping mechanism imposes additional burden on edge routers, but it can
efficiently speed up the packet comparisons while reducing memory consumption on core routers. For
instance, if 𝑠𝑠 = 8 bits (get first 8 bits from160 bits producing by SHA-1), 𝐿𝐿 = 32, 𝑏𝑏 = 2, 𝑛𝑛 = 7 and
𝑝𝑝 = 128, the original AFQ requires 32 × 8 × 128 = 32,768 Bytes memory. When using the mechanism,

Appl. Sci. 2015, 5 128

AFQ requires approximately 32 × 1 × 128 + 8 × 128 × 7 = 11,264 Bytes. In other words, memory can be
approximately reduced to two-thirds.

aja52a105 a22

L a1

flow id

a16a120a25

bna120

.

.

ap . . aj .

(b1+1,b2)

(b0,b1)

.

.

.

.

(bn-1+1,bn)

flow id

.

.

aj

b0

b1+1

.

.

a128

flow idflow idflow id

flow id flow id

(a) first-layer table (b) second-layer table

Figure 2. Two-layer mapping mechanism.

To compare the fairness, we define the Normalized Bandwidth Ratio (NBR) for a specific flow based
on Equation (8). NBRj denotes NBR; Dj denotes the mean departure rate; and rj denotes the Mean
Arrival Rate (MAR), all related to flow j. Additionally, f denotes the Max-Min Fair Share Rate (MMFSR).

NBRj = Dj/min (rj, f) (8)

If ∑ rj > Cn
j = 1 , f can be derived from ∑ min�rj, f� = Cn

j = 1 , where n denotes the number of active
flows. Otherwise, f = max (ri), i ∈ n. If a scheme achieves the optimal fairness, then the NBR of each
flow is equal to 1.

4. Simulation Results

We simulated four well-known schemes (RPQ, CSFQ, CHOKe and FIFO) and compared their
fairness by analyzing the NBR behaviors. We developed a software simulator to perform all simulations,
which has been used in our previous study [6]. The traffic types of generating packets in each case are
described in their respective figures. In Figure 3a,b, we consider two categories of network topologies:
those with a single congested link and those with multiple congested links. Unless otherwise specified,
we use the following parameters in the simulations. Each link capacity is of 10 Mbps, and the packet
size is fixed at 1 KB. The buffer size for all schemes is set to 256 KB. In addition, we neglect the
propagation delay of each link. In AFQ, the initial value of α𝑛𝑛𝑛𝑛𝑛𝑛 is set to 32, and the other parameters
are set to 𝑇𝑇𝑑𝑑 = 200 ms, 𝑘𝑘𝑎𝑎 = 0.8 and 𝑘𝑘𝑏𝑏 = 1.5. In RPQ, each output queue is set to 32 KB, and the other
parameters are set as follows: ∆ = 0.8 ms, α = 0.8, 𝐾𝐾𝑑𝑑 = 200 ms and 𝑁𝑁 = 129. With respect to CSFQ, 𝐾𝐾
and 𝐾𝐾α are both set to 200 ms. CHOKe’s parameters are set to the following values: 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡ℎ = 120 KB,
𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡ℎ = 40 KB, 𝑤𝑤𝑞𝑞 = 0.002 and 𝑚𝑚𝑚𝑚𝑚𝑚𝑝𝑝 = 0.02. Finally, the duration on each simulation is 200 s.

Appl. Sci. 2015, 5 129

Router.
.
.

Sources

Sink

Flow 1

Flow 2

Flow 10

(a)

.

.

.
Router 1

Sink

. . .

Router 2 Router 3

Flow 1

Flow 10

Flow 11 Flow 19

Flow 20 Flow 28
. . .

(b)

Figure 3. Network topologies. (a) A single congested link. (b) Multiple congested links.

4.1. A Single Congested Link

We consider four cases where a single congested link is shared by 10 flows, as depicted in Figure 3a. In
the first case, the flows are indexed from 1 to 10; hence, the MMFSR is 1.4 Mbps. The simulation results
are depicted in Figure 4. In CHOKe and FIFO, the shared bandwidth of flows 1 to 5 is roughly
proportional to their MARs. Accordingly, their NBRs are close to constant. Flows 6 to 10 have the same
MBR at 10 Mbps, so they fairly share the grabbed bandwidth from flows 1 to 5. Again, their NBRs
maintain a constant value. FIFO is the simplest scheme, but it shows the worst fairness. Although
CHOKe performs better than the FIFO, it can provide only limited fairness. In AFQ, the NBRs of flows
1 to 5 reach the largest values, and the NBRs of flows 6 to 10 reach the lowest values. In other words,
AFQ achieves the best fairness. The NBRs of flows 1 to 5 in AFQ, RPQ and CSFQ all decrease when
MAR is close to MMFSR because those flows are more likely to be discarded because of traffic
burstiness. From the simulations, AFQ outperforms RPQ, and RPQ outperforms CSFQ in fairness.
Therefore, ARQ can effectively protect the fairness of non-aggressive flows from damage due to
aggressive flows.

Appl. Sci. 2015, 5 130

Figure 4. The Normalized Bandwidth Ratio (NBR) achieved by each of the ten flows sharing
a bottleneck link; flows 1 to 5 belong to non-aggressive flows, and flows 6 to 10 belong to
aggressive flows.

In the second case, we consider that all flows are composed of aggressive flows. The MAR of each
flow is larger than the MMFSR (1 Mbps). The simulation results are depicted in Figure 5. Compared
with the first case, flows 6 to 10 can obtain less additional bandwidth from flows 1 to 5 in CHOKe and
FIFO. However, they have larger NBRs because the MMFSR is smaller in this case. CHOKe and FIFO
have better fairness for two reasons: flows have approximate MARs, and the MBR of each flow is larger
than the MMFSR. Similarly, RPQ and CSFQ both demonstrate better fairness; in addition, they both
demonstrate approaching fairness. Repeatedly, AFQ achieves the best fairness. Consequently, RPQ can
fairly allocate bandwidth under extreme traffic conditions where all flows are aggressive flows.

Figure 5. The NBR achieved by each of the ten flows sharing a bottleneck link, with all
flows belonging to aggressive flows.

Appl. Sci. 2015, 5 131

In the third case, we consider flows consisting of three magnitudes of MARs, where the MMFSR is
1.375 Mbps. The MARs of flows 1 to 3 and flows 4 to 6 equal 0.5 Mbps and 1 Mbps, respectively.
In addition, the MAR of flows 7 to 10 is 6 Mbps. The simulation results are depicted in Figure 6.
The MARs of flows 1 to 6 is smaller than the MMFSR, so their NBRs are constant in CHOKe and FIFO.
In RPQ and CSFQ, the NBRs of flows 1 to 3 are larger than those of flows 4 to 6. Flows 1 to 3 have
lower MARs, so they have less chance of being mistakenly discarded. The MARs of flows 4 to 6 are
close to the MMFSR; hence, their arriving packets are more likely to be discarded during traffic
burstiness. The NBRs of AFQ are better than those of RPQ and CSFQ. As a result, RPQ still keeps the
best fairness under various traffic conditions.

Figure 6. The NBR achieved by each of the ten flows sharing a bottleneck link, with flows
consisting of three magnitudes of Mean Arrival Rate (MAR)s.

Figure 7. The NBR achieved by each of the ten flows sharing a bottleneck link, with
diverse MARs.

Appl. Sci. 2015, 5 132

In the fourth case, we consider that all flows belong to aggressive flows but that their MARs are
diverse. The simulation results are depicted in Figure 7, and the MMFSR is 1 Mbps. Flow 1 is the only
non-aggressive flow, which has a lower NBR due to larger traffic burstiness. FIFO still keeps the worst
NBRs, whose trends are proportional to the MAR of each flow. We find that traffic load dominates the
fairness of FIFO. Additionally, CHOKe is affected due to the same reason, but its fairness is better than
that of FIFO. CSFQ has to estimate the MAR of each flow; therefore, traffic variations can influence
fairness. However, exponential flow rate estimation methods can relieve such an effect. The fairness of
RPQ is close to that of CSFQ, but it can also enhance fairness by increasing the number of output queues.
As mentioned previously, this also reduces larger queueing delays. AFQ repeatedly outperforms the
other schemes. In Figures 4–7, we conclude that AFQ is able to achieve robust and optimal fairness
under a single congested link, where various traffic conditions are considered.

4.2. Multiple Congested Links

We now analyze how the NBRs of five flows with smaller MARs are affected by other flows with
larger MARs under three congested links. We performed two cases based on the topology shown in
Figure 3b. Flows 1 to 5 send at 0.2, 0.4, 0.6, 0.8 and 1 Mbps, and the others send at 10 Mbps. The
capacity of each link is 10 Mbps so that each link between routers is congested. We consider the NBRs
of flows 1 to 5 here because their fairness can be damaged by other aggressive flows. The simulation
results are illustrated in Figure 8, and the MMFSR is 0.363 Mbps at the last router. The NBRs of
flows 1 to 5 are all close to 0 in CHOKe and FIFO. In other words, they both fail to provide fairness.
When the number of traversing routers increases, CSFQ gradually loses precision on estimates of the
fair share rate and MAR of each flow. As a result, AFQ performs better than RPQ, while RPQ performs
much better than CSFQ. AFQ achieves the best fairness because it can dynamically filter the arriving
packets according to traffic variations.

Figure 8. The NBR achieved by flows 1 to 5 with lower ON-OFF burstiness, with other
flows all consisting of 10 Mbps.

In the second case, we increase double traffic burstiness to flows 1 to 5, and the MBR of flows 6 to
28 change to 8 Mbps. Figure 9 illustrates the NBRs of flows 1 to 5, and the MMFSRs are the same as in

Appl. Sci. 2015, 5 133

the first case. Repeatedly, AFQ proves to be the scheme with the best fairness. Although CSFQ is worse
than RPQ, it is still much better than CHOKe and FIFO. AFQ, RPQ and CSFQ degrade their fairness
compared with the first case because the traffic burstiness of flows 1 to 5 is double. According to our
simulation results, we conclude that AFQ can achieve the best degree of fairness under different network
topologies and various traffic conditions.

Figure 9. The NBR achieved by flows 1 to 5 with double ON-OFF burstiness, with other
flows all consisting of 8 Mbps.

5. Conclusions

In this paper, we present a scalable and efficient AFQ scheme that achieves fair bandwidth sharing
under various traffic conditions. The routers employ a simple packet-dropping algorithm to determine
whether arriving packets are accepted or dropped according to the filtering levels of arriving packets and
the estimates of fair filtering levels. In addition, we propose a mechanism that can effectively simplify
packet comparisons while reducing memory consumption. Accordingly, AFQ is suitable for deployment
in high-speed networks. The mechanism works under the same router environments as CSFQ. We
analyzed the fairness of AFQ and four other schemes under different network topologies and different
traffic conditions. The simulation results demonstrate that AFQ is superior to RPQ and CSFQ and
performs much better than CHOKe and FIFO. In the future, we aim to study the effect of various TCP
variants on AFQ. Moreover, we plan to study an enhanced AFQ version to ensure that it can support
real-time applications while keeping fairness using dynamic bandwidth readjustment.

Acknowledgments

The author acknowledges financial support from the Shih-Chien University and the Ministry of
Science and Technology in Taiwan, under the grant numbers USC 103-05-05012 and MOST
103-2221-E-158-001, respectively.

Appl. Sci. 2015, 5 134

Conflicts of Interest

The author declares no conflict of interest.

References

1. Floyd, S.; Jacobson, V. Random early detection gateways for congestion avoidance. IEEE/ACM
Trans. Netw. 1993, 1, 397–413.

2. Pan, R.; Prabhakar, B.; Psounis, K. CHOKe: A stateless active queue management scheme for
approximating fair bandwidth allocation. In Proceedings of the Nineteenth IEEE Computer and
Communications Societies (INFOCOM 2000), Tel Aviv, Israel, 26–30 March 2000; pp. 942–951.

3. Chhabra, P.; John, A.; Saran, H.; Shorey, R. Controlling malicious sources at Internet gateways.
In Proceedings of the IEEE International Conference (ICC’03), Anchorage, AL, USA,
11–15 May 2003; pp. 1636–1640.

4. Stoica, I.; Shenker, S.; Zhang, H. Core-stateless fair queueing: A scalable architecture to approximate
fair bandwidth allocations in high-speed networks. IEEE/ACM Trans. Netw. 2003, 11, 33–46.

5. Cao, Z.; Wang, Z.; Zegura, E. Rainbow fair queueing: Fair bandwidth sharing without per-flow state.
In Proceedings of the Nineteenth IEEE Computer and Communications Societies (INFOCOM 2000),
Tel Aviv, Israel, 26–30 March 2000; pp. 922–931.

6. Yang, J.P. Rotating preference queues: An efficient queue management scheme for fair bandwidth
allocation. IEEE Commun. Lett. 2013, 17, 420–423.

7. Shreedhar, M.; Varghese, G. Efficient fair queuing using deficit round-robin. IEEE/ACM Trans.
Netw. 1996, 4, 375–385.

8. Yang, J.P. Dynamic detection and expulsion buffer management scheme for high-speed networks.
IEICE Trans. Commun. 2011, E94-B, 2243–2246.

9. Zhou, X.; Ippoliti, D.; Zhang, L. Fair bandwidth sharing and delay differentiation: Joint packet
scheduling with buffer management. Comput. Commun. 2008, 31, 4072–4080.

10. Laias, E.; Awan, I. An interactive QoS framework for fixed WiMAX networks. Simul. Model. Pract.
Theory 2010, 18, 291–303.

11. Alsahag, A.M.; Ali, B.M.; Noordin, N.K.; Mohamad, H. Fair uplink bandwidth allocation and
latency guarantee for mobile WiMAX using fuzzy adaptive deficit round robin. J. Netw. Comput.
Appl. 2014, 39, 17–25.

12. Valente, P. Reducing the execution time of fair-queueing packet schedulers. Comput. Commun.
2014, 47, 16–33.

13. Feng, W.C.; Kandlur, D.D.; Saha, D.; Shin, K.G. A self-configuring RED gateway. In Proceedings
of the Eighteenth IEEE Computer and Communications Societies (INFOCOM’99), New York, NY,
USA, 21–25 March 1999; pp. 1320–1328.

14. Alasem, R.; Abu-Mansour, H. EF-AQM: Efficient and fair bandwidth allocation AQM scheme for
wireless networks. In Proceedings of the Computational Intelligence, Communication Systems and
Networks (CICSyN), Liverpool, UK, 28–30 July 2010; pp. 169–172.

Appl. Sci. 2015, 5 135

15. Aldabbagh, G.; Rio, M.; Darwazeh, I. Fair early drop: An active queue management scheme for the

control of unresponsive flows. In Proceedings of the 10th Computer and Information Technology
(CIT), Bradford, UK, 29 June–1 July 2010; pp. 2668–2675.

16. Yilmaza, M.; Ansari, N. Achieving destination differentiation in ingress aggregated fairness for
resilient packet rings by weighted destination based fair dropping. Comput. Netw. 2014, 67, 43–54.

17. Khosroshahi, M. UARA in edge routers: An effective approach to user fairness and traffic shaping.
Int. J. Commun. Syst. 2012, 25, 169–184.

18. Abdelhafid, A.; Mohamed-el-Amine, B.; Pascal, L. A radio-aware worst-case fair weighted fair
queuing scheduler for WiMAX networks. Int. J. Commun. Syst. 2014, 27, 13–30.

19. Xue, L.; Kumar, S.; Cui, C.; Park, S.-J. A study of fairness among heterogeneous TCP variants over
10 Gbps high-speed optical networks. Opt. Switch. Netw. 2014, 13, 124–134.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

	Adaptive Filtering Queueing for Improving Fairness
	1. Introduction
	2. Related Work
	3. Adaptive Filtering Queueing
	4. Simulation Results
	4.1. A Single Congested Link
	4.2. Multiple Congested Links

	5. Conclusions
	Acknowledgments
	Conflicts of Interest
	References

