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Abstract: Due to its high resolution and all-weather imaging capability, Synthetic Aperture
Radar (SAR) is widely used in fields such as Earth observation and environmental moni-
toring. However, SAR images are prone to noise interference during the imaging process,
which seriously affects the visualization effect and subsequent analysis of the image. This
article proposes a convolutional neural network SAR image denoising algorithm based on
self-learning strategy. Particularly, a denoising convolutional neural network that utilizes
a self-learning denoising model and a twin convolutional network structure is proposed.
By constructing a noise original image dataset sample pair for training, the model can
automatically learn image features and noise distribution, significantly improving the de-
noising effect of SAR images and possessing stronger generalization ability. The simulation
experiments verified the effectiveness of the proposed method, indicating its potential
application in SAR image denoising.

Keywords: synthetic aperture radar; image denoising; convolutional neural networks;
self-learning strategies

1. Introduction

Synthetic Aperture Radar (SAR), as an advanced imaging technology, has been widely
used in fields such as Earth observation, environmental monitoring, and disaster assessment
due to its high-resolution, all-weather, and all-weather imaging capabilities [1-3]. Unlike
optical imaging, SAR images can penetrate clouds and rain, providing high-quality images
of the Earth’s surface [4,5]. However, due to the coherence of radar signals, the quality
of SAR images is affected by various factors, among which the most significant is the
interference of noise, manifested as granular texture in the image, which seriously affects
the visualization effect and subsequent analysis and processing of the image [6]. Therefore,
developing efficient SAR image denoising algorithms has become an important task in
remote sensing image processing research.

The challenge of SAR image denoising lies in its unique imaging mechanism. SAR
imaging relies on reflection signals obtained from different angles, processed through
synthetic aperture to form high-resolution images. This process inherently introduces noise,
especially speckle noise, whose impact is closely related to the scattering characteristics of
the target object, radar operating parameters, and imaging environment [7]. In traditional
denoising methods, filtering technology is the most commonly used one. These methods
include mean filtering, median filtering, and adaptive filtering [8,9]. Although these
methods are effective in denoising, they often cause distortion when processing edge
and detail features, making it difficult to meet the high-quality requirements of SAR
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images [10,11]. In addition, model-based methods such as wavelet transform and statistical
model denoising have also been widely applied in SAR image denoising [12,13]. However,
these methods often rely on accurate modeling of the statistical characteristics of noise,
and their performance is not ideal in complex scenarios. Despeckling methods, including
spatial filters, transform-domain techniques, and non-local means (NLM), often struggle
with over-smoothing or introducing artifacts. The aforementioned methods generally
rely on predefined models and assumptions that may not effectively capture the complex,
nonlinear nature of SAR data, potentially limiting their denoising performance.

In contrast, deep learning-based methods can learn intricate patterns and represen-
tations directly from data, enabling them to adapt to the unique characteristics of SAR
imagery and achieve superior noise reduction. Particularly, Convolutional Neural Net-
works (CNNs) [14-16], have demonstrated excellent performance by learning complex
noise-to-clean mappings. However, their reliance on paired “noisy-clean” datasets for
supervised training introduces a critical limitation. Real-world SAR applications often
lack noise-free ground truth images, forcing models to rely on synthetic data with domain
gaps in terms of scattering and noise characteristics. This mismatch results in suboptimal
performance when applied to real SAR images. Self-supervised learning strategies, have
recently gained attention by eliminating the need for clean references. For instance, Yuan
Ye et al. [17] proposed a segmentation-guided semantic-aware self-supervised SAR image
denoising method, named SARDeSeg. This method combines a segmentation network
with a denoising network, guiding it to learn and perceive the semantic information of
the noisy input SAR images. The self-supervised enhanced Noise2Noise (EN2N) method
is proposed in [18], which addresses the challenges of spatial detail loss, dependence on
noise-free training data, and low computational efficiency of traditional methods in remov-
ing multiplicative noise from SAR images [19]. This is achieved by integrating pre-trained
CNN features with a hybrid loss function.

In recent years, the rapid development of deep learning technology has provided
new solutions for SAR image denoising. Deep learning algorithms can automatically learn
features from data by constructing complex neural network models, thereby achieving
better performance in denoising tasks. For example, the successful application of CNNs
in image processing has inspired researchers to apply it to denoising SAR images [20,21].
For example, reference [22] proposes combining residual learning and batch normalization
strategies to propose the SAR-CNN denoising algorithm, which can achieve some im-
provements in running speed and denoising performance. In order to achieve end-to-end
learning, reference [22] proposed processing based on multi-layer wavelet networks, and
further improved the denoising quality. Wang et al. [23] first applied the principle of gen-
erative adversarial networks to SAR images. In order to improve denoising performance
and image detail preservation ability, Gu et al. [24] proposed a speckle noise suppression
network based on adversarial generative networks. Zhang et al. [25] used an Autoencoder
structure for SAR image denoising. The SAR image denoising method based on deep
learning has stronger adaptability and flexibility, but in specific scenarios or tasks, the
annotation and acquisition of SAR image data may be very difficult, and problems such
as low feature matching and large computational complexity. Meanwhile, the denoising
process may lead to the loss of image details, especially in processing important features
such as target information, resulting in poor performance in dealing with complex noise
distributions and SAR images.

In response to the above issues, this paper proposes a convolutional neural network
SAR image denoising algorithm based on self-learning strategy. Unlike traditional methods
that rely on hand-crafted features or supervised training with noisy-clean pairs, our ap-
proach leverages a self-supervised training strategy that learns directly from the noisy SAR
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data. This allows the model to capture complex noise distributions inherent in SAR images,
thereby significantly enhancing denoising performance and generalization. Considering
that SAR images are affected by various types of noise, a noise recognition method based
on residual statistical features was first designed. Digital image processing techniques
were used to simulate the superposition state of SAR images with different noises, in order
to determine the type of noise. In response to the problem of unknown noise, this paper
further proposes a SAR image denoising algorithm based on Denoising Convolutional
Neural Network (DnCNN). Based on the self-learning DnCNN denoising model, a twin
convolutional network structure is adopted, which can specifically adapt to the characteris-
tics of SAR images and enhance the model’s generalization ability to different noise types
and complex noise distributions. By constructing a noise original image dataset sample pair
for training, image features and noise distribution are automatically learned, significantly
improving the denoising effect of SAR images and having stronger generalization ability.
Simulation experiments have demonstrated the effectiveness of the proposed method.

The remainder of this paper is organized as follows. Section 2 introduces the SAR im-
age denoising algorithm based on self-learning strategy DnCNN, including the algorithm
design, data augmentation, and network structure. Section 3 presents simulation experi-
ment results, including the evaluation of denoising effect and comparison with existing
method. Section 4 concludes this paper.

2. SAR Image Denoising Algorithm Based on Self-Learning
Strategy DnCNN

2.1. Algorithm Design

Based on the idea of self-learning strategy [26] and dual-path structure on denois-
ing [27], this article modifies and designs the traditional DnCNN model to fully utilize
the image features of SAR images in terms of denoising effect. We add Gaussian noise
to img.H to generate img.L, which involves preparing a set of noisy image datasets and
corresponding noise free image datasets. These noisy datasets can be obtained by simu-
lating the addition of noise on the corresponding noise free image datasets. Specifically,
we added Gaussian noise to the clean simulation datasets to obtain corresponding noisy
image datasets. During the training process, the input noisy image needs to be fed into the
network for forward propagation to obtain the output denoised image. Then, compare the
output denoised image with the corresponding noiseless image and calculate the value of
the loss function. Next, use the backpropagation algorithm to update the network parame-
ters to minimize the value of the loss function. This process requires multiple iterations
until the model converges. The loss function used for training is the Mean Square Error
(MSE) loss function. During the training process, the model parameters with the best
training effect were selected and tested on the simulation dataset. It can be intuitively seen
that the denoising effect has been greatly improved compared to previous methods, and
the Gaussian noise added to the image itself has been basically completely removed.

2.2. Data Augmentation

To address the issue of a small number of training samples, data augmentation meth-
ods are adopted to expand the training sample set, thereby constructing a target dataset
suitable for SAR imaging recognition. This article uses the following three data augmenta-
tion methods to expand the training dataset of ISAR images of large aerial targets.

(1) Target displacement: In SAR imaging results, the grayscale values of the target are
concentrated in the middle position of the image. However, under ideal conditions, the
target may shift in various directions, causing the target data to deviate from the central
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area of the image. In this situation, if the random displacement process of the image can be
simulated, the generated image can be regarded as an enhancement of the original image.

(2) Image rotation: During the process of SAR image acquisition, target rotation is also
possible, and there are 360 ways to enhance images by measuring rotation by 1°. Therefore,
rotating the original image by multiple angles is also a way to expand the training set.

(3) Image denoising: Due to the SAR imaging mechanism and possible interference
in the system, the obtained image is highly likely to have noise interference, manifested
as numerous and dense white spots on the image. Therefore, adding noise with different
variances to the original image is also a reasonable and effective image enhancement
method. For example, noise with different means and levels of variance can be used to
implement a data augmentation scheme with added noise.

2.3. Network Structure

DnCNN is designed to predict the residual image (noise) from a noisy input image.
The residual image is the difference between the noisy image and the clean image. The
self-learning strategy in DnCNN involves training the network to learn the mapping from
noisy images to their residuals, which can then be subtracted from the noisy image to
recover the clean image. In the context of DnCNN, analyzing the histogram of the residual
image could help understand the characteristics of the noise being learned by the network
and can be used as a preprocessing step to focus on the intensity component of the image,
which is often the most affected by noise. As for the self-learning strategy, it plays a crucial
role in our approach by allowing the network to adapt to varying noise distributions
without requiring explicitly labeled noise-free images. Specifically, our model employs a
residual learning framework where the network is trained to predict the noise residual
from a given noisy input. This residual is then subtracted from the noisy image to recover
a clean image. The training process is guided by a mean squared error loss function that
directly measures the discrepancy between the predicted and actual noise components. To
be specific, transforming the image to the HSV color space and extracting the V (Value)
channel is calculated as follows:

-1 -1 -1
f=1]-1 8 -1 (1)
-1 -1 -1

Another approach to dealing with unknown noise is to train a self-learning strategy
denoising algorithm that has generalization ability for different types of noise. This paper
proposes a denoising algorithm design and simulation based on image reconstruction.
The network structure is shown in Figure 1. The algorithm adopts a twin convolutional
network referring to swin-conv (SC) network structure and is trained by constructing a
noise original image sample pair. Regarding the twin convolutional network structure, we
selected this structure because it enables simultaneous feature extraction from two comple-
mentary views of the data—one branch processing the noisy input and the other estimating
the corresponding clean representation. This structure helps to enhance the robustness
of feature learning by enforcing consistency between the two branches. It integrates two
parallel but interdependent convolutional pathways designed to capture complementary
features from SAR imagery. Unlike conventional dual-path models, which often process
features independently, our SC network employs a feature fusion mechanism that dynami-
cally aggregates spatial and textural information, making it particularly effective for SAR
image denoising.
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Figure 1. SC network architecture diagram.

The clean noise sample pair of SAR images are shown in Figure 2. The denoising effect
can be evaluated by the background suppression factor BSF. The commonly used classic
image processing methods for noise reduction include mean filtering, Gaussian filtering,
median filtering, bilateral filtering, etc. These classic methods are used to denoise the noise
simulation images in the noise simulation dataset, and the denoising effect is compared.

Figure 2. A clean noise sample pair.

Mean filtering is a corresponding operation performed in the spatial domain. During
the filtering process, a template is selected, and the pixel value of each point in the image is
replaced by the mean of the pixel values of all points in this template. The mean filtering

formula is:
m n

RGij) = =Y Y- 16,)) @

i=1j=1

The denoising effect of the image after applying mean filtering is shown in Figure 3.

a)Noise (b)Mean filtering  (c)Median filtering (d)Gaussian filtering

(e)Bilateral filtering (f)Non local average  (g)Gray blind (h)Ours

Figure 3. Image denoising effects of different methods.



Appl. Sci. 2025, 15, 4786

6 of 12

Noise image

Gaussian filtering is a method of blurring an image and removing details and noise.
In this sense, it is similar to mean filtering. However, it uses a different weight kernel that
represents the shape of a Gaussian (bell shaped) bulge. This method is used for various
functions such as image blurring, noise reduction, and detail smoothing. The formula for

Gaussian filter kernel is
1 2P
G(x,]/) = 271_(723 2% 3)

where x and y are the distances from the origin to the horizontal and vertical axes, ¢ is
the standard deviation of Gaussian distribution. The denoising effect of the image after
applying Gaussian filtering is shown in Figure 3.

Median filtering is a denoising method that processes in the spatial domain. The
filtering method involves selecting a template and performing corresponding operations
within it. Firstly, the pixel values in the template are sorted, and the median of the pixels in
the sequence is selected as the central pixel value of the template. This can remove noise
points in the image that differ significantly from the surrounding pixels, thus achieving
the goal of denoising. The selection of filtering templates is diverse, which can be square
or rectangular matrices, circular, or cross shaped. The denoising effect of the image after
applying median filtering is shown in Figure 3.

Bilateral filtering is also a denoising method that processes in the spatial domain. By
considering the influence of distance factors and pixel value differences, it can effectively
preserve the feature information of the image while denoising. The denoising effect of the
image after applying bilateral filtering is shown in Figure 3.

Non-local average denoising uses redundant information commonly found in natural
images to remove noise. Unlike commonly used bilinear filtering, median filtering, and
other methods that utilize local information in the image for filtering, it uses the entire
image for denoising, searching for similar regions in the image on a block by block basis,
and then averaging these regions to effectively remove Gaussian noise present in the image.
Algorithms consume more time, but the results are better. The image denoising effect after
applying non-local average denoising is shown in Figure 3.

From the denoising results, it can be concluded that although the above five classic
image denoising algorithms have a certain filtering effect on the noise of single channel
noise simulation images, the effect is not good and there is still a lot of room for improve-
ment. We train the DnCNN network based on self-learning by adding Gaussian noise to
the original dataset, enabling the algorithm to fully utilize the advantages of deep neural
networks in feature extraction and improve denoising performance. Specifically, as shown
in Figure 4, the main structure of the DnCNN model includes:

Residual image

Conv+RelLLU
Conv

Figure 4. DnCNN model structure.

Layer 1 Conv + ReLU: The input is a 35 x 35 x c image, and after 64 3 x 3 x 3
convolution kernels, the output is 64 35 x 35 feature maps, which are 35 x 35 x 64 images.
Layer (2~(d-1)) Conv + BN + ReLU: There are 64 3 x 3 x 64 convolution kernels, so the
input and output of these layers are all 35 x 35 x 64 images. Add batch normalization
between convolution and activation functions. The last layer Conv: Reconstruct a c-
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dimensional image using ¢ 3 X 3 X 64 convolution kernels as output. Each layer has
zero padding to ensure consistent input and output sizes. This prevents the generation of
boundary artifacts.

DnCNN combines ResNet'’s residual learning, also known as residual learning. The
difference is that DnCNN does not add connections between neural network layers, but
directly changes the output of the network learning process to residuals. Assuming the
clean image is x and the noisy image is y, then y = x + n, where n is the residual, which is
the noise. In the learning process of DnCNN, the optimization goal is no longer the loss
between clean images and network output, but the error between residuals and network
output. The effect of directly using the DnCNN model to load pre training parameters for
denoising single channel noise simulation images is as follows. As shown in Figure 3, it can
be seen that the untrained and optimized DnCNN model has poor denoising performance
on SAR images.

2.4. Complexity Analysis

The computational complexity of our proposed CNN-based SAR denoising algorithm
is primarily determined by the convolutional layers. For each convolutional layer, the
complexity is approximately

O(H x W x Cj, X Cout x K?) 4)

where H and W denote the height and width of the feature maps, C;,, and C,y; are the
numbers of input and output channels, and K is the kernel size. Since the proposed network
consists of several such layers, the total computational load scales linearly with the number
of layers.

3. Experiment
3.1. Dataset

Regarding the dataset preparation, we constructed the noisy-clean image pairs by first
collecting high-quality, noise-free SAR images from the SAR Ship detection dataset (SSDD),
which is the first publicly available dataset dedicated to ship target detection in SAR images,
both domestically and internationally. It can be used to train and test detection algorithms,
allowing researchers to compare algorithm performance under the same conditions. The
SSDD consists of 1160 images and 2456 ships, with an average of 2.12 ships per image, and
the dataset will continue to expand in the future. In cases where real noise-free SAR images
were not available, we generated synthetic noise based on established noise models. The
types of noise are Gaussian noise, Poisson noise, salt and pepper noise, coherent noise, and
stripe noise. The noises are added on SSDD and the dataset is denoted as SSDD-noise. As
shown in Figure 5, specifically, we simulated speckle noise and additive Gaussian noise in
accordance with the statistical properties typically observed in SAR imaging. This synthetic
noise was added to the clean images to create realistic noisy counterparts. After denoising,
take the average to calculate the BSF under different noise conditions. When calculating
background clutter, set the object area to 0 based on the annotation results.

3.2. Testing Environment

The experiments were conducted on a high-performance computing platform con-
figured as follows: Server: Dell rack-mounted server equipped with an Intel Xeon Silver
4214R CPU, 128 GB RAM, and dual NVIDIA GeForce RTX 3090 GPUs (24 GB VRAM
each) for parallel computation. 2. Storage: 1 TB hard drive to accommodate large-scale
datasets and model checkpoints. Operating System: Linux Ubuntu 20.04 LTS for stable
system-level operations. Computational Framework: PyTorch 1.9.0 with CUDA 11.1 inte-
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gration to leverage GPU-accelerated training and inference. Python 3.8.11 as the primary
programming language. OpenCV-Python 4.5.3.56 for image preprocessing and analysis.
NumPy (>1.18.5), SciPy (>1.4.1), and Pandas (>1.1.4) for numerical and tabular data
manipulation. Pillow (>7.1.2) and Matplotlib (>3.2.2) for image I/O and visualization.
Strict version control for critical packages (e.g., torchvision = 0.8.1 to ensure compatibility
with PyTorch 1.9.0, protobuf < 4.21.3 to prevent dependency conflicts). Auxiliary tools:
TensorBoard (>2.4.1) for training metrics visualization, PyYAML (>5.3.1) for configuration
parsing, and Seaborn (>0.11.0) for statistical graphics. TQDM (4.62.0) for progress tracking
during iterative processes. Requests (>2.23.0) for HTTP communication in distributed
workflows. This configuration ensures efficient utilization of GPU parallelism, reproducible
deep learning workflows, and robust support for image processing tasks, aligning with the
computational demands of residual-based models such as DnCNN.

Origin Gaussian noise Poisson noise

salt and pepper noise coherent noise stripe noise

Figure 5. Visualization of denoising methods.

3.3. Experimental Results

Based on the above research plan, two quantitative evaluation indicators for denoising
effect are calculated: Signal-to-Noise Ratio (SNR), Background Suppression Factor (BSF)
and Structural Similarity Index (SSIM).

SNR measures the ratio of the signal power to the noise power in the denoised image.
It is a widely used metric to evaluate the quality of the denoised image. For clean image x,
noise image x, and the denoised image y, (i, j) is the coordinates of a pixel.

Yijxe(i, )2

SNR = 10log,
¥ xe (i) = (i, )

©)

BSF measures the improvement in noise suppression achieved by the denoising algo-
rithm. It is defined as the ratio of the noise level in the original noisy image to the noise
level in the denoised image. The BSF is calculated as

o2 .
BSF = 1010g10< 2"‘”“ (6)
Udenoise
2 1 H .. 2
Ohoise — mz Z (xresiduul(11]> - ,uresiduul) (7)
i=1j=1
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2
where o vise

Xresidual = Xn — Xc, Mresidual 1S the mean of the residual noise. aﬁ
the denoised image y and the clean image x.

is the variance between the noised image x, and the clean image x,

»ise 18 the variance between

SSIM measures the structural similarity between the clean image x, and the denoised
image y. It considers luminance, contrast, and structure.

(2pxcpty + C1) 202y + C)
(y%c +pg + Cl) (a%c + o2+ Cz)

SSIM = 8)

where jiy, is the mean of the clean image, py is the mean of the denoised image, UJ%C is the
variance of the clean image, 0'5 is the variance of the denoised image, 0y, is the covariance
between x, and y, C; and C; are constants for stability.

The experimental results are shown in Table 1, indicating that it is difficult to achieve
good results on SAR images using only solid color block images for training. It is only
effective for Poisson noise and salt and pepper noise and is basically ineffective for stripe
noise. Therefore, in the next stage, the original SAR image and the noise superimposed
image will be used as sample pairs to train the model and further improve the improvement
effect of the model on SAR images.

Table 1. Examples of different denoise performance and BSF.

Noise Category Noise Denoise BSF

Original image 1.87
Gaussian noise 1.43
Poisson noise 3.33
Salt and pepper noise 1.26
Coherent noise 1.77
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Table 1. Cont.
Noise Category Noise Denoise BSF
Stripe noise 1.00

To assess the performance of denoising algorithms under realistic noise conditions,

five classic image denoising methods were rigorously evaluated on the simulation dataset,
a benchmark designed to replicate complex noise patterns encountered in practical imaging
scenarios. Additionally, a quantitative evaluation was conducted on a DnCNN-based
denoising model (a deep convolutional neural network architecture widely used for noise
suppression), with results summarized in Table 2. When directly deploying the DnCNN
model with pre-trained parameters (trained on generic grayscale images under blind noise
assumptions), its denoising efficacy on the dataset was suboptimal. The model achieved
a signal-to-noise ratio (SNR) of 18.25 dB, a BSF of 2.86 and an SSIM of 0.65, both metrics
indicating limited noise reduction capability. This underperformance suggests a significant
domain gap between the model’s training data (generic natural images) and the specialized
noise characteristics of the dataset, which likely includes structured or non-Gaussian noise
components not adequately addressed by the pre-trained weights. In contrast, a self-
learning adaptation of the DnCNN framework, specifically tailored for synthetic aperture
radar (SAR) imagery, exhibited remarkable denoising performance. This method leverages
domain-specific self-supervised training on SAR data to adaptively learn noise statistics
without requiring clean reference images. On the dataset, it achieved an SNR of 35.27 dB,
a BSF of 7.62 and an SSIM of 0.71, surpassing both classical methods and the generic
pre-trained DnCNN. The high BSF value indicates robust suppression of background
noise while preserving structural details, a critical requirement for SAR applications where
subtle features (e.g., terrain textures, man-made structures) must remain intact. The poor
performance of the pre-trained DnCNN highlights the importance of domain adaptation in
deep learning for denoising. Models trained on generic noise distributions fail to generalize
to specialized imaging modalities like SAR. The success of the self-learning approach
underscores the value of task-specific training strategies, particularly in scenarios where
paired noisy/clean data are unavailable.

Table 2. Evaluation of denoising effect of classic image denoising methods and the proposed DnCNN
model on SSDD-noise dataset.

Denoising Method SNR BSF SSIM
Mean filtering 16.52 2.58 0.39
Median filtering 16.25 2.54 0.53
Gaussian filtering 26.45 4.58 0.45
Bilateral filtering 9.56 1.73 0.36
Non-local average denoising 29.47 5.45 0.41
Directly load pre training parameters (gray blind) 18.25 2.86 0.65
SAR image denoising based on self-learning 35.27 7.61 0.71

4. Conclusions and Future Work

At present, traditional denoising methods based on manual feature extraction have
certain drawbacks, such as the assumption that encoding relies on the original image, low
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matching degree of encoded features in real images, reduced performance and flexibility of
the method in practical applications, and the feature extraction process of the method is
cumbersome, time-consuming, and computationally intensive, which is not suitable for pro-
cessing real noise with complex distributions. At the same time, the denoising effect on SAR
images is poor, and so on. In this paper, we first proposed a self-learning based DnCNN
denoising model to effectively solve these problems. By using noisy image datasets and
corresponding noise free image datasets to train and optimize the model, it can automati-
cally learn the features and noise distribution in the image, greatly improving the denoising
effect of the model on SAR images. Compared with traditional denoising algorithms based
on manual feature extraction, the self-learning based SAR image denoising algorithm can
provide better denoising effect and stronger generalization ability. In future work, we plan
to conduct more extensive experiments to quantify performance variations across different
noise models and refine the training process to further reduce any sensitivity to the specific
noise type used during training, as well as the trade-offs between denoising effectiveness
and processing speed for potential optimization strategies. Alternative loss functions, such
as perceptual loss and total variation loss, can better capture perceptual and structural
aspects of the images. A more comprehensive evaluation of alternative loss functions will
be left for our future work.
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