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Abstract: A series of new 1,3-diaryl-5-(1-phenyl-3-methyl-5-chloropyrazol-4-yl)-4,5-

dihydropyrazole derivatives have been synthesized under sonication conditions in ethanol 

or methanol/glacial acetic acid mixture (5/1 ratio) with two equivalents of hydrazines and 

seven kinds of chalcone-like heteroanalogues obtained from 5-chloro-3-methyl-1-phenyl-

1H-pyrazole-4-carbaldehyde. The structures were established on the basis of NMR, IR, MS 

and element analysis. This method provides several advantages over current reaction 

methodologies, including a simple work-up procedure, shorter reaction times (2–20 min) 

and good yields (65%–80%). 
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1. Introduction 

Pyrazole and pyrazoline (dihydropyrazoles) derivatives are a class of heterocyclic compounds that 

have drawn much attention, due to their biological and pharmaceutical activities [1]. A brief survey on 

the biological activities of various pyrazole and pyrazoline derivatives showed anti-inflammatory [2–6], 
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antitumor [7–10], antifungal [11–13], antiviral and antibacterial [12,14,15], as well as fluorescent 

properties [16–21]. In addition to these effects, in the last decade, pyrazolines and substituted 

pyrazolines have emerged as promising anti-depressant and anti-convulsant agents [22–25]. Of all the 

synthesized pyrazoline derivatives, the 1,3,5-tri-substituted derivatives are of particular importance. 

So, it is important to find simple and convenient procedures for pyrazole and pyrazoline preparations 

with different substituent in their moiety, with the aim of obtaining some novel heterocyclic 

compounds with potentially enhanced properties. 

The development of new, rapid and clean synthetic routes toward focused libraries of  

nitrogen-containing heterocycles is of great importance to both synthetic and medicinal chemists. They 

have been reported in literature procedures for the design and development of new heterocycles 

(pyrazole and pyrazoline derivatives) by means of multistep reactions [26–28], metal-catalyzed 

synthesis [29,30], domino reaction of 2-acylaziridines with the Huisgen zwitterions [31] and  

1,3-dipolar cycloaddition reactions [32] to access important heterobiaryls. 

The first synthesis of the pyrazoline framework by the reaction of an α,β-enone with a hydrazine 

derivative was published by Fischer and Knoevenagel [33]. Then, the reaction of α,β-unsaturated 

aldehydes and ketones with hydrazine derivatives became one of the most popular methods for the 

synthesis of pyrazolines [34–37]. 

Cyclization of chalcones, leading to pyridine, pyrimidine and pyrazoline derivatives, has been a 

developing field within the realm of heterocyclic chemistry for the past several years, because of their 

ready accessibility and the broad spectrum of biological activity of the products [38–44]. These 

observations led us to synthesize chalcones and its corresponding pyrazoline, exploring  

simple procedures. 

Sonochemistry is attracting considerable research activity within the synthetic chemistry 

community, because it offers a new approach to the preparation of organic compounds. In the last two 

decades, sonochemical methods have become widely used in organic synthesis [45–47]. Nowadays, 

the ultrasonic irradiation technique has been employed, not only to decrease reaction times, but also to 

improve yields in a large variety of polyfunctionalized heterocycles. Compared with traditional 

methods, this method is more convenient and easily controlled. A large number of organic reactions 

can be carried out in a higher yield shorter reaction time and milder conditions under ultrasound [48–52]. 

2. Experimental Section  

2.1. Apparatus and Analysis 

Melting points were determined using a Thermo Scientific Fluke 51 II, model IA 9100 melting 

point apparatus and are reported uncorrected. 1H NMR (400 MHz) and 13C NMR (100 MHz) spectra 

were recorded at room temperature on a Bruker Ultra Shield 400 using tetramethylsilane (TMS) as the 

internal standard and deuterated chloroform (CDCl3) as the solvent. EI-MS were run on a Shimadzu 

GC-MS 2010 spectrometer, which was operating at 70 eV. IR spectra were recorded as KBr pellets on 

a Shimadzu FTIR-8400 instrument. The ultrasonic irradiation was performed by using a Branson 

ultrasonic cleaner bath, model 1510, AC input 115 V, output 50 W, 1.9 liters with a mechanical timer 

(60 min with continuous hold) and heater switch, 47 KHz. High Resolution Mass Spectra (HRMS) 
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were recorded in a Waters Micromass AutoSpec NT spectrometer (STIUJA). The elemental analyses 

have been obtained using a LECO CHNS-900 and Thermo Finnigan FlashEA1112 CHNS-O (STIUJA) 

elemental analyzers. The hydrazines and solvents used, such as, ethanol, dichloromethane, glacial 

acetic acid and ethyl acetate, were obtained from Merck Chemical Company. The chalcone-like 

heteroanalogues 1 were obtained according to the methodology described [39,53,54]. 

2.2. General Procedure for the Synthesis of 5-pyrazol-4,5-dihydropyrazoles Derivatives 3 

A solution of equimolar amounts of chalcone-like heteroanalogues 1 (1 mmol) and hydrazine 2  

(1 mmol), using as solvent ethanol or methanol/acetic acid mixture (5/1 ratio, 10 mL) in an Erlenmeyer, 

was placed in a water bath and sonicated at ambient conditions (35–40 °C), for an appropriate time 

(Table 2), until the reaction was completed (the reaction was monitored by TLC). The reaction mixture 

was then treated with cold ethanol and filtered to leave a solid product, which was crystallized from a 

hexane/ethanol mixture to yield pure product 3. All the products were characterized by their physical 

and spectral data (IR, MS, 1H NMR, 13C NMR) and elemental analysis. 

2.2.1. Compound 3a 

5-Chloro-4-(4,5-dihydro-1-phenyl-3-p-tolyl-1H-pyrazol-5-yl)-3-methyl-1-phenyl-1H-pyrazole. 

Yellow solid, 80%. mp 133–136 °C. 1H NMR (400 MHz, DMSO-d6) δ (ppm): 2.12 (s, 3H, CH3), 2.32 

(s, 3H, CH3), 3.32 (m, 1H, CH2), 3.92 (m, 1H, CH2), 5.66 (m, 1H, CH), 6.95 (t, 1H, Hp, N-Ph,  

J = 7.43 Hz), 7.17 (d, 2H, Ho, N-Ph, J = 8.28 Hz), 7.28 (t, 2H, Hm, N-Ph, J = 8.54 Hz), 7.39 (t, 1H, 

Hp, N-Ph, J = 7.54 Hz), 7.47 (t, 2H, Hm, N-Ph, J = 8.28 Hz), 7.49 (d, 2H, Hm, 3-aryl, J = 7.54 Hz), 

7.52 (d, 2H, Ho, N-Ph, J = 8.45 Hz), 7.63 (d, 2H, Ho, 3-aryl, J = 7.53 Hz). 13C NMR δ (ppm): 13.3 

(CH3), 14.8 (CH3), 41.7 (CH2), 54.3 (CH), 113.8 (Cm, N-Ph), 118.5 (C4 pyrazole), 120.1 (Cp, N-Ph), 

121.6 (Cp, 3-aryl), 125.0 (Co, N-Ph), 126.8 (Cm, 3-aryl), 127.9 (Cp, N1-Ph), 128.7 (Cm, N1-Ph), 

129.1 (Co, N1-Ph), 131.5 (Ci, 3-aryl), 132.0 (Co, 3-aryl), 137.6 (Ci, N1-Ph), 144.3 (C5 pyrazole), 

145.8 (C3 pyrazoline), 147.7 (C3 pyrazole). HR-MS Calc. For C26H23ClN4, 426.1611, found 426.1618. 

FT-IR (KBr, ν en cm−1), 1592 (C=N, st), 1502 (C=C, st). A. E: Calc. For C26H23ClN4 C: 73.14, H: 

5.43, N: 13.12, found C: 73.28, H: 5.93, N: 12.99. 

2.2.2. Compound 3b 

4-(3-(4-Bromophenyl)-4,5-dihydro-1-phenyl-1H-pyrazol-5-yl)-5-chloro-3-methyl-1-phenyl-1H-

pyrazole. Yellow solid, 75%. mp 163–165 °C. 1H NMR (400 MHz, CDCl3 RT) δ (ppm): 2.17 (CH3), 

3.20–3.79 (m, 2H, CH2), 5.38 (q, 1H, CH), 6.86 (t, 1H, Hp, N-Ph, J = 7.28 Hz), 7.13 (d, 2H, Ho, N-Ph, 

J = 8.53 Hz), 7.25 (t, 2H, Hm, N-Ph, J = 7.28 Hz), 7.41 (t, 1H, Hp, N-Ph, J = 7.03 Hz), 7.49 (t, 2H, 

Hm, N-Ph, J = 8.03 Hz), 7.54 (d, 2H, Hm, 3-aryl, J = 8.54 Hz), 7.55 (d, 2H, Ho, N-Ph, J = 7.03 Hz), 

7.63 (d, 2H, Ho, 4-(3-aryl), J = 8.53 Hz). 13C NMR δ (ppm): 13.3 (CH3), 40.7 (CH2), 55.3 (CH), 113.4 

(Cm, N-Ph), 117.5 (C4 pyrazole), 119.7 (Cp, N-Ph), 122.6 (Cp, 3-aryl), 124.8 (Co, N-Ph), 127.1 (Cm, 

3-aryl), 128.2 (Cp, N1-Ph), 129.0 (Cm, N1-Ph), 129.1 (Co, N1-Ph), 131.5 (Ci, 3-aryl), 131.8 (Co,  

3-aryl), 138.0 (Ci, N1-Ph), 144.3 (C5 pyrazole), 145.6 (C3 pyrazoline), 147.7 (C3 pyrazole). MS  

(70 eV) m/z (%) = 494/492 (M+2/M+, 8/29), 490(23), 91(100), 77(61), 64(28), 51(28). HR-MS Calc. 
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For C25H20BrClN4, 490.0560, found 490.0579. FT-IR (KBr, ν en cm−1), 1594 (C=N, st), 1498 (C=C, 

st). A. E: Calc. For C25H20BrClN4 C: 61.05, H: 4.10, N: 11.39, found C: 61.07, H: 3.83, N: 11.28. 

2.2.3. Compound 3c 

5-Chloro-4-(3-(4-chlorophenyl)-4,5-dihydro-1-phenyl-1H-pyrazol-5-yl)-3-methyl-1-phenyl-1H-

pyrazole. Yellow solid, 70%. mp 153–156 ºC. 1H NMR (400 MHz, CDCl3 RT) δ (ppm): 2.07 (s, 3H, 

CH3), 3.28 (m, 1H, CH2), 3.88 (m, 1H, CH2), 5.46 (m, 1H, CH), 6.77 (t, 1H, Hp, J = 7.24 Hz), 7.03 (d, 

2H, Ho, aryl, J = 7.65 Hz), 7.21 (t, 2H, Hm, J = 7.24 Hz), 7.43–7.54 (m, 7H, Hm, Hp, Ho aryl, Hp 

aryl), 7.77 (d, 2H, Ho, J = 8.48 Hz). 13C NMR δ (ppm): 12.8 (CH3), 40.1 (CH2), 54.4 (CH), 112.8 

(Cm), 117.3 (C4 pyrazole), 119.1 (Cp), 124.4 (Ci), 124.6 (Co), 127.3 (Cm aryl), 128.3 (Cp), 128.7 (Co 

aryl), 129.0 (Cm), 129.2 (Co), 131.0 (Ci aryl), 133.1 (Cp aryl), 137.5 (Ci), 143.8 (C5 pyrazole), 146.5 

(C3 dihidropyrazole), 147.1 (C3 pyrazole). HR-MS Calc. For C25H20Cl2N4 446.1065, found 446.1064. 

FT-IR (KBr, ν en cm−1), 1598 (C=N, st), 1495 (C=C, st). A. E: Calc. For C25H20Cl2N4 C: 67.12, H: 

4.51, N: 12.52, found C: 67.14, H: 4.49, N: 12.51. 

2.2.4. Compound 3d 

5-Chloro-4-(4,5-dihydro-3-(4-nitrophenyl)-1-phenyl-1H-pyrazol-5-yl)-3-methyl-1-phenyl-1H- 

pyrazole. Yellow solid, 80%. mp 178–180 °C. 1H NMR (400 MHz, CDCl3 RT) δ (ppm): 2.30 (CH3), 

3.17 (m, 1H, CH2), 3.44 (m, 1H, CH2), 5.11 (q, 1H, CH), 7.48 (m, 5H, CH), 7.80 (d, 2H, Hm, 3-aryl,  

J = 9.1 Hz), 8.23 (d, 2H, Ho, 3-aryl, J = 9.1 Hz). 13C NMR δ (ppm): 13.4 (CH3), 37.6 (CH2), 55.3 

(CH), 116.3 (C4, pyrazole), 123.7 (Cm, 3-aryl), 124.6 (Co), 125.9 (Cm), 128.0 (Cp), 128.7 (Co,  

3-aryl), 128.9 (Ci, 3-aryl), 137.7 (Ci), 138.6 (Cp, 3-aryl), 147.1 (C5, pyrazole), 147.8 (C3, pyrazole), 

148.5 (C3, pyrazoline). HR-MS Calc. For C19H16ClN5O2 381.0993, found 381.0983. FT-IR (KBr,  

ν en cm−1), 1595 (C=N, st), 1502 (C=C, st). A. E: Calc. For C19H16ClN5O2 C: 59.77, H: 4.22, N: 18.34, 

found C: 59.28, H: 3.93, N: 17.99. 

2.2.5. Compound 3e 

5-Chloro-4-(4,5-dihydro-3-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-5-yl)-3-methyl-1-phenyl-1H-

pyrazole. Yellow solid, 80%, mp 130–132 °C. 1H NMR CDCl3 : 2.14 (CH3), 3.40–3.88 (m, 2H, CH2), 

3.91 (s, 3H, OCH3), 5.25 (q, 1H, CH), 6.43 (d, 2H, Hm 4-(3-aryl), J = 8.78 Hz), 7.68 (d, 2H, Ho  

4-(3-aryl), J = 8.79 Hz), 7.12 (d, 2H, Ho 4-(N-aryl) J = 9.07 Hz), 7.15 (d, 2H, Hm 4-(N-aryl), J = 9.04 Hz), 

7.39 (t, 1H, Hp, N-Ph), 7.47 (t, 2H, Hm, N-Ph), 7.52 (d, 2H, Ho, N-Ph, J = 7.53 Hz), 7.03 (d, 2H, 

CHo, N1-aryl, J = 8.78 Hz), 7.19 (d, 2H, CHm, N1-aryl, J = 9.04 Hz), 7.40 (m, 3H, CHp N-Ph, CHm 

C3-aryl, J = 8.53 Hz), 7.49 (t, 2H, CHm N-Ph), 7.54 (d, 2H, CHo-Ph), 7.68 (d, 2H, CHo C3-aryl,  

J = 8.54 Hz). 13C NMR δ (ppm): 12.7 (CH3), 41.0 (CH2), 55.1 (CH), 114.0 (C4, pyrazole), 123.8 (Cm, 

3-aryl), 124.6 (Co), 126.9 (Cm), 128.1 (Cp), 128.8 (Co, 3-aryl), 129.4 (Ci, 3-aryl), 137.8 (Ci), 140.0 

(Cp, 3-aryl), 147.7 (C5, pyrazole), 148.9 (C3, pyrazole), 151.7 (C3, pyrazoline). MS (70 eV)  

m/z (%) = 442 (M+2, 96), 440 (100), 405 (59), 91 (75), 77 (83). FT-IR (KBr, ν en cm-1), 1597 (C=N, 

st), 1497 (C=C, st). A. E: Calc. For C26H23ClN4O C: 70.50, H: 5.23, N: 12.65, found C: 70.08, H: 5.03,  

N: 11.99. 
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2.2.6. Compound 3f 

5-Chloro-4-(4,5-dihydro-3-(3,4,5-trimethoxyphenyl)-1-phenyl-1H-pyrazol-5-yl)-3-methyl-1-phenyl 

-1H-pyrazole. Yellow solid, 75%, mp 118–120 °C. 1H NMR CDCl3 : 2.12 (CH3), 3.78 (m, 9H, 

methoxyl, 1H, CH2), 3.42–3.48, 3.90–3.95 (m, 2H, CH2), 5.34–5.39 (q, 1H, CH), 6.88 (t, 1H, Hp,  

N-Ph), 7.19 (d, 2H, Ho, N-Ph), 7.25 (t, 2H, Hm, N-Ph), 7.38 (t, 1H, Hp, N1-Ph), 7.49 (t, 2H, Hm,  

N1-Ph), 7.51 (d, 2H, Hm, 4-(3-aryl), J = 8.53 Hz), 7.55 (d, 2H, Ho, N1-Ph), 7.60 (d, 2H, Ho,  

4-(3-aryl), J = 8.55 Hz). FT-IR (KBr, ν en cm−1), 1595 (C=N, st), 1500 (C=C, st).  

2.2.7. Compound 3g 

4-(3-(Benzo[d][1,3]dioxol-6-yl)-4,5-dihydro-1-phenyl-1H-pyrazol-5-yl)-5-chloro-3-methyl-1-

phenyl-1H-pyrazole. Brown solid, 65%, mp 220–222 °C. 1H NMR CDCl3 : 2.79 (CH3), 3.52–3.57, 

3.80–3.88 (m, 2H, CH2), 5.90 (s, 2H, CH2-dioxol), 5.38–5.41(q, 1H, CH), 6.88 (t, 1H, Hp, N-Ph), 7.19 

(d, 2H, Ho, N-Ph), 7.25 (t, 2H, Hm, N-Ph), 7.38 (t, 1H, Hp, N1-Ph), 7.49 (t, 2H, Hm, N1-Ph), 7.51 (d, 

2H, Hm, 4-(3-aryl), J = 8.53 Hz), 7.55 (d, 2H, Ho, N1-Ph), 7.60 (d, 2H, Ho, 4-(3-aryl), J = 8.55 Hz). 
13C NMR δ (ppm): 12.9 (CH3), 41.2 (CH2), 55.3 (CH), 114.2 (Co, 3-aryl), 119.1 (C4, pyrazole), 124.8 

(Co), 127.1 (Cm), 128.4 (Cp), 133.8 (Ci), 149.1 (C5, pyrazole). HR-MS Calc. For C26H21ClN4O2 

456.2112, found 456.1217. FT-IR (KBr, ν en cm-1), 1598 (C=N, st), 1498 (C=C, st). 

2.2.8. Compound 3h 

5-Chloro-4-(1-(4-chlorophenyl)-4,5-dihydro-3-p-tolyl-1H-pyrazol-5-yl)-3-methyl-1-phenyl- 

1H-pyrazole. Yellow solid, 80%, mp 158–160 °C. 1H NMR (400 MHz, CDCl3 RT) δ (ppm): 2.13 

(CH3), 2.38 (CH3), 3.20 (m, 1H, CH2), 3.79 (m, 2H, CH2), 5.29 (q, 1H, CH), 7.01 (d, 2H, Hm, N-aryl,  

J = 9.11 Hz), 7.16 (d, 2H, Ho, N-aryl, J = 9.09 Hz), 7.21 (d, 2H, Hm, 3-aryl, J = 7.86 Hz), 7.39 (t, 1H, 

Hp, J = 7.24 Hz), 7.47 (t, 2H, Hm, J = 7.86 Hz), 7.52 (d, 2H, Ho, J = 7.24 Hz), 7.63 (d, 2H, Ho, 3-aryl, 

J = 8.27 Hz). 13C NMR δ (ppm): 13.3 (CH3), 21.4 (CH3), 41.2 (CH2), 55.1 (CH), 114.3 (Co, N-aryl), 

117.3 (C4, pyrazole), 124.0 (Ci, N-aryl), 124.8 (Co), 125.7 (Co, 3-aryl), 128.2 (Cp), 128.9 (Cm,  

N-aril), 129.0 (Cm), 129.4 (Cm, 3-aryl), 133.9 (Ci, 3-aryl), 138.0 (Ci), 139.1 (Cp, 3-aryl), 143.2 (Cp, 

N-aryl), 147.6 (C3, pyrazole), 147.8 (C3, pyrazoline), 149.0 (C5, pyrazole). HR-MS Calc. For 

C26H22Cl2N4 460.1222, found 460.1217. FT-IR (KBr, ν en cm−1), 1592 (C=N, st), 1491 (C=C, st).  

2.2.9. Compound 3i 

4-(1,3-bis(4-Chlorophenyl)-4,5-dihydro-1H-pyrazol-5-yl)-5-chloro-3-methyl-1-phenyl-1H-pyrazole. 

Yellow solid, 70%. mp 150–152 °C. 1H NMR (400 MHz, CDCl3 RT) δ (ppm): 2.14 (CH3), 3.21 (m, 

1H, CH2), 3.80 (m, 1H, CH2), 5.36 (q, 1H, CH), 7.03 (d, 2H, Ho, N1-aryl, J = 8.78 Hz), 7.19 (d, 2H, 

Hm, N1-aryl, J = 9.04 Hz), 7.40 (m, 3H, Hp N-Ph, Hm C3-aryl, J = 8.53 Hz), 7.49 (t, 2H, Hm N-Ph), 

7.54 (d, 2H, Ho Ph, J = 8.28 Hz), 7.68 (d, 2H, Ho C3-aryl, J = 8.54 Hz). 13C NMR δ (ppm): 12.9 

(CH3), 40.6 (CH2), 54.9 (CH), 114.1 (Cm, N1-aryl), 116.8 (C4 pyrazole), 124.2 (Ci N1-aryl), 124.5 

(Co N1-aryl), 124.7 (C5 pyrazole), 126.6 (Cm C3-aryl), 127.9 (Cp Ph), 128.6 (Co C3-aryl), 128.7 (Co 

Ph), 130.5 (Ci C3-aryl), 134.4 (Cp C3-aryl), 137.6 (Ci-Ph), 142.5 (Ci N1-aryl), 145.9 (C3), 147.3 (C3 

pyrazole). MS (70 eV) m/z (%) = 485/483 (M+5/M+3, 3/9), 484/482 (M+4/M+2, 11/31), 480 (M+, 33), 
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321/320/319 (7/4/16), 139/137 (4/11), 127/125 (26/73), 113/111 (5/15), 99/97 (5/20), 87/85 (3/12), 

83/81 (23/52), 79/77 (6/20), 71/69 (21/100), 57 (33), 55 (29). HR-MS Calc. For C25H19Cl3N4 

480.0675, found 480.0663. FT-IR (KBr, ν en cm−1), 1584 (C=N, st), 1488 (C=C, st).  

2.2.10. Compound 3j 

5-Chloro-4-(1-(4-chlorophenyl)-4,5-dihydro-3-(4-methoxyphenyl)-1H-pyrazol-5-yl)-3-methyl- 

1-phenyl-1H-pyrazole. Yellow solid, 80%. mp 128–130 °C. 1H NMR (400 MHz CDCl3 RT) δ (ppm): 

2.13 (CH3), 3.19 (m, 1H, CH2), 3.78 (m, 1H, CH2), 3.85 (s, 3H, OCH3), 5.27 (q, 1H, CH), 6.93 (d, 2H, 

Hm 3-aryl, J = 8.78 Hz), 7.00 (d, 2H, Ho N-aryl J = 9.03 Hz), 7.15 (d, 2H, Hm N-aryl, J = 9.04 Hz), 

7.39 (t, 1H, Hp, N-Ph, J = 7.78 Hz), 7.47 (t, 2H, Hm, N-Ph, J = 8.03 Hz), 7.52 (d, 2H, Ho, N-Ph,  

J = 7.53 Hz), 7.68 (d, 2H, Ho 3-aryl, J = 8.79 Hz). 13C NMR δ (ppm): 13.3 (CH3), 41.6 (CH2), 55.4 

(OCH3), 55.7 (CH), 114.8 (Cm, 3-aryl), 128.0 (Co, 3-aryl), 125.7 (Ci, 3-aryl), 161.3 (Cp, 3-aryl), 

148.6 (C3 pyrazoline), 118.1 (C4 pyrazole), 124.0 (Co, N1-aryl), 124.6 (Ci, N1-aryl), 114.9 (Cm,  

N1-aryl), 144.2 (C5 pyrazole), 148.3 (C3 pyrazole), 137.8 (Ci, N-Ph), 125.6 (Co, N-Ph), 128.9 (Cp,  

N-Ph), 129.6 (Cm, N-Ph). MS (70 eV) m/z (%) = 480/478 (M+2/M+, 11/71), 477/475 (30/100), 315 (46), 

127 (23), 125 (64), 90 (28), 77 (56), 51 (30). FT-IR (KBr, ν en cm−1), 1597 (C=N, st), 1498 (C=C, st). 

3. Results and Discussion 

We continue our study to obtain functionalized heterocycles through the development of synthetic 

strategies. The starting compounds 1 were synthesized by Claisen-Schmidt condensation of  

5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde with acetophenones [53,54]. As part of our 

ongoing research on the application of ultrasonic irradiation as a clean and useful technique in organic 

synthesis, we described in this work the synthesis of 5-(pyrazol-4-yl)-4,5-dihydropyrazole derivatives 

under ultrasound irradiation (Scheme 1).  

Scheme 1. Synthesis of 5-(pyrazol-4-yl)-4,5-dihydropyrazole derivatives. 
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We preliminarily examined the cyclocondensation reaction of (E)-3-(5-chloro-3-methyl-1-phenyl-

1H-pyrazol-4-yl)-1-arylprop-2-en-1-one 1 with hydrazines in the presence of ethanol or methanol and 

acetic acid as the catalyst under sonication. To achieve suitable reaction conditions in terms of reaction 

time and catalysis at ambient conditions, we tested different proportions of a mixture of 

ethanol/methanol and acetic acid. The results are summarized in Table 1. 
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Table 1. Effect of reaction conditions. Green factors. 

NHNH2

1a

N

N

Cl

CH3

O
N

N

Cl

N N

Hx

3a or 3h

Ethanol or Methanol/Acetic acid
Ultrasound or Reflux

Hb Ha

H3C

CH3

CH3

R

Entry 1-4 R = H
Entry 5-8 R = Cl

R

Entry Conditions Time (min) Yield b (%) 

1 Ethanol or Methanol 35 60 
2 Ethanol or Methanol/Acetic acid (10/1) 20 75 
3 Ethanol or Methanol/Acetic acid (5/1) 20 80 
4 Ethanol or Methanol/Acetic acid (10/3) 20 75 
5 Ethanol or Methanol 20 50 
6 Ethanol or Methanol/Acetic acid (10/1) 15 65 
7 Ethanol or Methanol/Acetic acid (5/1) 15 80 
8 Ethanol or Methanol/Acetic acid (10/3) 15 75 

b Isolated yields using ethanol as solvent. 

The reaction worked out best under sonication conditions in a mixture of ethanol or methanol/acetic 

acid (5/1) at ambient temperature (35–40 °C) to provide good yield (65%–80%) in a short time  

(2–20 min), and the results are summarized in Table 2. To develop the scope of the reaction, we were 

encouraged to extend this reaction to a variety of (E)-3-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-

1-arylprop-2-en-1-one 1 with different substituents under the determined optimum conditions.  

Table 2. The synthesized 1,3-diaryl-5-(1-phenyl-3-methyl-5-chloro-pyrazol)-4,5-

dihydropyrazole derivatives under ultrasonic irradiation at ambient conditions (35–40 °C). 

Compound 3 Ar Ar′ Time reaction (min) M.p. °C Yield (%) 

a 4-H3CC6H4 C6H5 20 133–135 80 
b 4-BrC6H4 C6H5 10 163–165 75 
c 4-ClC6H4 C6H5 15 153–155 70 
d 4-O2NC6H4 C6H5 20 178–180 80 
e 4-H3COC6H4 C6H5 3 130–132 80 
f 3,4,5-tri-H3COC6H2 C6H5 2 118–120 75 
g 3,4-OCH2OC6H3 C6H5 5 220–222 65 
h 4-H3CC6H4 4-ClC6H4 15 158–160 80 
i 4-ClC6H4 4-ClC6H4 10 150–152 70 
j 4-H3COC6H4 4-ClC6H4 10 128–130 80 

We found that the results were excellent compared with 5-pyrazole-4,5-dihidropyrazoline 

derivatives reported in the literature [55]. Thus, ultrasonic irradiation was found to have a beneficial 

effect on the synthesis of 1,3-diaryl-5-(1-phenyl-3-methyl-5-chloro-pyrazol)-4,5-dihydropyrazole 

derivatives, which was superior to the traditional method with respect to yields, reaction times, 
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simplicity and safety. The impact of acoustic energy was evident in reduction of the processing time; a 

physical process that builds, enlarges and collapses gaseous and vaporous cavities in an irradiated 

liquid, hence enhancing the mass transfer and allowing chemical reactions to occur [56–58]. 

To the best of our knowledge, this new procedure provides the first example of an efficient and 

ultrasound-promoted approach for the synthesis of 1,3-diaryl-5-(1-phenyl-3-methyl-5-chloro-pyrazol)-

4,5-dihydropyrazoles. This method is the most simple and convenient and would be applicable for the 

synthesis of different types of nitrogen-containing heterocyclic compounds. The structures of all the 

synthesized compounds were established by their NMR, IR, MS and analysis elemental. 

The FT−IR spectra of synthesized 5-pyrazol-4,5-dihydropyrazole derivatives 3 showed bands at 

stretching frequencies in the range of 1584–1598 cm−1 and 1488–1502 cm−1, which are characteristic 

of –C=N and –C=C groups. No peak appeared in the range of 1650–1750 cm−1, which indicated the 

disappearance of the carbonyl group (C=O) of the (E)-3-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-

yl)-1-arylprop-2-en-1-one 1. The 1H NMR spectrum for compound 3 showed proton signals of the 

pyrazoline moiety as an ABX-type spin system, and the proton signals were observed as double 

doublets, due to the spin coupling in the range of 3.17–3.95 ppm. The signal of –CH3 pyrazole and aryl 

protons in compound was observed between 2.07–2.79 and 6.43–8.23 ppm, respectively. 

4. Conclusions  

The ultrasound promoted reaction of (E)-3-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-

arylprop-2-en-1-one with hydrazines afforded the corresponding 1,3-diaryl-5-(1-phenyl-3-methyl-5-

chloro-pyrazol)-4,5-dihydropyrazole derivatives, good yields and short reaction times at ambient 

conditions in a simple, facile and efficient fashion. Due to the broad spectrum of biological activities 

of pyrazolines, evaluation of the biological activity and fluorescence properties of the new compounds 

are in progress. 
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