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Abstract: Recently we introduced the class of highly localized wavepackets (HLWs) as a 

generalization of optical Bessel-like needle beams. Here we report on the progress in this 

field. In contrast to pulsed Bessel beams and Airy beams, ultrashort-pulsed HLWs 

propagate with high stability in both spatial and temporal domain, are nearly paraxial 

(supercollimated), have fringe-less spatial profiles and thus represent the best possible 

approximation to linear “light bullets”. Like Bessel beams and Airy beams, HLWs show 

self-reconstructing behavior. Adaptive HLWs can be shaped by ultraflat three-dimensional 

phase profiles (generalized axicons) which are programmed via calibrated grayscale maps 

of liquid-crystal-on-silicon spatial light modulators (LCoS-SLMs). Light bullets of even 

higher complexity can either be freely formed from quasi-continuous phase maps or 

discretely composed from addressable arrays of identical nondiffracting beams. The 

characterization of few-cycle light bullets requires spatially resolved measuring techniques. 

In our experiments, wavefront, pulse and phase were detected with a Shack-Hartmann 

wavefront sensor, 2D-autocorrelation and spectral phase interferometry for direct  

electric-field reconstruction (SPIDER). The combination of the unique propagation 

properties of light bullets with the flexibility of adaptive optics opens new prospects for 

applications of structured light like optical tweezers, microscopy, data transfer and storage, 

laser fusion, plasmon control or nonlinear spectroscopy. 
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1. Introduction 

The localization of ultrashort and ultrabroadband pulses in spatial and temporal domain is a 

challenge for ultrashort pulse laser physics because of the fundamental aspects as well as the enormous 

application potential, e.g., in microscopy, spectroscopy or optical communication, to mention only a 

few. In particular, a stable propagation of localized wavepackets over large distances requires an 

appropriate mechanism to continually compensate for the divergence. This can be obtained by 

balancing dispersion and diffraction effects as known from soliton formation [1–4].  

In 1990, Silberberg predicted the possibility of simultaneous spatial and temporal self-focusing in a 

homogeneous medium leading to the existence of nondispersing, nondiffracting optical pulses which 

he referred to as “light bullets” [5]. During the recent years, the conditions for the formation of certain 

types of light bullets were studied theoretically and experimentally (for an extensive review on the 

state of the art, see ref. [6]). Most of these papers were focused on the specific interactions of light and 

a medium and can be separated in two basically different approaches: (a) nonlinear light bullets and (b) 

linear light bullets. While this main stream of works evolved from nonlinear optics (preferentially of 

fibers and waveguides), a quite other approach to linear light bullets already existed in the frame of 

general wave physics and provided, in reverse direction, new impetus straight back to the soliton 

theory. The essential difference to abovementioned methods is that no medium is required, i.e., the 

light bullets can be shaped and propagated also in vacuum without complicated constraints with 

respect to dispersion functions, and their features are therefore found to be much more distinct and 

stable in propagation. Here we will discuss this particular new class of linear optical bullets more in 

detail. We present our most recent results including the adaptive generation, characterization and 

application of near infrared ultrashort-pulsed Bessel-like needle beams, highly localized wavepackets and 

complex nondiffracting patterns at pulse durations corresponding to just a few cycles of the optical field.  

2. Linear Light Bullets 

2.1. Medium-Free Generation of Linear Light Bullets 

The search for stable, non-spreading solutions of wave equations for electromagnetic waves like 

those of Maxwell, Schroedinger or Helmholtz type, quantum mechanic wave functions and acoustic 

waves resulted in wave phenomena called “undistorted progressive” [7], “diffraction-less” [8–10] or 

“localized waves” [11]. Among the propagation-invariant solutions is the important Bessel beam 

which is characterized by a radially symmetric intensity profile following the square of a zero-order 

first kind Bessel function. The perfect theoretical monochromatic Bessel beam has an unlimited depth 

of focus (DOF) and consists of an infinite number of concentric rings surrounding a central maximum 

in all transversal planes. Practical realizations, however, work with conical phase elements (axicons) of 
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finite diameter. In this case, the DOF and the number of fringes is limited. In frame of ultrasound 

studies it was found that the spatio-spectral interference of pulsed conical waves with large spectral 

bandwidths leads to the formation of X-shaped waves (X-waves) [12,13]. In their maximum,  

Bessel-X-pulses can reach giant intensities by focusing the energy in space and time. Optical  

Bessel-X-waves were first shaped with high pressure lamps of few-fs coherence time with conical 

axicons and indicated by cross correlation experiments [14]. Ultrashort-pulsed Bessel-X-pulses were 

demonstrated by shaping pulses of a Ti:sapphire laser with transparent and reflective thin-film axicons 

and detecting the characteristic features by spatially resolved autocorrelation [11,15,16]. 

In contrast to other types of linear light bullets, the generation of optical X-pulses does not require a 

dispersive medium. The bullet structure, i.e., the spatial and temporal confinement and propagation 

invariance, is the result of a linear superposition and constructive interference of many contributing 

spectral modes with approximately identical angular spectra. It has to be noticed that an analogous 

effect might contribute to the spontaneous generation of extreme water waves (rogue or monster 

waves), in regions of deep ocean water which can not simply be explained by shallow water models 

(the similarity was addressed in [17], p. 193). Conti et al. extended the X-wave concept to the 

nonlinear regime [18,19]. The spontaneous generation of nonlinear X-waves was first experimentally 

demonstrated in [20]. For linear, normally dispersive media, a certain class of finite energy light 

bullets was identified which allows arbitrary spatio-temporal profiles [21]. Recently, several variations 

of linear and nonlinear light bullets emerged in the literature, most of which are close relatives of 

Bessel beams, e.g., Mathieu [22], Airy [23], Pearsey [24], Weber [25], or Helmholtz beams [26]. It 

was found that such beams are self-healing after distortion (for the self-reconstruction of  

Bessel-X-pulses, see [11]). This results from the subsequent constructive interference of conical waves 

which continues again behind a shadow zone. The detailed theoretical interpretation of nondiffracting 

wave phenomena is still a subject of discussion. 

2.2. Ambiguity of the Poynting Vector Maps of Nondiffracting Beams 

Free-space light bullets raise the question about an adequate definition of “propagation” and 

“beam” in the Fresnel domain. The use of both terms is not trivial here because in most cases the 

detected spatial patterns represent time-integrated photon density distributions instead of Poynting 

vector maps or wavefronts. If the propagation is analyzed on the basis of energy flux, the description 

has a close relationship to such measuring conditions [27,28]. A Poynting vector, however, indicates 

the directional energy flux density per unit area. The local wavefront of a Bessel-like beam results 

from the interference of two or more partial waves. If one places a Shack-Hartmann wavefront sensor 

in a Bessel beam, the conical shape of the wavefront [29] and, in combination with a diffractive 

grating, the spectral phase [30] can be reconstructed. The focal spot of each microlens splits into a 

ring, as follows from the analysis in [31]. In other words, the sensor which normally delivers a 

Poynting vector at each position resolves the local ambiguous structure of the wavefront which is more 

realistic than a formal but physically meaningless vector addition. To illustrate this specific ambiguity 

in comparison to other types of beams, one can imagine a simplified ray representation in Fresnel 

domain as schematically drawn in Figure 1. It has to be mentioned that in the extreme near-paraxial 

case of ultra-small conical angles, the different vectors in WS2 tend to become nearly identical again so 
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that a wavefront-division based detection technique can be well applied to characterize the beams. This 

is of relevance to the experiments we will report on. 

Particular types of beams like Airy beams are often described as accelerating light bullets 

propagating on “curved trajectories”. Airy beams were originally introduced by Berry and Balazs as a 

particular nonspreading solution of the 1D-Schroedinger equation [32,33] and later extended to the 

3D-case [34]. They have to be interpreted as caustics [32] rather than as propagating along a bended 

pathway. Vectorial, nonparaxial types of accelerating beams as recently discussed [35] are sometimes 

believed to be able to go around a corner (see Figure 2 of ref. [36]) or even to propagate along a  

circle [37]. To establish bended beams, however, the straight trajectories of all constituting partial 

beams are necessary (compare [38]) whereas the obstruction by a shading edge distorts the field 

pattern behind (except in a medium with a gradient index). In medium-free case, the physical 

significance of this statement can directly be proved by detecting the far field which separates the 

directional components of the partial waves. The same should apply to Airy-type and other 

nondiffracting beams. To stay in concordance with the conservation laws of energy and momentum, 

one has to carefully examine the unambiguity of the Poynting vector maps of accelerating beams (e.g., 

in [35]) in a similar way as shown for Bessel beams (for a theoretical treatment of the Poynting vector 

maps of Airy beams, see [39–41]). We agree with the related comment in ref. [42]: “As with the Bessel 

beam's diffraction -free “propagation”, light doesn't actually propagate along the curved path.”  

Figure 1. Ambiguity of local wavefronts of nondiffracting beams in comparison to a 

convergent beam (simplified ray representation): (a) Gaussian-type beam with 

unambiguous Poynting vectors (red arrows) as detected by a Shack-Hartmann wavefront 

sensor at a certain plane WS1 (gray); (b) Bessel beam with an ambiguity in the 

superposition zone WS2 (gray) and a ring-shaped unambiguous angular distribution at a 

distance WS3 behind the superposition zone (gray). Linear light bullets in absence of a 

medium are created by constructive interference in superposition zones like shown in (b). 
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Figure 2. Intensity profiles of (a) a Bessel and (b) a needle beam schematically 

represented for an arbitrary plane perpendicular to the propagation axis (color-coded,  

red = maximum intensity, green = minimum intensity). Needle beams correspond to Bessel 

beams which are truncated exactly at the first zero (self-apodized truncation). 

 

Irrespective of their continuous recreation along curved envelope surfaces of caustics, all kinds of 

accelerating light bullets promise novel and intriguing applications. A key problem to be solved, 

however, is the limited spatial localization of Bessel- and Airy-type beams because of their fringe 

structure. We will return to this issue soon in section 2.4. 

2.3. Nonlinear and Linear Light Bullets: Brief Remark on the Terminology  

Further confusion is caused by the double application of the term “nonlinear” (i) for media with 

nonlinear optical constants (e.g., in [18]) and (ii) for a mathematically nonlinear (e.g., parabolic) phase 

distribution function as programmed into spatial light modulators to generate Airy beams  

(e.g., in [23]). In our case, the term “linear bullets” simply implies the absence of a nonlinear medium 

within the nondiffracting propagation zone whereas the generating phase functions are flexible and can 

(but does not have to) approximate conical shapes. 

2.4. Pulsed Needle Beams and Highly Localized Wavepackets  

The vast majority of free-space nondiffracting beams including Bessel beams and Airy beams still 

contains a considerable part of their energy in the outer fringes. In case of Bessel beams, this can be 

circumvented in two ways: (A) by downstream spatial filtering in a self-apodizing truncation setup, 

i.e., matching a diaphragm to the first zero of the intensity distribution so that the central lobe passes 

without diffraction (but wasting the energy of the fringes) [17,43], or (B) in aperture-less setup by 

optimizing the parameters (conical angle, waist radius of the input profile) to only generate this central 

lobe exactly to the first zero (fulfilling a self-apodizing condition [43,44]). Because of the distinct 

needle-shape, this particular type of paraxial single-maximum Bessel-like beams was referred to by us 

as “needle beams” [17,43,44]. To illustrate that, Figures 2b show the intensity distribution functions of 

a Bessel beam and a needle beam in a transversal plane, respectively. The aperture-less case for  

self-apodizing geometrical boundary conditions (B) can be found in Figure 3. 
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Figure 3. Self-apodized truncation condition for the aperture-less Bessel-like needle 

pulses (schematically, after ref. [44]). Curve on the separated blue plane: radial Bessel 

intensity profile, red area: central lobe, white area: not generated outer parts (Λ = diameter 

of central lobe, z = propagation axis, D = axicon diameter, θmax = maximum allowed half 

conical angle, Δzmin = minimum extension of the needle-shaped nondiffracting zone,  

J0 = zero order first kind Bessel function). 

 

The length of the interference zone zmax is determined by the finite diameter D of the initial 

transversal field under self-apodized conditions [44]. For a wavelength λ, it amounts roughly to 

zmax = D2/4λ (1)

For ultrashort pulses it is an enormous benefit if the spectral and temporal corruption of the outer 

Bessel fringes (resulting from different delay times of the locally interfering conical waves) is 

minimized. Special kinds of pulsed Bessel beams were discussed as temporally propagation-invariant 

localized waves [45,46]. After equation (7) in [45], the field amplitude UNB of the pulsed needle beam 

can be represented (after some transformation) by the following Equations (2)–(7): 




















 











 
 ),(

2
exp

2
exp)(Re),( ,0

0
2

0

22

trJ
ct

i
t

tZtrU r
a

NB 





 (2)

with 

     dqqtrJ r  



0

,0 sin,cos
1

 (3)

2
0

0

2
1)(








c

t
itZ  (4)











0

)sin(
2)(),(


 rtZtr  (5)

)sin(
c

r
a   (6)

2ln2
0

FWHM   (7)



Appl. Sci. 2013, 3 145 

 

 

where t, r and k are the time, the radial coordinate and the wave number, θ and λ are the cone angle and 

the wavelength, q is an integration variable, c is the speed of light in vacuum, J0(r,kr) represents a 

wavelength-dependent Bessel distribution function in radial direction, Φ(r,t) is a complex phase term, 

τa a radial-dependent time separation between two interfering pulses and τ0 an input pulse duration 

(standard deviation). In good approximation, one can replace the integral in Equation (3) by the expression 
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In our case of a free-space (dispersion-free), axicon-generated Bessel-like beam with an extremely 

narrow angular spectrum, the temporal invariance results from approximately equal optical path of all 

contributing conical parts at all distances. Therefore, pulsed needle beams can justifiably be called not 

only spatially nondiffracting but temporally nondiffracting as well. This makes them interesting for 

applications where a stable pulse transfer is required. For example, we demonstrated the undistorted 

ultrafast cross-talk-free transfer of image information (“flying images”) which was encoded into arrays 

of needle beams [46,47]. 

Starting from this fundamental finding we generalized the spatially oscillation-free structure of 

rotationally symmetric pulsed needle beams to non-symmetric geometries by geometrical transforms 

(linear magnification, eccentric rotations [48,49]). The main target of these studies was to find a set of 

non-circular light bullets which also remain their temporal pulse shape during the propagation so that 

they can be used as building blocks for flying images of higher complexity in comparison to 2D arrays 

of needle beams. In the previous experiments, we studied the spatio-temporal propagation of tubular 

and line-shaped linear light bullets and simple composed nondiffracting images at pulse durations 

between 10 and 20 fs at laser wavelengths around 800 nm. Here we extend the approach to even more 

complicated spatially structured wavepackets with pulse durations down to the sub-3-cycle range (6 fs).  

3. Experimental Section 

In the literature it was pointed out that the generation of X waves in a linear system “requires non-trivial 

input shaping techniques that involve the use of dispersive elements such as the axicon” ([4]). Our 

experiments were performed with a Ti:sapphire laser oscillator (Venteon PULSE: ONE PE, pulse 

duration around 6.5 fs, FWHM bandwidth 300 nm, center wavelength 800 nm, repetition rate 80 MHz, 

pulse energy > 7 nJ, linearly polarized) as light source and a programmable liquid-crystal-on-silicon 

spatial light modulator (LCoS-SLM, HoloEye, 1920 × 1200 pixels, pixel size 8.1 μm) as flexible beam 

shaper. It was found that few-cycle pulses of Ti:sapphire laser oscillators are transferred by the  

low-dispersion SLMs with only marginal temporal distortions [50]. The SLM can flexibly emulate the 

phase maps of axicons via calibrated grayscale patterns and works in reflection. We demonstrated that 

an adaptive correction of tilt-induced spatial aberrations can be obtained by programming linear 

transformations. In this way, tilt-induced beam ellipticity was compensated at angles of incidence up to 

50°. The setup is schematically drawn in Figure 4. Single and multiple light bullets were generated 

with the SLM. For the spatial and temporal characterization of the light bullets, the combination of a 

Shack-Hartmann geometry (based on the division of the wavefront into separated channels) and a 

collinear nonlinear autocorrelator is used. In this case, a primary light bullet can be decomposed into an 
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array of sub-bullets to ensure a clear separation of local parameters by avoiding an overlap during the 

propagation. The basic approach of such a time-wavefront sensor was recently described in detail in [51].  

The light bullets were analyzed by combining the shaper with a 2D second order nonlinear 

autocorrelator consisting of a balanced interferometer, a nonlinear crystal and a matrix camera with 

zoom lens. The spectral phase was measured with few-cycle spectral phase interferometry for direct 

electric field reconstruction (FC-SPIDER, APE). To enable for working at low intensities down to the 

single-photon level, intensity profiles were analyzed with a highly sensitive electron-multiplying 

charge coupled device (EMCCD) camera (iXon, Andor). Second harmonic generation (SHG) was 

performed in thin BBO crystals (thickness 10–20 μm). The long effective lever arms formed by the 

extended needle-shaped nondiffracting zones lead to a high angular sensitivity of the system. 

Therefore, the setup enables not only to extract spatially resolved pulse duration via image 

autocorrelation but also wavefront curvature and vortex characterization [52]. Furthermore it was 

demonstrated that a time delay mapping with sub-fs resolution is possible by a relative measurement of 

the arrival times of light bullets in spatially separated channels [39]. 

Figure 4. Experimental setup for adaptive shaping and detection of paraxial linear few-cycle 

light bullets (schematically). For collinear autocorrelation, a balanced interferometer 

generates two identical replica of the pulse. The variable time delay (Δτ) is induced by the 

length variation (Δz) of the interferometer arm with a piezo actuator. The SLM shapes the 

light bullets in finite but extended zones of stable nondiffracting propagation. The 

combination with second order nonlinear conversion and 2D detection enables to extract 

spatially resolved pulse duration via image autocorrelation, as well as wavefront curvature, 

vortex characterization, and highly resolved time delay mapping.  

 

4. Results and Discussion 

By adaptively programming phase maps via calibrated gray value maps of symmetric and  

non-symmetric axicons into the LCoS-SLM, corresponding types of linear light bullets were generated 
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and their spatio-temporal features were analyzed. The solitary or multiple light bullets are of radially 

symmetric and non-symmetric structure belong to the classes of above discussed pulsed needle beams 

and highly localized wavepackets (HLWs). Figure 5 shows the gray value distributions corresponding 

to the phase maps of the axicons (left) and the resulting, measured time-integrated intensity maps 

(right) of a set of simultaneously formed light bullets of different spatial structures (here: disks, rings, 

lines and stadiums). All of these light bullets have two important properties in common which are the 

main benchmarks of HLWs: (1) They are non-oscillating in space (i.e., they have no side wings), and 

(2) they preserve the temporal properties during the nondiffracting propagation. 

Figure 5. Flexible generation of few-cycle light bullets with the characteristics of spatially 

oscillation-free, temporally nondiffracting highly localized wavepackets (HLWs): (a) gray 

value distributions corresponding to the phase maps of axicons; (b) measured  

time-integrated intensity maps of a set of simultaneously formed light bullets of different 

spatial structures in a transversal plane (disks, lines, rings and stadiums). Both the new 

types of shaping phase elements and the HLWs represent generalizations of the 

conventional approaches of axicons and nondiffracting beams, respectively. Arrays of 

programmable HLWs enable to realize time-wavefront sensors with spatially encoded 

spots and flexible array geometries. 

 

Figure 6. Nondiffracting intensity propagation of a stadium-shaped light bullet (time 

integrated, field of view 2.7 × 2.7 mm2, detected after SHG at 400 nm, initial pulse 

duration 6.5 fs). 

 

z = 80 mm 

 

z = 90 mm z = 100 mm z = 110 mm 

 

z = 120 mm z = 130 mm 

The propagation invariance can be well recognized for a stadium-shaped 6-fs light bullet (smaller 

and larger diameter: 700 μm and 1500 μm, respectively) in Figure 6. From an axial distance of 80 mm 
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to 130 mm, only a slight enhancement of the local cross-section of the light ring is observed. The basic 

geometrical structure, however, propagates unchanged and the outer dimensions are stable. 

In Figure 7, the spatially resolved second order autocorrelation function measured by imaging 

autocorrelation is shown for two planar cuts through the long and short axes of the stadium-shaped 

bullet. The maxima clearly indicate the few-cycle field oscillation in time. The autocorrelation at three 

different propagation distances (80 mm, 100 mm and 120 mm) is compared in Figure 8.  

Figure 7. Temporal autocorrelation function of a stadium-shaped few-cycle light bullet at a 

distance of 80 mm; left: cut through the major (long) axis; right: cut through the minor 

(short) axis. 

 

Figure 8. Temporal autocorrelation function of a stadium-shaped light bullet measured at 

three different axial distances (80 mm, 100 mm and 120 mm). For a sech2-pulse shape, one 

can estimate a nearly constant pulse duration of about 6.6 fs for the propagating  

light bullet. 
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The FWHM width of the autocorrelation function was found to be about 10.1 fs. Assuming a  

sech2-pulse shape, the corresponding final pulse duration is 6.6 fs at an input pulse duration of 6.5 fs. 

Thus, the results indicate a very stable propagation behavior also in temporal domain within the 

fluctuations (the estimated error bar was about 0.1 fs). In another experiment, the spectral phase of a 

circular light bullet (pulsed needle beam, depth of the nondiffracting zone 1 m) was characterized with 
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few-cycle spatially integrated spectral phase interferometry for direct electric field reconstruction  

(FC-SPIDER, Figure 9). The retrieved final pulse duration (τM = 6.4 fs) was found to be within the 

error bar as well. 

Figure 9. Phase transfer in a circular nondiffracting light bullet (pulsed needle beam, 

length of the nondiffracting zone about 1 m), measured with an FC-SPIDER (APE); black 

curve: temporal phase, dashed red curve: pulse calculated for the Fourier transform limited 

case, blue curve: pulse retrieved from measuring data. τFL and τM are the corresponding 

pulse durations, respectively. The distance of the entrance window of the SPIDER from the 

SLM was about 20 cm (the effective distance was higher because of the additional internal 

path in the SPIDER system). The diameter of the light bullet at the entrance of the SPIDER 

was 1 mm. 

 

5. Conclusions 

To conclude, we have shown that a particular type of linear light bullets representing generalized 

pulsed Bessel-like needle beams or “highly localized wavepackets” (HLWs) [41] can be generated 

from few-cycle pulses without the need of a dispersive medium. Therefore, the shaping procedure is 

basically very straight forward because it has not to take into account a time-variant optical system and 

thus reduces to an optimization of the linear space-time coupling effects. Typical instabilities of 

nonlinear processes (as known, e.g., from filaments) are avoided. The use of programmable high-fidelity 

SLMs enables to adaptively correct for distortions as well as for a spatial and phase-related encoding 

of individual light bullets. Purely reflective techniques with MEMS axicons show promise to be 

capable of handling even shorter pulses with pulse durations down to the attosecond scale. Thus, the 

shaping of carrier-envelope stabilized single-cycle pulses opens the possibility to obtain the ultimate 

kind of light bullets without parasitic spatial and temporal oscillations. Further future activities will be 

directed on the adaptive control of optical angular momenta of linear light bullets. 
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