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Abstract: As geological exploration technology advances, geoscience relies on digitization
and intelligence to address challenges such as data fragmentation, multi-source heterogene-
ity, and visual analysis. This study develops a big data-driven 3D visual analysis system
for regional-scale applications. The system integrates three core technological components:
(1) a heterogeneous cloud resource scheduling method employing an optimized CMMN
algorithm with unified cloud API standardization to enhance task distribution efficiency;
(2) a block model-based dynamic data aggregation approach utilizing semantic unification
and attribute mapping for multi-source geological data integration; (3) a GPU-accelerated
rendering framework implementing occlusion culling and batch processing to optimize
3D visualization performance. Experimental validation shows the improved CMMN algo-
rithm reduces cloud task completion time by 2.37% while increasing resource utilization
by 0.652% compared with conventional methods. The dynamic data model integrates
12 geological data types across eight categories through semantic mapping. Rendering
optimizations achieve a 93.7% memory reduction and 60.6% faster visualization compared
with baseline approaches. This system provides robust decision support and reliable tools
for the digital transformation of geoscience work.

Keywords: geological big data; digital exploration; 3D visualization; visual analytics; GIS

1. Introduction
Mineral resources are a critical material foundation for social development, and the

exploration and development of these resources directly impact the national economy,
people’s livelihoods, and national security [1]. In the digital exploration process, Guizhou
Province has accumulated multi-source, multi-type, and heterogeneous geological data and
has established multiple database types [2,3]. However, data fragmentation, multi-source
heterogeneity, and complex integration remain prominent, making it difficult to integrate
and visualize geological information effectively [4]. These challenges have become a key
bottleneck in the advancement of digital exploration.

In recent years, with the rapid development of geological exploration technology, digi-
tal and intelligent methods have gradually become essential driving forces for transforming
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and upgrading the geoscience industry [5–7]. Geological big data technology provides
new approaches to address the issues of data fragmentation and complex integration [8].
Integrating and visualizing multi-source data have significantly improved geological in-
formation expression and utilization efficiency, offering more accurate decision support
for resource evaluation, mining planning, and environmental protection [9]. For example,
Maljers et al. (2015) [10] compared three voxel models from the Netherlands Geological
Survey. They found that the finest GeoTOP model better delineates geological features
such as river channels and accurately predicts extractability. Their findings emphasize the
importance of matching model scale with practical application needs. Yang et al. (2025) [11]
developed a Geographic Data Modeling and Management System (GEM2S) that features
interactive query functions, introduces new criteria for data evaluation, and integrates
geophysical data to enhance the quality of geological models. However, regional-scale
geological data are vast, high-dimensional, and complexly interrelated. Existing systems
often focus on single data types or localized analysis, making it challenging to handle
multiscale spatial analysis, data aggregation, and multi-theme attribute expression and are
unable to provide a unified, comprehensive, integrated data view [12,13]. This system faces
three challenges in practical application: (1) Various units have established independent
data and migrated data to the available managed geological big data. However, differences
in storage, formats, and interfaces among cloud platform architectures have led to a lack
of effective interoperability and sharing mechanisms, failing to resolve the issue of infor-
mation silos [14]. This severely limits cross-departmental and cross-domain collaboration
and hinders the efficient utilization and sharing of data resources [15]. (2) Geological data
lack unified standards in format, semantics, and spatial coordinate systems, requiring
tedious conversion and reconstruction for data from different sources [13]. This increases
the complexity of data fusion and analysis, impacting the efficiency and accuracy of data
processing. (3) Regional-scale geological data are vast and densely distributed. Traditional
rendering techniques in 3D environments often result in unnecessary rendering, leading to
wasted computational resources and delayed interactive responses, severely affecting the
efficiency of visual analysis and user experience [16].

To address the above challenges, a big data-driven 3D visual analysis system for pro-
moting regional-scale digital geological exploration is proposed. First, to tackle the issues
of resource isolation and task scheduling complexity in heterogeneous cloud environments
during regional-scale digital exploration, a strategy for the unified management and adap-
tive scheduling of heterogeneous clouds is introduced. This strategy eliminates isolation
among cloud platforms by constructing a unified standard cloud API and user manage-
ment, resource management, and monitoring modules. It optimizes task distribution and
resource utilization by using an improved Cloud Min–Max Standard Scheduling (CMMN)
algorithm. Next, a dynamic aggregation method for geological data based on block models
is proposed to address heterogeneous geological data’s multi-source and fusion difficulties.
This method integrates structured and semi-structured data through a unified semantic
library, attribute mapping, and place-name space mapping library and links unstructured
data to the block model based on spatial relevance and priority principles. Finally, to solve
the issue of low network transmission and rendering efficiency caused by large volumes of
3D geological data, a rendering optimization method for 3D visual analysis is employed.
This method includes an occlusion culling strategy, which reduces unnecessary rendering
objects in a two-stage process, and a batch rendering strategy, which balances the CPU and
GPU workload by optimizing the number of Draw Calls to achieve efficient rendering. By
integrating multi-source heterogeneous data management, optimizing resource schedul-
ing and task distribution, and implementing efficient rendering strategies, the system
effectively addresses challenges in data integration, resource sharing, and visualization
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efficiency in digital exploration. The construction of this system provides powerful tools for
the digital transformation of geological exploration and will be validated for its efficiency
and feasibility through practical application cases.

2. Related Works
2.1. Resource Integration and Task Scheduling in Heterogeneous Clouds

The unified management and adaptive scheduling of heterogeneous clouds are es-
sential research directions in cloud computing, focusing primarily on resource integration,
scheduling efficiency, and optimization strategies in multi-cloud environments. The CY-
CLONE project proposed by Slawik et al. (2015) [17] simplifies the management and
deployment of multi-cloud platforms through open standards and APIs, enhancing the
security of cloud environments. CloudLightning Ontology (CL-Ontology), proposed by
Castane et al. (2018) [18], effectively supports the interoperability of heterogeneous re-
sources, demonstrating significant advantages in high-performance computing and cloud
resource management. Yang et al. (2019) [19] developed a heterogeneous cloud storage
platform that integrates multiple solutions by using Software-Defined Storage (SDS) tech-
nology, optimizing data distribution and storage efficiency. In the field of task scheduling
for heterogeneous clouds, Panda et al. (2015) [20] proposed three scheduling algorithms:
MCC, MEMAX, and CMMN; optimized from the perspectives of load balancing, task
completion time, and resource utilization efficiency, the CMMN algorithm demonstrating
strong adaptability in load balancing and task scheduling efficiency. The MSLBL algo-
rithm proposed by Chen et al. (2017) [21] considers economic constraints, optimizing task
execution time within budget limits and making it suitable for cost-sensitive scheduling
scenarios. Furthermore, the ETSA algorithm balances task completion time and energy
consumption, reducing energy usage while achieving the efficient scheduling of cloud
resources [22]. The GWO-GA algorithm proposed by Behera et al. (2024) [23] integrates
completion time, energy consumption, and computational costs from a global optimization
perspective, successfully balancing multiple objectives.

Despite advancements in heterogeneous cloud resource management and task schedul-
ing, most studies primarily focus on single-dimensional resource allocation or specific task
optimization. Provincial-scale digital exploration systems face significant challenges in
integrating multi-source heterogeneous data and achieving platform interoperability, as
they lack effective solutions for handling complex, multi-source, and large-scale geological
datasets. Existing load-balancing algorithms, such as the GWO-GA global optimization
method, fail to adequately account for the spatiotemporal correlation characteristics of
geological data and real-time processing requirements when coordinating cross-regional,
multimodal data scheduling.

2.2. Progress in Heterogeneous Geological Data Integration

In the field of geological data fusion, many studies focus on the integration of
multi-source data and the quantification of uncertainty. Olierook et al. (2021) [24] in-
tegrated various geological data (such as stratigraphy, airborne magnetic surveys, and
gravity measurements) into a 3D model, using a Bayesian inference framework and
Markov Chain Monte Carlo (MCMC) sampling techniques to quantify model uncertainty.
Zhuang et al. (2023) [25] proposed a method for extracting unstructured data from geo-
logical reports through a geological dictionary and pattern matching. They constructed
a 3D model based on these structured data, enabling the effective fusion of report data.
Wu et al. (2023) [26] introduced a point–surface data fusion method (PSDOF) based on
optimal transport theory, combining geological survey points with remote sensing data
to improve geological remote sensing interpretation (GRSI) accuracy. Research on data
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view construction primarily focuses on dynamic data presentation and interaction opti-
mization, change detection and trend prediction, and personalized user navigation and
display needs. The VAI framework proposed by Sjobergh et al. (2015) [27] combines
visualization, analysis, and interaction to use the Storygraph tool to display spatial and
temporal data, helping users filter and analyze dynamically. This approach addresses the
interactivity issues in multidimensional data display. However, handling real-time updates
and changes presents another challenge in data view construction. Stehle et al. (2020) [28]
proposed a strategy to address change detection issues by automatically refreshing and
using time-series functionality, helping users identify short-term and long-term data trends.
Farmanbar et al. (2020) [29] optimized real-time data presentation and user navigation by
constructing a multi-level big data view system with role-based design and providing
rich interaction methods, emphasizing the adaptability between data presentation and
user needs.

Previous studies have demonstrated significant advances in integrating and quan-
tifying uncertainty in multi-source geological data through techniques such as Bayesian
inference, pattern matching, and point-surface data fusion based on optimal transport
theory. These developments provide fresh insights into dynamic data presentation, change
detection, and real-time updates. However, current research often focuses on specific
data types or individual domains, failing to fully address the challenge of achieving
real-time, interactive aggregation in large-scale heterogeneous data environments. There-
fore, integrating data from multiple platforms and formats to achieve dynamic, real-time
information aggregation while optimizing data visualization and analysis methods is
crucial to supporting digital transformation and enabling reliable decision making in
geological exploration.

2.3. Progress in Large-Scale Geological Data Rendering

In the field of 3D geological model rendering optimization, research mainly focuses
on improving the loading and display efficiency of large-scale data. To address this issue,
several optimization strategies have been proposed. First, the use of a half-edge fold-
ing algorithm based on quadratic error metrics (QEMs), combined with a hierarchical
Level of Detail (LOD) model and a tiled hierarchical structure tree, optimizes the dis-
play performance of 3D models, allowing for the efficient loading of 3D Tiles files on the
Cesium platform (Wu et al., 2024) [30]. Second, Xu et al. (2023) [31] effectively allevi-
ated data transmission pressure and improved rendering efficiency through data caching,
asynchronous calls, error evaluation functions, visibility culling, and parallel rendering
techniques based on data parallelism. Zhang et al. proposed the VDEC-HRT index struc-
ture, which, combined with pre-scheduling and culling techniques, optimized data retrieval
and object traversal, reducing computational load during rendering (Zhang et al., 2022) [16].
Li et al. (2020) [32] also implemented a viewpoint-based LOD strategy to render multiscale
reservoir models quickly while addressing gaps between meshes. Graciano et al. (2018) [33]
used GPU-based ray-tracing technology and stack representation to enhance the rendering
efficiency of volumetric terrain and geological structures and optimize loading speed by
organizing texture data with space-filling curves.

The above discussion shows that by employing techniques such as the half-edge
folding algorithm based on quadratic error metrics, hierarchical LOD models, and tiled
layered structures, along with data caching, asynchronous calls, error evaluation, visibility
culling, and parallel rendering, the loading and display efficiency of large-scale 3D geo-
logical models has been dramatically enhanced. These methods have achieved significant
progress in data simplification, transmission, rendering acceleration, and the application of
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GPU technology but still face challenges in data consistency, real-time performance, and
dynamic load balancing.

3. System Architecture and Key Technologies
The system architecture is designed around heterogeneous cloud management, dy-

namic data aggregation, and three-dimensional visual analysis, creating a clear, hierarchical,
and highly integrated framework, as shown in Figure 1. The system employs heterogeneous
cloud resource management and adaptive scheduling strategies to address the challenges
of multi-source data access and the optimization of computational resource allocation.
These strategies dynamically allocate computing resources across different cloud environ-
ments to achieve efficient data processing and the optimal utilization of computational
resources, thereby reducing latency and enhancing processing capabilities. The dynamic
aggregation method for heterogeneous geological data integrates and converts data from
various sources, enabling seamless coupling and consistent data representation across
multiple scales and sources. To meet the demands of three-dimensional visual analysis,
the system introduces an optimized rendering strategy to improve the rendering efficiency
and interaction performance of large-scale geological data, ensuring that users experience
smooth operations and quick response times during the interactive visualization of complex
geological data.

Figure 1. System architecture diagram.

3.1. CMMN-Based Heterogeneous Cloud Resource Integration and Scheduling

Heterogeneous cloud resource integration focuses on data integration and resource
management across platforms. Data are stored in private clouds, and applications are
deployed on various platforms, creating resource fragmentation and information silos.
Therefore, a framework for cloud resource integration and communication is established.
An optimized CMMN-based adaptive task scheduling strategy is proposed to improve
resource allocation efficiency, balance load, and reduce task completion time.
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3.1.1. Heterogeneous Cloud Resource Integration Framework

The heterogeneous cloud resource integration framework addresses decentralized
management across multiple platforms by creating a unified cloud management engine for
resource interoperability and centralized control. It includes a standard cloud API, user
and resource management, a monitoring system, and a portal API, ensuring compatibility
and facilitating resource exchange among platforms. Figure 2 shows the architecture of the
heterogeneous cloud management engine, which consists of five components.

Figure 2. Heterogeneous cloud resource integration framework.

The unified standard cloud API is the core of the heterogeneous cloud management
engine, enabling the control of multiple cloud platforms through a single command. This
simplifies operations, ensures compatibility, and facilitates future extensions. The unified
user management module centralizes user account and permission control, enhancing
security and accountability. The unified resource management module integrates resources
from different platforms for centralized management and dynamic resource allocation,
optimizing efficiency and load balancing. The unified monitoring management module
allows for the real-time monitoring of cloud resources and devices, enabling timely alerts
and quick responses to ensure stability and security. Finally, the portal API module provides
a user-friendly interface for managing heterogeneous cloud resources.

3.1.2. Task Scheduling Optimization Based on CMMN Algorithm

In heterogeneous cloud task scheduling, traditional algorithms like Min–Min, Max–
Min, Cloud List Scheduling (CLS), and Cloud Min–Min Scheduling (CMMS) are widely
used but have limitations in resource allocation efficiency and flexibility. Min–Min and
Max–Min focus on minimizing task completion time but fail to address load imbalance and
resource utilization. At the same time, CLS and CMMS lack adaptability to dynamic re-
source and priority changes. The Cloud Min–Max Normalized (CMMN) strategy proposed
by Panda and Jana (2019) [22] improves resource utilization, minimizes completion time,
and struggles with exceptional tasks and task dependencies. We enhanced the CMMN
algorithm by optimizing task dependencies and adjusting resource allocation to address
these gaps. The improved algorithm handles complex scheduling in heterogeneous cloud
environments, increasing resource efficiency and task flexibility.

The CMMN algorithm, outlined in Algorithm 1, begins by iterating through the
current task set (Line 1) and checking if each task’s prerequisites are met (Line 2). For tasks
meeting the requirements, their ready times and execution times across cloud platforms
are updated (Lines 3–5) and added to the ready-to-schedule task set (Line 6) while being
removed from the original task set (Lines 7–8). If the ready-to-schedule set is not empty
(Line 9), the minimum and maximum values are calculated (Lines 10–11), and tasks are
normalized based on their maximum values (Line 13). Tasks exceeding a user-defined
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threshold are classified as large tasks (Lines 14–15) and small tasks (Lines 16–17). Finally,
the Min–Min algorithm is applied to schedule the extensive (Line 18) and small task sets
(Line 19). The original CMMN algorithm uses extreme values from the ETC matrix for task
classification, which can misclassify small tasks into large task batches during the cloud
readiness phase, causing load imbalance. Therefore, we replaced extreme values with the
median (Lines *10, *11, and *13), ensuring more accurate task classification and optimized
load distribution. Additionally, the algorithm lacked consideration of predecessor task
scheduling effects on successors. We introduced a correction step (Lines *3–*5) to adjust
successor task completion times based on predecessor scheduling. This enhances task
dependency handling, improves resource utilization, and reduces completion time.

Algorithm 1: Improved CMMN.

Input: tasks–A list of tasks with prerequisites, arrival times, and execution times;
resources–A list of resources, i.e. a list of clouds;
completedTasks–A list to record the completion of tasks;
threshold–Threshold for distinguishing between large and small tasks.

1 foreach task in tasks do
2 if task.canBeScheduled(completedTasks) then

// Original steps:
preparationTime← getTaskPreparationTime(task)
for each executionTime in task.executionTimes do

increment executionTime by preparationTime

// Improved:
3 * for i from 0 to task.executionTimes.length do
4 * preTime← task.getPreTime(resources.get(i), tasksToRes)
5 * task.executionTimes[i]← task.executionTimes[i] + preTime
6 add task to alreadyTasks
7 foreach task in alreadyTasks do
8 remove task from tasks
9 if alreadyTasks is not empty then

// Original steps:
min← getMinExecutionTime(alreadyTasks)
max← getMaxExecutionTime(alreadyTasks)
// Improved:

10 * minMed← getMinMedianExecutionTime(alreadyTasks)
11 * maxMed← getMaxMedianExecutionTime(alreadyTasks)
12 foreach task in alreadyTasks do

// Original steps:
normalizedValue← task.maxExecTime()−min

max−min

// Improved:
13 * normalizedValue← task.medExecTime()−minMed

maxMed−minMed
14 if normalizedValue ⩾ threshold then
15 add task to bigTasks
16 else
17 add task to smallTasks
18 schedule bigTasks using MinMinScheduling()
19 schedule smallTasks using MinMinScheduling()
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3.2. Dynamic Integration of Heterogeneous Geological Data via Block Models

The block model-based dynamic integration method for heterogeneous geological
data uses a unified data model to integrate structured, semi-structured, and unstructured
data, enabling efficient multi-source data fusion and management. It includes two key
components: geological data fusion, which optimizes integration through semantic, at-
tribute, and spatial mapping libraries, and dynamic data views built and interacted with in
a modular, demand-driven manner to enhance decision support.

3.2.1. Block Model-Based Heterogeneous Geological Data Fusion

Due to the diversity and heterogeneity of data sources, the first step is to establish a
semantic repository to resolve inconsistencies in naming the same attributes across different
datasets. For example, “silver content” may be referred to as “silver”, “Ag”, or “P-Ag”
in various files. The semantic repository can standardize these terms and map them to a
unified concept. Secondly, constructing an attribute-to-file mapping repository establishes
the correspondence between attributes and files, avoiding the need to search through
massive datasets during the fusion process. Finally, creating a geographic name mapping
repository enables the accurate association of place names in unstructured data with their
corresponding spatial locations, ensuring that the data can be correctly mapped to the
relevant geographical regions.

When handling data conflicts, it is essential to establish data prioritization rules, as
disputes may arise from different data sources for the exact spatial location and attribute.
To address this, we prioritize different datasets by considering factors such as data source,
time, attribute density, and type, ensuring that the most reliable data are prioritized. The
priority score p can be calculated by using the following formula:

p = (S + T + ϕ) ∗ C + A, (1)

where S represents the data source score, with authoritative sources receiving higher scores;
T represents the data timeliness score, with newer data receiving higher scores; ϕ represents
the attribute density score, with higher attribute density in a given spatial unit resulting
in a higher score; C represents the error coefficient score, with machine-measured error
coefficients receiving higher scores than those derived from manual measurements; and A
represents additional scores, awarded to specific data for special reasons.

The data fusion process is illustrated in Figure 3. Initially, the attributes in the semantic
repository are traversed, and files containing these attribute data are identified in the
attribute-to-file mapping repository. Each identified file is processed individually, ensuring
that its coordinates are transformed to align with the coordinate system of the fusion model.
Next, the file data are segmented based on the block model’s spatial resolution, and each
block’s attribute values are calculated. If a block lacks attribute values or the file’s priority
is higher than the existing data, the block’s attributes are updated. This process effectively
integrates structured and semi-structured data into the block model. The geographic name
mapping repository associates it with the block model’s spatial locations for unstructured
data, which lack explicit spatial information. This association enables quick access to
relevant unstructured data files through the blocks, facilitating the efficient retrieval of files
related to specific blocks within the fusion model.



Appl. Sci. 2025, 15, 4003 9 of 20

Figure 3. Data fusion workflow.

3.2.2. Modular Approach for Dynamic Data View Generation

Data views are crucial to data presentation, decision making, analysis, and collab-
oration in digital exploration. They help exploration personnel efficiently understand
data, identify resources and risks, and make timely decisions. Due to the large volume of
geological data and the complexity of exploration tasks, dynamic views are necessary to
present information based on work focus and data format, supporting interaction. Figure 4
shows the proposed design method, which separates view components into data, templates,
and interactive tools. Data include raw, statistical, fused, and real-time interactive data,
reflecting resource distribution, geological correlations, and real-time feedback. Templates
display data by using charts, images, videos, and geological-specific formats. Interactive
tools enable flexible functions, such as triggering pop-ups or controlling view displays,
meeting diverse interactive needs.
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Figure 4. Modular design-based method for dynamic data view generation.

3.3. Rendering Optimization Strategy for 3D Visual Analytics

Rendering efficiency and resource consumption are crucial to large-scale data fusion
for 3D visual analytics. Effective optimization strategies, such as occlusion culling and
batch rendering techniques, must be employed to improve rendering performance and
reduce hardware strain.

3.3.1. Occlusion Culling Strategy

In integrated model rendering, many objects are fully occluded, consuming significant
computational resources and memory despite not being visible. Therefore, we propose
a two-stage occlusion culling strategy (Figure 5) that reduces the number of rendered
objects without affecting visualization quality, improving efficiency, and reducing hardware
strain. In the preprocessing stage, occlusion culling computations are reduced to enhance
rendering efficiency.

Figure 5. Two-stage occlusion culling strategy.

The fused model is classified into discrete and continuous attributes, with discrete
attributes (e.g., strata) categorized by property values and continuous attributes (e.g., Ag
content) by intervals. Initial occlusion culling generates a shell model with only exterior
data stored on the cloud for real-time rendering. During rendering, the shell model is used
as the data source, filtered by the display range. Secondary occlusion culling is performed
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(Figure 6) to exclude fully enclosed objects from rendering. Then, the data are submitted
for final rendering.

Figure 6. Shell block identification diagram: (a) Case with 5 neighbor blocks; (b,c) Two cases with
4 neighbor blocks; (d,e) Two cases with 3 neighbor blocks; (f,g) Two cases with 2 neighbor blocks;
(h) Case with 1 neighbor block.

3.3.2. Batch Rendering Strategy

Before rendering, the CPU sets the rendering states and adds operations to a queue,
notifying the GPU to execute the rendering process (Draw Call). Both excessive and
insufficient Draw Calls can reduce efficiency. To optimize, a batch rendering strategy
(Figure 7) is used to group similar objects, merging Draw Calls and reducing memory
usage by sharing textures, improving efficiency, and reducing hardware load.

Let us suppose that each object in the fused model is processed with a separate Draw
Call, as illustrated in Figure 7a. In that case, it leads to excessive Draw Calls, which
in turn consume significant CPU resources and cause the GPU to wait for subsequent
render commands, reducing overall efficiency idly. On the other hand, grouping all similar
objects into a single Draw Call, as shown in Figure 7b, effectively reduces the number of
Draw Calls. However, this approach may not fully exploit the GPU’s parallel processing
capabilities, and the low communication frequency between the CPU and GPU can result in
suboptimal synchronization, further decreasing rendering performance. A hybrid approach
is employed to mitigate these issues, as depicted in Figure 7c. By determining an optimal
number of objects to merge per Draw Call based on the size of the fused model, this strategy
balances the two previous methods, ultimately optimizing rendering efficiency.

Figure 7. Batch rendering strategy: (a) Rendering without batch merging; (b) Over-merged batching
before rendering; (c) Grouping first, then proper batching before rendering.

4. Experiments and Results
Several experiments were designed and conducted to evaluate the effectiveness of

key technologies and validate the system’s feasibility. Section 4.1 presents a simulation
experiment of the CMMN optimization algorithm, where the results before and after
optimization demonstrate the effectiveness of the measures in improving task efficiency
and optimizing load balancing. Section 4.2 showcases the dynamic data view generation
process through examples, validating the feasibility of the modular design-based method
for dynamic data view generation. Section 4.3 focuses on experiments with 3D model
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rendering, verifying the advantages of the proposed strategy in reducing client memory
load and improving rendering efficiency. The experimental environment consisted of an
Intel (R) Core (TM) i7-9700 CPU @3.00 GHz (eight cores), 32 GB of RAM, and an NVIDIA
Quadro P620 GPU running on Windows 10. The code was written in Java, using JDK
1.8 as the development environment, and the browser used was Microsoft Edge version
130.0.2849.52.

The experimental data are derived from raw records accumulated over years of
digital exploration in Guizhou, China, including drilling data, geophysical data, geo-
chemical data, remote sensing images, geological map databases, and multiscale 3D
geological models. In Section 4.1, task data are randomly generated to simulate a het-
erogeneous cloud environment with cloud preparation times set between 1 and 10 and
task execution times between 5 and 100; moreover, 20% of the tasks have no predeces-
sors, with a maximum of six predecessors. By gradually increasing the number of tasks
and cloud nodes (e.g., from “100 × 4” to “1000 × 40”), 100 repeated datasets were gen-
erated to evaluate the efficiency and resource utilization of the improved CMMN algo-
rithm. Section 4.2 configures view templates using drilling cores, statistical indicators,
and real-time interactive data, and user interaction experiments validate the practicality
of the modular design. In Section 4.3, a mining area 3D geological structure model is
used to generate block models of different resolutions (D0–D3) through spatial partition-
ing and interpolation; data volumes see a 7-fold increase from D1 to D3, and tests on
memory usage, rendering object count, Draw Calls, and rendering time verify the effec-
tiveness of the occlusion culling and batch rendering strategies. Section 4.4 integrates
189 boreholes (with a cumulative drilling length of 99,000 m) and a 3D block model com-
prising 271,568 blocks of 12 m³ each, using kriging interpolation to analyze the spatial
distribution and resource reserves of the gold–copper deposit, thereby confirming the
system’s comprehensive capability in complex geological scenarios.

4.1. Task Scheduling Performance Analysis

The task data are randomly generated to simulate the diversity of tasks in a heteroge-
neous cloud environment. The cloud ready time simulates the delay in resource availability,
and since this delay is relatively short compared with the task execution time in real-world
applications, it is set between 1 and 10 in the simulation. Task execution times on different
clouds are set between 5 and 10,000 to accommodate both small and large tasks, making
the simulation more representative of real-world scenarios. The initial proportion of inde-
pendent tasks is set to 0.2, meaning 20% of tasks have no predecessor dependencies, which
helps balance dependency relationships and parallelism within the task graph. A lower
ratio would reduce parallelism, causing some heterogeneous cloud nodes to remain idle at
certain times, while a higher ratio would weaken dependency relationships, reducing the
effectiveness of complex task scheduling simulations. Additionally, the number of direct
predecessor tasks for each task is limited to a maximum of six, applying only to direct
predecessors, meaning that a task’s predecessors may still have their own dependencies.
This setup preserves the complexity of task dependencies while preventing extreme cases
where many tasks rely on the same predecessor in scheduling simulations involving 100
to 1000 tasks. Each dataset is generated 100 times for experimentation, and the average
results are calculated. The experimental results are shown in Table 1.

The experimental results focus on cloud completion time and average cloud utilization.
Cloud completion time refers to the moment when the last task finishes execution on the
cloud, indicating the efficiency of task execution, with smaller values representing higher
efficiency. Average cloud utilization is calculated by dividing the average completion
time of the last task on each cloud by the cloud completion time, measuring the load
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balance on the heterogeneous cloud platform. Higher values indicate a more balanced load
distribution. From the data in Table 1, the improved CMMN algorithm shows advantages
in both metrics across all datasets. Specifically, the cloud completion time was reduced from
22,288.72 to 21,812.85, saving 2.37% of time; the average cloud utilization rate was increased
from 91.977% to 92.577%, an increase of 0.652%. These results show that the proposed
improvement measures have improved the task execution efficiency and optimized the
load balance of cloud resources to a certain extent. However, the overall improvement is
not significant.

Table 1. Adaptive scheduling experimental results.

Datasets
Cloud Completion Time (ms) Average Cloud Utilization

CMMN Optimized Improvement CMMN Optimized Improvement

100 × 4 60,583.98 59,528.53 1.77% 0.9644 0.9685 0.43%
200 × 8 37,110.81 36,367.85 2.04% 0.9385 0.9496 1.18%
300 × 12 26,606.16 26,029.34 2.22% 0.9302 0.9351 0.53%
400 × 16 21,091.38 20,655.71 2.11% 0.9210 0.9299 0.97%
500 × 20 17,500.01 17,109.37 2.28% 0.9171 0.9215 0.48%
600 × 24 14,910.70 14,519.72 2.69% 0.9093 0.9141 0.53%
700 × 28 13,171.05 12,823.78 2.71% 0.9039 0.9123 0.93%
800 × 32 11,747.93 11,436.66 2.72% 0.9040 0.9094 0.60%
900 × 36 10,528.38 10,258.25 2.63% 0.9081 0.9119 0.42%
1000 × 40 9636.75 9399.24 2.52% 0.9012 0.9054 0.47%

The reason is that our optimization strategy is mainly based on two key aspects. On
the one hand, we focus on optimizing the cloud ready time, but the average value of
the cloud ready time is only 5.5, while the average value of the cloud execution time is
5002.5, and the cloud ready time only accounts for about 0.1% of the cloud execution time.
Therefore, its effect on improving the overall performance is relatively small. On the other
hand, another focus of the optimization strategy is to target special cases in task batch
division, but these special cases account for a relatively low proportion of the entire task,
which limits the contribution of the strategy to the overall improvement.

4.2. Dynamic Data View Generation

The experiment aims to evaluate the method’s effectiveness in a geological exploration
3D visual analysis system, assessing its practicality through user interaction. The process is
divided into three steps: template selection, data configuration, and interaction implementa-
tion. In the template selection phase, suitable chart templates are chosen from a predefined
library to display various geological data types, as shown in Figure 8. These templates
support various chart forms, including line, bar, and advanced relationship diagrams and
visualizations for geological features like 3D, boreholes, cross-sections, and tunnel models.
Template selection is based on data characteristics and display requirements. In the data
configuration phase, users add and link dimension and metric data with template axes
through drag-and-drop operations, ensuring accurate data mapping and display.

Users first select and add relevant datasets in the configuration area (Figure 9a), which
include multidimensional and multi-metric information. Once added, the system generates
and displays dimension and metric data, as shown in Figure 9b,c. Dimension data are
presented hierarchically, while metric data provide the numerical basis for analysis. Users
then drag dimension data from Figure 9b and metric data from Figure 9c into the axis
sections of Figure 9d to create specific data views for analysis. Additional filtering and
drill-down features in Figure 9d allow for data subset analysis and multi-level exploration.
Interactive functions, such as hover and click events, enhance data exploration.
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Figure 8. Dynamic data view interaction interface.

Figure 9. Dynamic data view interaction interface: (a) Data position selection; (b) Dimension position
selection; (c) Metric position selection; (d) Dimensions and metrics in the current chart.

4.3. Rendering Performance Optimization

The experiment involves block models at four different resolutions: D0, D1, D2, and
D3. Each level increases the data volume by seven. The evaluation metrics include memory
usage, the number of rendered objects, Draw Calls, and rendering time. The experimental
results are shown in Figure 10, where columns with diagonal stripes represent rendering
failures due to memory overflow.

Table 2 presents the memory usage results. As the resolution of the fusion models
increases, the data volume rises significantly, leading to failures in conventional rendering
on the D2 and D3 datasets due to memory limitations. Similarly, the occlusion culling
strategy also fails on the D3 dataset because of memory constraints. For the D1 resolution,
conventional rendering uses 2281 MB of memory; with occlusion culling, memory usage
drops to 444 MB, a reduction of 80.5%. After implementing batch rendering, memory usage
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decreases to 295 MB, a reduction of 87%. When both strategies are applied simultaneously,
memory usage is reduced to 144 MB, a reduction of 93.7%.

Figure 10. Performance optimization comparison.

Table 2. Memory usage (MB).

Datasets Basic Rendering Occlusion Culling Batch Rendering Both

D0 724 189 189 113
D1 2281 444 295 144
D2 Out of memory 2241 1080 382
D3 Out of memory Out of memory 7325 384

Table 3 presents the results for the number of rendered objects. For the D3 resolution,
without occlusion culling, 7.74 million objects were rendered, while with occlusion culling,
only 250,000 objects were rendered, resulting in a 96.7% reduction.

Table 3. Memory usage (MB).

Datasets Basic Rendering Occlusion Culling Batch Rendering Both

D0 16,406 3131 16,406 3131
D1 126,067 12,892 126,067 12,892
D2 Out of memory 53,876 983,021 53,863
D3 Out of memory Out of memory 7,743,278 251,885

Table 4 presents the results for the number of Draw Calls. For the D1 resolution,
120,000 Draw Calls were made without batch processing, while with batch processing, the
number was reduced to 50, a 99.9% reduction.

Table 4. Memory usage (MB).

Datasets Basic Rendering Occlusion Culling Batch Rendering Both

D0 16,419 3144 41 39
D1 126,080 12,905 50 41
D2 Out of memory 53,876 126 42
D3 Out of memory Out of memory 801 58
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Table 5 shows the rendering time results. At the D1 resolution, conventional rendering
required 651.6 milliseconds. When occlusion culling was applied, the time dropped to
411 ms, leading to a 36.9% improvement in performance. Incorporating batch processing
reduced the time to 568.8 ms, which is a 12.7% performance boost. Applying both strate-
gies simultaneously reduced rendering time to 256.4 ms, marking a 60.6% improvement
in performance.

Table 5. Memory usage (MB).

Datasets Basic Rendering Occlusion Culling Batch Rendering Both

D0 75.5 61.7 80.3 58.26
D1 651.6 563.8 568.8 388.3
D2 Out of memory 2969.7 1585.6 3148.1
D3 Out of memory Out of memory 44,961 25,753.8

The occlusion culling strategy reduces memory usage by eliminating occluded ob-
jects from rendering, while the batch rendering strategy minimizes memory pressure by
grouping similar objects and sharing textures. Together, these strategies reduce client
memory usage by 93.7%, ensuring the successful operation of the D3 high-resolution fusion
model. Additionally, occlusion culling decreases the rendered data volume, improving
efficiency, while batch rendering reduces CPU–GPU communication and idle GPU time,
further boosting performance. The combined strategies cut the rendering load time by
60.6%, enabling the fast loading of the D3 model.

4.4. Case Study

Figure 11 displays the comprehensive application results of the digital exploration
three-dimensional visualization analysis system in a gold–copper exploration area. The area
covers 4.58 km² and exhibits multiple phases of hydrothermal alteration with superimposed
features. The main alteration types include (1) silicification, as shown by the purple zone in
Figure 11h; (2) alunite alteration; (3) kaolinite alteration; and (4) sericite alteration. Among
these, the strongly silicified zone is distributed in a dome shape in the upper part of the
orebody. It shows a significant spatial coupling with gold mineralization, which is indicated
by the orange zone in Figure 11h.

Mineralization characteristics indicate that the gold orebody, marked in orange in
Figure 11b, and the copper orebody, marked in green in Figure 11b, occur in vertical
zonation. The gold orebody mainly occurs in the oxidation zone above the water table (at
elevations between 600 and 640 m), depicted in light blue in Figure 11g, and gradually
transitions into a copper sulfide orebody along a northeast-trending extension. Three-
dimensional modeling reveals that the orebody exhibits local discontinuities in the X
direction, as shown in Figure 11i, and displays a typical gourd-shaped structure overall.
This system integrates digital data from 189 exploration drill holes, with rock core data
marked in green in Figure 11a and a cumulative drilling length of 99,000 m. Users can
obtain real-time information on lithological characteristics, stratigraphic attribution, and
mineralization for any drill segment by using an interactive drilling footage visualiza-
tion module shown in Figure 11c. The lithology pie chart analysis module, as shown in
Figure 11e, provides a quantitative characterization of the drill hole lithological composi-
tion, revealing that siliceous rocks account for 63.2% within the mineralized zone, which
serves as a basis for identifying key prospecting marker layers.

Based on the kriging geostatistical method and using the reference point
(X = 39,439,281.81; Y = 2,786,910.52), a three-dimensional block model was constructed
by dividing the volume into standardized blocks measuring 12 m × 12 m × 12 m, totaling
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271,568 blocks. The modeling range extends from the bottom boundary of the oxidation
zone to an elevation of−200 m, spanning 1584 m along the 50° section and 1584 m along the
140° longitudinal section. As shown in Figure 11d, the final gold-grade block model indi-
cates that the orebody extends in a northwest–southeast direction with a three-dimensional
double-expanded gourd shape. It has a strike length of 1900 m, a width of 900 m, a ver-
tical extension of 940 m, and a maximum actual thickness of 420 m, with mineralization
elevations ranging from 592 to 1120 m. Through grade–tonnage association analysis, as
illustrated in Figure 11f, the system automatically generates a resource reserve classifi-
cation report based on industrial criteria, clearly identifying the proportion and spatial
distribution of economically mineable reserves. This provides a precise geological basis for
designing mine development systems and optimizing mining sequences.

Figure 11. Dynamic data view interaction interface: (a) Drillhole distribution map; (b) Gold (orange)
and copper (green) orebody structure; (c) Drillhole depth chart; (d) Predicted gold ore grade block
model; (e) Drillhole lithology pie chart; (f) Gold ore grade-tonnage estimation table; (g) Relationship
of oxidation zone (light blue), reduction zone (dark blue), and orebody (orange); (h) Relationship of
orebody (orange) and alteration zones (other colors); (i) Drillhole distribution in different directions,
reflecting orebody distribution.

5. Conclusions
This study presents and implements a big data-driven 3D visualization analysis system

for promoting regional-scale digital geological exploration, addressing key challenges in
digital exploration, including data silos, difficulties in data integration, and inefficiencies in
visualization analysis. The system optimizes cross-cloud platform resource allocation by
adopting an enhanced CMMN-based method for integrating and scheduling heterogeneous
cloud resources. This results in improved task execution efficiency and increased cloud
resource utilization. Experimental results indicate that the modified CMMN algorithm
reduces cloud completion time by an average of 2.37%. In comparison, cloud resource
utilization rises to 92.58%, demonstrating the method’s effectiveness in task scheduling
and resource allocation. Using a block model-based dynamic aggregation approach, the
system integrates structured, semi-structured, and unstructured geological data, generating
different data views as needed. This approach improves the accuracy and timeliness of
data integration. The application of intelligent data matching and dynamic aggregation
techniques enhances the efficiency of geological data integration, particularly in multi-
source heterogeneous data. Additionally, occlusion culling and batch rendering techniques
were implemented to optimize the rendering performance of large-scale geological models,
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reducing memory usage by 93.7% and shortening the rendering time by 60.6%, alleviating
the client-side performance burden and ensuring the efficient handling of large datasets.

Applied to a gold–copper exploration area, the system integrated 189 drill holes to
construct a 3D block model, revealing orebody distribution and key silicification zones.
Real-time interactive analysis identified 63.2% siliceous rocks in mineralized zones, en-
abling precise resource classification and mine planning. This validated the system’s ability
to enhance decision making in complex geological environments.

These results significantly enhance the management of multi-source heterogeneous
geological data and improve the visualization and analysis of 3D geological models. How-
ever, the system has some limitations that warrant further investigation. In light of these
challenges, future research should focus on optimizing ultra-high-resolution models for
low-end hardware, automating the semantic and spatial mapping processes in data fusion,
and developing dynamic view generation frameworks that support real-time collabo-
rative editing and streaming data integration, thereby extending the system’s utility in
time-sensitive exploration workflows.
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