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Abstract: Artificial intelligence in the mining industry is key to improving safety, opti-
mizing resources, and ensuring sustainable operations in complex environments. The
main objective of this research is to develop an autonomous mobile station equipped with
artificial vision and artificial intelligence to identify and track equipment, people, and
animals in critical areas of mining operations, issuing real-time alerts to reduce occupa-
tional risks and improve operational control. The research is applied with an experimental
approach, designed to validate the effectiveness of the proposed system in real open-pit
mining environments. The proposed methodology consisted of five stages: (i) Selection of
data collection equipment, (ii) Definition of the positioning scheme, (iii) Incorporation of
the communication system, (iv) Data processing and transformation, and (v) Equipment
identification and tracking. The results showed an average accuracy of 98% in the valida-
tion and 95% in the test, achieving perfect performance (100%) in key categories such as
excavators and drills, highlighting the potential of this technology to transform mining
towards safer and more efficient standards.

Keywords: artificial intelligence; artificial vision; mining industry; autonomous mobile
station

1. Introduction

The mining industry faces several complex challenges that threaten its sustainability,
efficiency, and capacity for innovation in an ever-changing global environment. These
challenges include declining ore grades in shallow deposits, the need to mine resources at
extreme depths, and social and environmental pressures arising from the impacts of mining
activity [1,2]. The integration of advanced technologies, such as artificial intelligence,
Internet of Things (IoT), and automation, has been identified as a key strategy to address
these constraints, improving operational efficiency and mitigating risks [3,4]. However,
technology adoption is not without barriers, such as resistance to organizational change,
lack of local technical capabilities, and high initial implementation costs [5,6]. In this context,
solutions such as smart mining, combining advanced analytics and automation, and the
circular economy, focused on water recovery and tailings management, have demonstrated
a positive impact on productivity and sustainability [7,8]. Similarly, strengthening the
links between local suppliers and global companies, together with the implementation of
inclusive regulatory policies, is essential to overcome innovation limitations and promote
sustainable development in strategic regions such as Latin America [9]. This comprehensive
approach, which combines technological innovation, efficient resource management, and
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coherent regulatory strategies, positions the mining industry as a key player to face the
challenges of the 21st century, ensuring its competitiveness and social responsibility.

The main challenges in the adoption of artificial intelligence (Al) in the mining indus-
try focus on the lack of technical skills, cultural resistance to change, and regulatory barriers
to ensure ethical and safe use. Adapting advanced algorithms to dynamic and noisy envi-
ronments, such as those that characterize mining processes, also represents a significant
technical challenge [10,11]. In addition, inadequate technology infrastructure and limited
interoperability between intelligent systems hinder the effective integration of Al into
mining operations, while the development of legal frameworks to regulate autonomous
technologies remains nascent in many regions [12-14]. On the other hand, specific chal-
lenges such as reducing greenhouse gas emissions, improving mining safety, and training
personnel to work with advanced technologies remain priorities for the sustainability and
efficiency of the sector [15-17].

Al applications in mining span a variety of critical processes, from drilling optimiza-
tion, mineral extraction, and recovery to predictive maintenance and risk management
in coal mining operations [10,18]. Intelligent systems have proven effective in advanced
flotation monitoring, aerial inspection using drones, and failure prediction in critical ma-
chinery [11,19,20]. Likewise, Al technologies have been applied to reduce environmental
impact through energy optimization of heavy machinery and structural damage monitoring
of industrial equipment [15,21]. More recently, tools such as text mining have been used
to analyze technology trends and foster strategic planning in specific regions, including
Indonesia and South Africa [22,23].

Predominant methodologies in the use of Al in mining include supervised and unsu-
pervised learning algorithms, hybrid models, and advanced neural network techniques.
Expert systems and ConvLSTM models have been especially effective in predicting crit-
ical conditions and monitoring processes in real time [11,19]. In addition, data mining
algorithms, combined with thematic analysis and natural language processing (NLP) tech-
niques, have facilitated the analysis of large volumes of data, such as technology trends
and industry behavioral patterns [24,25]. Other notable approaches include integrated
cyber-physical systems for mining automation and advanced simulators for personnel
training [14,17]. These technologies and methods have addressed technical, environmental,
and operational challenges, laying the foundation for more efficient and sustainable mining.

From a theoretical standpoint, the integration of Al in industrial systems relies on a
convergence of computational models capable of abstraction, reasoning, and generalization.
This includes not only algorithmic sophistication but also systemic adaptability to contex-
tual and environmental variability, which is especially relevant in the mining sector. Recent
developments in neuro-symbolic Al, knowledge graph integration, and meta-learning tech-
niques have extended the functional capacity of mining-focused Al systems by enabling
better interpretability, modular transfer learning, and multi-task optimization without
losing operational robustness [26-29]. These paradigms allow for more context-aware
and resilient decision-making processes, while also enhancing the transparency of Al out-
puts in high-risk industrial contexts [28,30,31]. Their application within real-time systems,
combined with edge processing infrastructure [32,33], supports scalable deployment in
geographically distributed and connectivity-constrained operations such as remote mining
facilities, where delay-sensitive decisions are critical to safety and efficiency.

The bibliometric analysis, based on a search in Scopus with the Boolean formula
(‘Neural Networks” OR ‘Deep Learning” OR ‘Artificial Intelligence”’) AND (‘Mining” OR
‘Mineral Processing’), identified 15 articles published between 2022 and 2025. Using
VOSviewer, a co-occurrence network with 172 keywords was generated, setting a minimum
threshold of 1 occurrence per term. Six main clusters were identified: the red cluster
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(sixty terms) focuses on agricultural soils and atomic absorption spectrometry, reflecting
environmental concerns. The green cluster (39 terms) groups terms such as ‘machine
learning” and “joint angle’, highlighting technical development. The blue cluster (30 terms)
relates ‘mining industry’ to ‘environmental impact’, highlighting ecological risks. The
yellow cluster (24 terms) emphasizes regulatory compliance, while the violet and light blue
clusters (4 terms each) have less impact on the network. This analysis allows us to visualize
the main trends at the intersection between artificial intelligence and mining.

In synthesis, artificial intelligence (Al) emerges as a key tool for transforming the min-
ing industry towards a more sustainable and efficient operation. Its applications focus on
environmental monitoring, air quality control, and agricultural land management, address-
ing critical challenges such as pollutant emissions reduction and land use sustainability.
Advanced methods such as machine learning and neural networks lead their implementa-
tion, enabling predictive analysis and optimization of processes such as ventilation and
maintenance in mines. This approach consolidates Al as a strategic pillar to minimize
environmental impacts and maximize operational efficiency in mining (See Figure 1).
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Figure 1. Cooccurrence of keywords with VOSviewer in recent research database.

From another perspective and based on an updated time horizon, the evolution of
artificial intelligence (AI) in mining is highlighted, focusing on the transition to more ad-
vanced and sustainable technologies. An increase in the adoption of predictive algorithms
and hybrid models is projected, with emphasis on air management, emissions reduction,
and real-time environmental monitoring. These solutions integrate tools such as digital
twins and deep learning systems, strengthening operational efficiency and control of envi-
ronmental impacts. This scenario positions Al as a key catalyst to address contemporary
sustainability challenges in the mining industry (See Figure 2).

The main contributions of this research are the following;:

e  Development of an autonomous mobile station with artificial vision and artificial intel-
ligence capable of identifying equipment, people, and animals in critical operational
areas, optimizing safety and surveillance.

e Implementation of deep learning algorithms to analyze movements and operation
times, improving the allocation of mining equipment and correcting inefficiencies not
considered by traditional systems.
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e Integration of virtual delimitation of risk zones and issuance of automatic alerts in real
time when unwanted presence is identified, significantly reducing occupational acci-
dents.

e  Application of data-augmented convolutional neural networks (CNN) to achieve 100%
accuracy in the identification of key mining equipment during validation tests in
real environments.
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Figure 2. Research trend of the thematic axis in recent years.

The remainder of the paper is organized as follows. Section 2 develops a literature
review. Section 3 describes and proposes the materials and methods. Section 4 presents
the results. Section 5 presents the discussion of the research results. Section 6 presents the
conclusions and some possible future studies.

2. Literature Review

Recent advances in vision-based deep learning have established a robust technological
framework for critical applications in industrial, mining, and environmental sectors. In
industrial settings, MoistNet demonstrated high accuracy in measuring moisture con-
tent in organic materials such as wood chips, enhancing quality control in production
lines [34]. Similarly, transformer-based vision models have improved body pose estimation
in heavy machinery, offering operational advantages for autonomous mining environ-
ments [35]. From a safety perspective, deep convolutional architectures have enabled
accurate modeling of smoke dispersion, supporting proactive risk management in haz-
ardous environments [36]. End-to-end visual systems for autonomous driving have shown
promising adaptation to high-risk transport scenarios, contributing to operational mobility
in extraction contexts [37]. In quality assurance, explainable causal deep learning models
have increased the resilience of inspections under visual interference, addressing common
challenges in industrial visual analytics [38]. Notably, real-time monitoring platforms
for excavators in open-pit mining have leveraged computer vision to optimize earthmov-
ing operations and productivity metrics [39]. Complementary efforts in structural health
monitoring, synthetic image detection, and additive manufacturing supervision further
validate the strategic role of vision-based deep learning in automating complex, data-rich
tasks [40-42]. Collectively, these contributions underscore the relevance of architectures
such as YOLOv11 for autonomous operations in mining, offering scalable precision, real-
time responsiveness, and environmental adaptability in safety-critical industrial domains.
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In parallel, YOLO-based object detection architectures have exhibited significant evolu-
tion in scale-awareness, latency control, and domain specialization. Models like YOLO-MS
and Mamba YOLO have refined hierarchical feature learning and sequence modeling for
real-time object recognition [43,44]. Context-aware adaptations such as YOLO*C and YOLO-
NL have addressed weaknesses in non-local attention and occlusion handling, optimizing
performance in environments with low visibility or visual clutter [45,46]. Domain-specific
versions like YOLO-Facev2 and ASE-YOLO have successfully adapted to facial recognition
and cellular segmentation under constraints of scale and noise [47,48]. In agriculture, mod-
els such as YOLO-Granada and E-YOLO have enabled the detection of pomegranate fruits
and estrus states in livestock with superior generalization in open environments [49,50].
Industrial variants such as RDD-YOLO and Gold-YOLO have optimized surface defect
recognition and attention redistribution to improve mean average precision with minimal
computational cost [51,52]. Reviews of YOLO architectures provide strategic guidance
for model selection and adaptation across diverse use cases, including UAV inspection,
manufacturing lines, and risk monitoring [53,54].

Fast R-CNN and its derivatives have likewise advanced real-time detection and clas-
sification tasks across multiple high-impact fields. In healthcare, these models have been
pivotal in the diagnosis of dental caries [55], dermatological lesions [56], diabetic foot
ulcers [57], and depression through facial expression analysis [58]. Medical segmentation
and anatomical landmark detection have also benefited from 3D-enhanced architectures
and anatomical feature modeling [59,60]. In environmental monitoring, Fast R-CNN has
improved cyclone detection [61], seismic landslide prediction [62], and smoke diffusion
modeling [59], showcasing scalability in dynamic visual conditions. For industrial au-
tomation, applications range from fruit detection in UAVs using optical and 3D fusion [63]
to mobile robotic grasping through enhanced Faster R-CNN architectures [64]. Recent
works also highlight performance gains when hybridizing Fast R-CNN with Bi-LSTM and
hierarchical models, enabling superior temporal analysis and semantic inference [65,66].

Furthermore, a growing body of research emphasizes the strategic use of synthetic
data and transfer learning in industrial settings. To reduce the dependency on large
annotated datasets, works by Eversberg et al. (2024) [67]; Ouarab (2024) [68] and
Ouarab et al. (2023) [69], have explored deep active learning combined with synthetic
imagery, significantly enhancing model performance in object detection for industrial
robotics and SCARA machine deployment [70]. Other contributions include robust single-
pass architectures that streamline training while maintaining model generalizability under
factory-level visual variation [71]. Additionally, YOLO-based architectures such as those
proposed by Rhee et al. (2023) [72] have been successfully integrated into industrial safety
systems, enabling real-time monitoring of critical zones and enhancing situational aware-
ness in hazardous environments.

These insights validate the strategic potential of vision-based deep learning archi-
tectures—particularly YOLO and Fast R-CNN variants—for deployment in complex, real-
time, and safety-critical applications such as mining. Given the operational challenges in
open-pit mining—ranging from equipment collision risks to unauthorized intrusions—the
proposed autonomous mobile station leverages the YOLOL11 architecture for its balance
between accuracy, scalability, and latency, as demonstrated in prior industrial validations.
This technological convergence positions the current research within a frontier of applied Al
aimed at enabling real-time risk mitigation and equipment monitoring in highly dynamic
and unstructured environments.



Appl. Sci. 2025, 15,4197

6 of 23

3. Materials and Methods

The research methodology is structured in five key stages: (i) Selection of data col-
lection equipment, (ii) Definition of the positioning scheme, (iii) Incorporation of the
communication system, (iv) Data processing and transformation, and (v) Equipment identi-
fication and tracking. These stages ensure a comprehensive and robust approach for the
implementation of an autonomous detection system in mining environments (See Figure 3).

® Materials and Methods

[~ Autonomous mobile station
~ RGB and infrared cameras

— Artificial intelligence algorithms
— Optical sensors

— Real-time processing modules

— Solar panels

[~ Batteries for energy autonomy

— Long range RF communication systems

— High bandwidth transmission equipment (5 GHz)
— Deep Learning algorithms

— Training data sets

[~ Validation and testing
[ Imaging of equipment
— Hypothesis

Selection Definition Incorporation Data Equipment
of data of the of processing identification
collection positioning communication and and
equipment scheme system transformation tracking

Modular elements

Communication systems (RF, Wi-Fi)
Dedicated servers

Cloud storage

Images collected

Data tags in PASCAL VOC XML format
TensorFlow software

Convolutional Neural Network (CNN)

Figure 3. Methodological proposal for this research.

3.1. Selection of Data Collection Equipment

This technology system is based on an energy self-sufficient, autonomous mobile
station designed to operate in real time in highly complex mining environments. The unit is
mounted on a trailer-type chassis with towable traction, which incorporates a photovoltaic
generation system consisting of a 300 W monocrystalline solar panel and a deep-cycle
battery bank (12 V, 100 Ah) connected to an MPPT regulator. This configuration guarantees
continuous operating autonomy for at least 48 h in low solar radiation conditions.

The sensor system is composed of IP optical cameras with day and night vision,
integrated into a vertical telescopic mast that allows surveillance at different heights,
adapting to the topography of the mine pit. The cameras used have infrared vision capacity
(IR) of up to 60 m, H.265+ compression, and 4 MP resolution, with a fixed 6 mm lens,
making them suitable for environments with dust, fog, or variable lighting. The sensors
capture images at 25-30 fps and feed directly to the edge analysis system, without requiring
permanent connectivity to external networks.

Processing of the captured data is performed locally by a mini-PC type industrial
computing unit equipped with a quad-core Intel Celeron processor, 8 GB of RAM, and a
256 GB solid disk, all housed in a weatherproof IP65 enclosure. Running on this unit is an
optimized YOLO11 model, pre-trained to recognize heavy machinery, people, and wildlife.
The model is capable of operating with latencies below 50 ms, thanks to a convolution-
based architecture with Leaky ReLU activation and regularization techniques such as
dropout (0.1) and label smoothing. To ensure efficient operation in the field, the station
integrates a hybrid wireless communications system.The first subsystem, based on UHF
radio frequency at 915 MHz, allows the transmission of discrete data (alerts, crossing
events) with an effective range of up to 8 km line-of-sight and response times in the order
of milliseconds. This channel is essential for activating control mechanisms and visual or
audible alerts in critical situations.
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The second subsystem corresponds to high-capacity transmission via 5 GHz band Wi-
Fi (IEEE 802.11ad) [73], which facilitates real-time video transfer from the station to a remote
computer or server. The connection is made using high-gain DUAL OMNI antennas (5 dBi),
configured in 2 x 2 MIMO mode, allowing stability against electromagnetic interference
typical of the mining environment. The modularity of the station allows it to be repositioned
at multiple strategic points in the pit, covering sectors where visual monitoring of the
movement of trucks, drills, or operators is required. This repositioning capability allows
surveillance to be adapted according to operational changes in the mining process, ensuring
continuous monitoring of critical areas. All captured information can be stored locally,
transmitted to the Central Operational Information Centre (CIO), or sent to the cloud,
depending on the type of connection available.

3.2. Definition of the Positioning Scheme

Adaptable modular systems were implemented to optimize strategic deployment and
wireless communication using RF and Wi-Fi technology. This approach ensures continuous
connection with the Central Operational Information Center (CIO) and provides efficient
coverage in critical areas of operation, maximizing monitoring flexibility and real-time
reconfiguration capability.

3.3. Incorporation of the Communication System

The autonomous mobile station integrates a dual wireless communication architecture
optimized for long-range alarm signaling and high-bandwidth video transmission, ensur-
ing operational continuity in mining environments characterized by geographic dispersion
and limited infrastructure. The system consists of two independent channels:

3.3.1. RF Transmission System (Tx-RF/Rx-RF)

Operating in the 915 MHz ISM band, this subsystem handles discrete data and alarm
signaling through long-range LoRa modulation. It achieves point-to-point connectivity at
distances up to 8 km in line-of-sight (LoS) scenarios. Technical specifications include:
Transmit power: +20 dBm (100 mW).

Receiver sensitivity: —139 dBm
Transmission rate: 0.3 to 62.5 kbps
Latency: <10 ms

Antennas: Dual 5 dBi omnidirectional, IP67-rated for outdoor operation

This configuration ensures immediate actuation of security systems and discrete
output relays connected to the operational control network, enabling automated incident
response mechanisms in restricted areas.

3.3.2. High Bandwidth (5 GHz) Wi-Fi Link

Video and telemetry data are transmitted over the IEEE 802.11ad standard in the
5.180-5.825 GHz range, which supports transfer rates of up to 433 Mbps. The key parame-
ters are:

Channel width: 80 MHz

Latency: <50 ms

Security protocol: WPA2-PSK with 128-bit AES encryption
Range: 500-800 m (LoS)

Antennas: 5 dBi dual-band Omni, with low interference shielding

Both systems operate simultaneously and independently, ensuring redundancy and
enabling full interoperability with cloud platforms, centralized mining dashboards, or
SCADA systems. Local edge processing is performed on board the station through an



Appl. Sci. 2025, 15,4197

8 of 23

integrated GPU-enabled unit running a YOLO11 deep learning model, enabling mining
asset detection and classification without external computational dependencies.

3.4. Data Processing and Transformation

Advanced computer vision techniques were employed for accurate data annotation
using the PASCAL VOC XML format, followed by its transformation to TFRecord to
ensure compatibility with TensorFlow. In addition, data augmentation strategies, such as
rotation and scaling, were applied to robust convolutional neural network (CNN) training,
achieving highly accurate localized feature maps.

3.5. Main Features of the Model

The object detection task for various mining equipment was carried out using the state-
of-the-art YOLO11 model (Jocher and Qiu, 2024) [74]. This model is well regarded for its
efficiency in real-time applications due to its advanced convolutional neural network (CNN)
architecture, which optimizes the trade-off between accuracy and computational cost.

3.5.1. Architecture Details

The YOLO11 architecture builds on its predecessors and incorporates an improved
backbone and sensing head. The backbone consists of several convolutional layers with
CSP (Cross Stage Partial) connections to improve gradient flow and reduce computational
overhead. The network consists of:

e  Convolutional layers: The model includes a deep CNN with a variable number of
convolutional layers depending on the version (n, s, m, 1, x), ranging from 2.6 M to
56.9 M parameters [75].

e  Size and number of filters: Convolutional layers use kernels of sizes 3 x 3and 5 x 5,
optimizing feature extraction at different spatial scales.

e Activation functions: The activation function used in all convolutional layers is Leaky
ReLU, which guarantees nonlinearity and stable gradient flow.

e  Pooling strategy: The model employs spatial pyramid pooling (SPP) to retain spatial
information while efficiently reducing dimensionality.

e  Regularization techniques: The training process integrates multiple regularization
strategies, including dropout (0, 1) and label smoothing (0, 1), which prevent overfit-
ting and improve generalization [76].

The architecture of the YOLOv11 model used in this research is structured in three
main modules: Backbone, Neck, and Head, as presented in Figure 4 [75].

e  Backbone: It is the module responsible for visual feature extraction. It is composed of
multiple deep convolutional blocks with CSP (Cross Stage Partial) connections that
optimize the gradient flow and reduce the computational cost. The convolutional
layers employ 3 x 3 and 5 x 5 filters, with variable strides and adequate padding to
preserve spatial resolution. In the base versions, the backbone contains approximately
30-40 convolutional layers. All layers are accompanied by batch normalization (Batch
Normalization) and Leaky ReLU activation (o = 0.1).

e Neck: The middle section of the model implements an optimized FPN (Feature
Pyramid Network) and PANet mechanism, which allows effective feature combi-
nation at multiple scales. Operations such as concatenation, bilinear upsampling, and
1 x 1 convolutions are included to adjust the dimensionality of the features. In addi-
tion, SPP (Spatial Pyramid Pooling) is incorporated to retain contextual information at
different resolutions.

e  Head: The final prediction layer performs simultaneous inference at three scales (P3,
P4, P5), adjusted for small, medium, and large objects. The model employs anchor-free
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detection, which improves flexibility and speed of inference. Each prediction includes
box coordinates, confidence score, and classification. The total number of predictions
per image varies according to the size of the feature map, with outputs generated
through 1 x 1 convolutions and sigmoid activation functions.

Regularization and optimization: During training, techniques such as Dropout (p = 0.1)
and Label Smoothing (¢ = 0.1) are applied. The loss is calculated using a function com-
posed of three components: CloU loss for boxes, binary cross-entropy for classification,
and objectness loss. AdamW optimizer with initial learning rate of 0.001 and cosine
scheduler was employed.

Implementation: The model was trained using PyTorch 2.0 and the Ultralytics
YOLOvV11 framework, run on an NVIDIA RTX 3090 GPU with 24 GB of VRAM,
batch size of 16, for 300 epochs. Final model selection was performed with early
stopping and cross validation.
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Figure 4. YOLOv11 Architecture (Adapted from Hidayatullah et al. 2025) [75].

3.5.2. Dataset and Training Details

The dataset consists of annotated images containing various mining machinery, la-

belled using Labellmg [77]. The number of objects per class in the training and validation

sets is detailed in Table 1.
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Table 1. Number of objects per class in training and validation datasets.

Class Train Validation
Person 65 15
Truck-haul 427 164
Excavator 38 12
Bulldozer 178 80
Front-loader 173 80
Pickup-truck 165 57
Motor-grader 22
Rock breaker 7 4
Shovel 164 79

3.5.3. Training Setup

The model was trained using the Ultralytics framework, which provides an intuitive
interface and extensive support for object detection, segmentation, and tracking [75]. The
main training configurations were as follows:

Epochs: 300

Image size: 640

Batch size: 16

Patience 100

Optimizer: AdamW with a learning rate of 7.7 x 10~# and pulse of 0.9

3.5.4. Data Augmentation

To improve the robustness of the model, data augmentation techniques were ap-

plied, including;:

e  HSV modifications (hue: 0.015, saturation: 0.7, value: 0.4)

o  Geometric transformations such as translation (0.1), scaling (0.5), and shearing (0.1)

e  Horizontal rotations (0.5 probability)

e  Mosaic augmentation, which combines several images in a single batch to improve
generalization

e  Model performance and computational efficiency

Table 2 summarizes the performance of YOLO11 in its different versions, taking into
account accuracy (mAP 50-95), number of parameters, and FLOPs (floating point operations
per second). Architectural improvements to YOLO11 have optimized the operations
required for inference, significantly reducing computational costs while maintaining high
detection accuracy. These optimizations make the model suitable for real-time deployment
in mining environments, where fast and accurate detection of machinery is critical.

Table 2. Summary of YOLO11 for different sizes.

Model Size (px) mAPval 50-95 Parameters (M) FLOPs (B)
YOLO11n 640 39.5 2.6 6.5
YOLO11s 640 47.0 94 21.5
YOLO11m 640 51.5 20.1 68.0
YOLO111 640 53.4 25.3 86.9

YOLO11x 640 54.7 56.9 194.9
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3.6. Identification and Tracking

A comprehensive pipeline including training, validation, and testing stages of identi-
fication and monitoring models was designed and implemented. This approach allowed
achieving 100% accuracy in the detection and tracking of key mining equipment, evidencing a
significant improvement in performance metrics, such as loss function reduction and response
optimization in real scenarios. At this stage, the following hypotheses are proposed:

Hypothesis 1. (Accuracy of mining equipment classification).

o Hiyg. The trained neural network does not achieve an average accuracy higher than 95% in the
classification of mining equipment (pickup truck, excavator, operator, drill, scoop) in both the
validation and test sets.

o H1y. The trained neural network achieves an average accuracy greater than 95% in classifying
mining equipment (pickup, excavator, operator, drill, scoop) in both the validation and test sets.

Hypothesis 2. (Accuracy by specific class).

o H2y. There are no specific classes (such as excavator or drill) that reach 100% accuracy in the
validation and test stages.

e H2q. Specific classes (such as excavator or drill) reach 100% accuracy in the validation and
testing stages.

Hypothesis 3. (Evolution of precision).

e H3y. The evolution of precision (accuracy) and recall metrics shows no significant stabilization
patterns between majority and minority classes across epochs.

o H34. The evolution of precision and recall metrics shows significant stabilization patterns
towards the later epochs, being more consistent in the majority classes than in the minority
classes.

Hypothesis 4. (Convergence between metrics).

o H4y. There is no significant trend of convergence between metrics across training epochs.
o H44. There is a significant trend of convergence between metrics across training epochs.

4. Results

This section presents the results obtained separated by sections: (i) Selection of data
collection equipment, (ii) Definition of the positioning scheme, (iii) Incorporation of the
communication system, (iv) Data processing and transformation, and (v) Equipment identi-
fication and tracking.

4.1. Stage 1: Selection of Data Collection Equipment

The technological solution is an autonomous and interoperable detection system that
operates online and in real time. This system uses cameras and artificial intelligence to
identify and discriminate between equipment of different sizes or functions and people. It
assigns specific conditions that allow recording the actions of the equipment and issuing
alarms when sectors or perimeters with prohibited entry are transgressed, preventing quasi-
accidents. This paper presents a mobile station (See Figure 5), which is energy autonomous
and operates efficiently in the mining environment.



Appl. Sci. 2025, 15,4197

12 0f 23

Figure 5. Images of different views of the autonomous mobile station.

4.2. Stage 2: Definition of the Positioning Scheme

The technological system consists of modular elements that can be placed in different
positions to allow the monitoring of sectors where it is necessary to identify, through
images, the movement of equipment, people, or animals. These systems communicate
wirelessly with the CIO (Central Operational Information Center), as shown in Figure 6a,b.
This communication reports the information to the mine management system or stores it
in the cloud or on a dedicated server. The solution adapts to operational needs, ensuring
flexibility and complete coverage in critical positions in the pit.

(e
v

@)
Figure 6. Cont.
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(b)
Figure 6. (a) Diagram of possible positions to be located in a pit. (b) Image taken by the autonomous
mobile station according to (a).
4.3. Stage 3: Incorporation of the Communication System

The mobile station is characterized by its energy autonomy thanks to a set of batteries
and solar panels. In addition, it incorporates two communication systems (See Figure 7).

Tx- RF Rx- RF om0
l Data and Alarms j y —
M ‘ . com :: :
Data and Video ) )
w Antennas w Antennas
. DUALOMNI * DuALOMNI

Figure 7. Scheme of communication type.

e  RF system: it allows the transmission of simple data and the activation of discrete
signals at a distance of up to 8 km, with response times in the order of milliseconds.
This ensures fast actuation to prevent accidents or emergency stops.

o  High-bandwidth transmission (5 GHz): Facilitates real-time video transmission from the
high-risk sector being monitored.

Information processing is performed in-situ, using an algorithm trained with Deep
Learning techniques for equipment recognition, which eliminates the need for additional
external networks. These features allow the station to move dynamically according to the
requirements of the extraction process.

4.4. Stage 4: Data Processing and Transformation

At this stage, data augmentation methods were implemented that included transfor-
mations such as rotation, scaling, translation, horizontal and vertical flipping, illumination
manipulation, and noise addition. These techniques were applied randomly to each batch
of images during training, allowing the generation of a virtually infinite set of unique
data. The randomized process ensured that no two sets of images were exactly alike,
avoiding overfitting and improving the generalizability of the model by introducing con-
stant variability in the inputs. Each transformation was carefully parameterized to ensure
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preservation of the essential features of the images while diversifying the visual patterns
relevant to the model.

Subsequently, the augmented images were processed through a Convolutional Neural
Network (CNN), where multiple transformations were run through convolution layers.
These layers applied the mathematical operation of convolution described in Equation (1):

S(i,j) = Y ) 1(i —m,j—n)K(m,n) (1)

In this operation, each two-dimensional convolution kernel K(m, n) interacted with
a local region of the input image I(m, n) to produce a localized feature map S(j, j). This
process enabled the detection of specific visual patterns, such as edges, textures, and shapes,
in different regions of the images. The result of convolution in each layer produced multiple
feature maps in parallel, each corresponding to a kernel detecting a specific feature. In
addition, by sharing weights among the neurons in the network, the model significantly
reduced the total number of parameters to be trained, improving computational efficiency
and speeding up training.

Each generated feature map encapsulated key information about the regions of interest
in the processed images. This information was propagated through subsequent layers of
the network by the operation defined in Equation (2):

n

Oi(l) = bi(1) + Y_Kij(1) x L;(1—1) 2)

j=1

where b;(]) represents the polarization matrix, K; ;(!) is the convolution kernel connecting
the i-th feature map of the layer | with the j-th feature map of the previous layer, and
I;(I — 1) corresponds to the input data of the previous layer. This mechanism allowed the
extraction of hierarchical patterns, capturing low-level features in the first layers (edges
and textures) and more abstract and specific features in the deep layers (complex shapes
and structures).

In synthesis, the joint application of data augmentation strategies and convolutional
transformations succeeded in generating localized feature maps with high accuracy and
diversity. This process not only robustized the training set, but also allowed the neural
network to learn richer and more generalizable representations of the visual patterns
present in the data. The integration of these techniques was critical to ensure optimal
performance in the detection and classification tasks addressed in later stages.

4.5. Stage 5: Identification and Tracking

The identification and monitoring stage of the developed model was organized in
four main phases: Training, Validation, Testing, and Diagnosis. Each of these phases was
designed to systematically evaluate the model’s performance in classifying and tracking
specific mining equipment, optimizing its predictive capability and ensuring the robustness
of the predictions.

In the training phase, a specifically designed dataset was used to train and adjust
the model parameters. Through data augmentation and convolutional transformation
techniques, the model learned to identify distinctive patterns of the target classes, including
truck, excavator, operator, driller, and scoop. Figure 8 shows the training pipeline, while
Figure 9a details the configurations used. The validation dataset was used to impartially
evaluate the model fit during hyperparameter optimization. This phase allowed the
performance of the model to be measured while avoiding overfitting. The results obtained,
reflected in Figure 9b, show robust performance with average accuracies of 98% in mining
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equipment classification. As metrics from the validation set were incorporated into the
model fit, effective generalization to previously unobserved data was ensured.

(b)

Figure 9. Set of augmented image processing for network training use. (a) Training, (b) Validation,
(c) Test.

The testing phase provided an unbiased evaluation of the final model using a separate
data set from training and validation. The results obtained, presented in Figure 9c, show
that the model achieved an average accuracy of 95%. This performance confirms the
model’s ability to reliably classify mining equipment under test conditions.

Consequently, it was evaluated whether the model meets the established accuracy
requirements. Key results include: Accuracy rate: 100% rates were achieved for the classes

“excavator”, “operator” and “drill” in the validation stage, as well as 100% for “excavator”

and “drill” in the test stage (See Figure 10).

Loss function: Figure 11 shows the progressive drop of the loss function in the training
set, indicating an effective optimization of the model. These results validate the robustness
of the model and ensure its ability to generalize to new data.

The results obtained in the metrics presented in Figure 10 show that the system
achieves average classification accuracies of 98% in the validation stage and 95% in the test
stage. These values support the acceptance of the alternative hypothesis (H1;) and reject
the null hypothesis, since the average accuracies consistently exceed the 95% threshold.
The consistency of the loss curves in Figure 11 reinforces this finding, evidencing that the
model is adequately optimized and generalizes robustly on the test data.
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a. Average Precision by Class (Test) b. Average Precision by Class (Validation)
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Figure 10. Result of test set and validation.
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Figure 11. Loss function result curves for network training.

According to the results reported in Figure 10, the “digger” and “driller” classes
achieve 100% accuracy in the validation and test stages. This confirms the validity of the
alternative hypothesis (H2;), as there are classes that achieve perfect accuracy in both
stages. The quality of the model fit is reflected in the loss metrics (See Figure 11), where the
sustained drop and final stabilization of the values reinforce the high accuracy observed in
the specific classes. As an example of the application of these trainings, Figure 12a shows
the system detecting an extraction process composed of different trucks, shovels, and vans
in which the different types of equipment are labelled, which, in addition to identifying
them, keeps a record of the quantity of each one, which is useful for further analysis. For the
security case, Figure 12b shows a virtual demarcation of a zone, which can be regulated in
size and shape and define different actions, such as generating an alarm when it is invaded.

The evaluation of classification models in machine learning depends on key metrics
such as precision and recall, which capture different aspects of predictive performance.
While precision evaluates the accuracy of positive predictions, recall measures the model’s
ability to correctly identify actual positive cases. Analyzing these metrics together allows us
to understand the trade-off between minimizing false positives and false negatives. Given
the above, hypothesis H3 is corroborated.

By means of a dynamic heat map, it is possible to analyze how the precision and recall
metrics evolve over time (see Figure 13).
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(a) (b)

Figure 12. Identification of mining equipment and delineation of safety zones. (a) Identification of
mining equipment; (b) Delineation of safety zones.

Dynamic Heatmap: Precision and Recall Evolution
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The results show the temporal evolution of precision and recall metrics over 100 epochs,
highlighting the different trends between these performance indicators. Initially, precision
shows considerable variability, especially between epochs 1 to 10, before stabilizing at
higher values (~0.75-0.8) in subsequent epochs. Recovery, on the other hand, shows a
gradual upward trajectory, stabilizing in the later epochs, albeit with small fluctuations at
specific intervals.

Precision (B)

Metrics
Metric Value

Recall (B)

Figure 13. Heat graph of the evolution of precision.

This stabilization towards the later epochs provides empirical support for the H3;
hypothesis, stating that the metrics show significant stabilization patterns, especially within
the majority classes. However, the analysis also reveals nuanced inconsistencies, espe-
cially during transitional phases (e.g., epochs 20-40 and 70-80), suggesting differential
convergence behaviors between majority and minority classes.

These results corroborate the premise of the hypothesis H31, with implications for
class-optimization strategies and dynamic adjustment mechanisms in model training to
improve cross-class consistency in performance metrics.

In the field of deep learning applied to object detection tasks, evaluation metrics play
a crucial role in measuring the performance of trained models. Two fundamental metrics
used are the mAP50 and the mAP50-95. The mAP50 (Mean Average Precision at an loU
threshold > 0.5) evaluates the average accuracy of the model in correctly identifying objects
in different categories, considering a minimum overlap of 50% between predictions and
actual labels. On the other hand, the mAP50-95 extends this analysis by calculating the
average accuracy at multiple IoU thresholds, from 0.5 to 0.95, offering a more comprehen-
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sive and stringent view of the model’s performance. These metrics not only allow us to
quantify the quality of the predictions but also facilitate the analysis of the model’s behav-
ior throughout the training process. In this context, hypothesis H4 is tested to determine
whether the metrics show an increasing trend towards convergence, indicating that the
model reaches its optimal performance before completing all training epochs.

The heat plot shows the evolution of the mAP50 and mAP50-95 metrics over 100 train-
ing epochs, with values progressively increasing from 0.1 to approximately 0.7 (see
Figure 14).

Dynamic Heatmap: mAP50 (B) and mAP50-95 (B)

Metrics
mMAP50 (B)

Metric Value

mMAP50-95 (B)

Figure 14. Heat graph of the evolution of the metrics.

A convergence trend is observed in both metrics, with a reduction in the performance
gap as epochs progress, indicating stability in model accuracy both at IoU > 0.5 and in
the range [0.5, 0.95]. This behavior corroborates hypothesis H4;, which posits a significant
trend of convergence between metrics. The transition from low initial values to a region of
higher density in the upper levels of the graph validates that the model reaches its optimal
performance before the end of training, validating the robustness of the fitting process.

In synthesis, the developed model achieved exceptional performance in the identifica-
tion and classification of mining equipment, validating the hypotheses put forward and
guaranteeing its applicability in real environments. This robust performance, measured
through accuracy and loss optimization metrics, confirms the viability of the system for
practical implementation in mining operations.

5. Discussion

The results of this research demonstrate a remarkable level of robustness and general-
izability in the proposed system, especially in its ability to identify and track critical mining
assets in real operating conditions. The model’s average accuracy of 98% in validation
and 95% in testing not only confirms the effectiveness of the learning architecture but
also reinforces its suitability for real-time deployment in high-risk mining environments.
Exceptional results in specific categories such as excavators and drills, which achieved 100%
classification accuracy, can be attributed to well-defined geometric patterns, consistent
spatial features, and larger training sample volumes for these classes.

The integrated use of convolutional neural networks (CNNs) with advanced data
augmentation techniques was instrumental in the generalizability of the model, particularly
in complex terrains with varying illumination and occlusion. Precision-recall analysis
provided further evidence of the classifier’s discriminative power: high precision indicates
a low false positive rate, while high recall values confirm a low incidence of false negatives,
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especially in dominant classes. However, an imbalance between classes was observed.
Categories with fewer training samples, such as support machinery or personnel-related
instances, showed fluctuations in detection consistency, likely due to under-representation
during training. This phenomenon is consistent with prior findings in deep learning
applications for industrial object detection, where class imbalance remains a persistent
challenge [51,52].

Comparative studies in the literature support these observations. For instance,
YOLOv8 models applied to UAV inspection and steel defect detection environments demon-
strated similar performance gaps between dominant and minority classes [77,78]. Likewise,
ASF-YOLO and Gold-YOLO improved detection precision using multiscale attention and
gather-distribute modules, but faced reduced performance in low-data scenarios [48,50].
These comparisons underscore the relevance of incorporating class-sensitive learning strate-
gies, such as focal loss and weighted sampling, which have already proven successful in
domain-specific datasets with inherent distribution biases [79,80].

Moreover, the training dynamics observed in this study—including the consistent
decline and stabilization of the loss function—indicate robust convergence behavior and
effective regularization, achieved through techniques such as dropout and label smoothing.
This reinforces the system'’s potential for transferability to similar operational contexts, such
as open-pit mining, tunneling, or construction monitoring. In contrast to fixed-position
Al systems or traditional CCTV setups, the autonomous mobile station designed here
offers advantages in coverage adaptability, operational autonomy, and computational
decentralization via edge processing. Similar findings have been reported in deployments
of YOLO-integrated platforms for risk-prone environments, confirming the efficacy of
mobile Al units for scalable and real-time monitoring [73,74].

However, several operational limitations must be taken into account. Environmental
factors such as dust, vibration, and signal interference can affect sensor performance and
data transmission, especially in adverse weather conditions or low visibility. Furthermore,
although the dual-band (RF and 5 GHz) communication system improves redundancy,
latency spikes or bandwidth saturation in dense topographies remain potential limitations.
In future work, the integration of multi-modal sensing (LiDAR, thermal imaging, acoustic
data) and federated learning approaches could improve robustness and privacy, especially
for deployments in regulated environments. Additionally, predictive analytics, facilitated
by long-term data logging and anomaly pattern recognition, can pave the way for Al-
driven preventive maintenance. Addressing class imbalance through techniques such as
data augmentation, focal loss, or synthetic oversampling may further optimize detection
performance. Furthermore, expanding the training set with domain-specific edge cases
could enhance generalization in extreme or highly variable environments.

6. Conclusions

This research demonstrates the transformative potential of artificial intelligence in the
mining industry through the development and implementation of an autonomous mobile
station capable of identifying and tracking equipment, people, and animals in critical
operational areas. The proposed methodology, structured in five key stages, allowed
us to comprehensively address the challenges associated with monitoring, safety, and
optimization of mining processes. Key contributions include the integration of RGB and
infrared cameras, dual communication systems, and deep learning algorithms that enabled
real-time analysis and the issuance of automatic alerts, achieving unprecedented accuracy
in real environments.

The use of convolutional neural networks (CNNs) together with advanced data aug-
mentation techniques was instrumental in achieving an average accuracy of 98% in the
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validation stage and 95% in the test stage, with outstanding results of 100% in specific
classes such as ‘digger” and “drill.” These metrics validate the hypothesis that artificial
intelligence-based models can overcome the limitations of traditional systems, offering
more accurate and generalizable solutions. The sustained reduction of the loss function
throughout training reflects an optimized model capable of balancing fit and generalization,
which reinforces its ability to operate under diverse and demanding conditions.

In addition to validating the model, this research sets a standard for future applications
in the mining industry, including real-time monitoring, predictive maintenance, and the
expansion of the system to other industrial sectors. The results obtained not only confirm
the technical feasibility of this solution, but also underline its potential impact on reducing
workplace accidents, improving operational efficiency, and promoting sustainable practices
in a critical sector for the global economy:.

From a broader perspective, this research establishes a foundation for the evolution
of intelligent, autonomous monitoring platforms in high-risk industrial domains. Future
directions may include the integration of digital twins for real-time simulation, the use of
generative Al for synthetic scenario modeling, and large-scale validation under varying
geographies and climatic conditions. The convergence of Al, edge computing, and sustain-
able automation presented in this study positions the mining sector to lead in responsible
technological innovation, enhancing not only safety and productivity but also long-term
operational resilience.
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