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Featured Application: In this paper, the partial discharge characteristic waveform
is decomposed by EMD to obtain more characteristic signals for DCNN training
and recognition.

Abstract: As a relatively weak part of cable insulation, T-type cable terminals will have
insulation defects due to process, installation, and other problems, resulting in partial
discharge. Therefore, this paper uses Deep Convolution Neural Network (DCNN) and
Empirical Mode Decomposition (EMD) to identify the partial discharge type of a 10 kV
T-type cable terminal. This method uses the partial discharge experimental platform of the
T-type cable terminal to collect the partial discharge signal. After the original signal that is
difficult to identify is decomposed by EMD, a series of intrinsic mode components (IMFs)
that are easy to locate are obtained. The deep learning network model is used to identify
the defect type of the IMF signal. The results show that the overall defect recognition rate
of this method reaches 95.3%. Compared with the traditional random forest algorithm (RF),
the 10 kV T-type terminal partial discharge type recognition method based on EMD-DCNN
is considered in this paper. The recognition accuracy of the main insulation scratch, bushing
fouling, and joint loosening defects is higher than that of the traditional mechanical learning
algorithm, RF, indicating that the method adopted in this paper can more effectively and
accurately identify the defect type.

Keywords: partial discharge; T-type cable terminal; defect type; deep learning; empirical
mode decomposition

1. Introduction

The T-type cable terminal can improve the space utilization rate and safety of the 10 kV
distribution network. As a relatively weak part of the cable insulation, the cable terminals
will have insulation defects due to problems such as process and installation, causing
partial discharge (PD). Once the T-type cable terminal has a partial discharge, it will cause
serious harm to the stability of the distribution network. Therefore, accurately identifying
the partial discharge type of the T-type terminal is conducive to evaluating the harmfulness
of partial discharge defects and formulating corresponding solutions [1-6]. However, the
original partial discharge signal obtained by experiments has a large amount of redundant
and useless information, and there are problems such as similarity and difficulty in identi-
fying each defect feature, which greatly affect the accuracy of signal feature recognition. In
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addition, there are some problems such as overfitting in partial discharge identification [7,8];
overfitting will affect the speed and accuracy of defect feature recognition.

For PD signal feature recognition, domestic and foreign scholars have performed a
lot of work. Zhang used a digital notch filter to suppress periodic interference. Although
this method has a certain filtering effect on interference, its ability to suppress interference
is limited, resulting in a poor recognition effect [9]. Ramy Hussein and other scholars
have studied the feature extraction method of using a fast Fourier transform to obtain the
spectrum of the partial discharge signal when there is noise interference and the partial
discharge feature with a low-frequency component as input. However, the recognition
effect is poor due to the general effect of the obtained feature spectrum [10]. Aiming at
the frequent defects in the field, Ab Halim designed five kinds of XLPE cable joints and
also proposed a feature extraction method based on high anti-noise principal component
analysis (PCA). Compared with traditional input features such as statistics and fractals,
artificial neural networks (ANNSs) and support vector machines (SVMs) were used for
classification. However, PCA is a linear dimension reduction method, assuming that there
is a linear relationship between data features, while the actual partial discharge signal may
contain nonlinear features, resulting in the loss of key nonlinear information [11]. Huang
Xuexiao used partial discharge pattern recognition of switchgear; but the application scope
of this method is limited, the recognition accuracy is low, and its performance depends on
the deep network structure. When the number of network layers increases, the performance
will decrease, resulting in a series of problems such as information loss [12], resulting in low
recognition accuracy. Mao Zhenyu used the BPNN (Back Propagation Neural Network)
to identify the partial discharge type of insulation defects of T-type cables. However,
because the feature is artificial, it is a subjective method. It is impossible to fully express
the essential characteristics of the signal. Although the influence can be reduced by the
selection of a certain feature object, its huge workload greatly reduces the efficiency [13].
C. Mazzetti proposed a partial discharge identification method for cable terminals based
on an adaptive fuzzy logic network. By setting different fuzzy rule parameters, the partial
discharge caused by different defects of the cable terminal is identified. However, due to
the subjectivity and complexity of fuzzy rule parameter setting, the recognition accuracy
is affected [14]. The advantages and disadvantages of the above research are shown in
Table 1.

Table 1. Advantages and disadvantages of current research on partial discharge characteristics.

Researcher Method Merit Defect Contribution
Through the organic combination of
experimental modeling and spectrum
.. The ability to analysis, Zhang solved the problem
lf?l’ilrgil;[ﬂ;(;ig Certain filterin suppress that it is difficult to accurately identify
Zhang [9] & interference is the fault type in PD detection and

suppress periodic
interference.

effect.

limited, resulting in
poor performance.

promoted the leap from qualitative
judgment to quantitative analysis of
insulation diagnosis of
high-voltage equipment.

Ramy Hussein [10]

The spectrum of

partial discharge

signal is obtained
by the fast

Fourier transform.

More effective
extraction of partial
discharge spectrum

from interference.

There is still some
interference in the
partial
discharge spectrum.

The research of Hussein solved the
problem of feature degradation and
misclassification of acoustic partial
discharge detection in a strong noise
environment through noise robustness
enhancement, feature engineering
innovation, and a hybrid intelligent
classification framework design.
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Table 1. Cont.

Researcher Method Merit Defect Contribution
Through the collaborative design of
Feature extraction PCA is a linear noise modeling, r.nultl—modal robust
. . feature extraction, and transfer
method based on dimension

Ab Halim [11]

high anti-noise

Good denoising

reduction method,

learning classification framework,
Raymond overcame the problem of

principal effect. which cannot deal feature deeradation and
component analysis with nonlinear . e °eg .
(PCA) sionals misclassification of XLPE cable joint
' ghats. partial discharge detection in a high
noise environment.
By improving the ResNet architecture,
Partial discharge It can effectively optimizing the tlme.—frequency
. . . The scope of representation and noise robustness
pattern recognition identify the early NI . L .
Huang [12] of the switch discharwe sienal of application is design, Huang significantly improved
L . 8¢ 88 limited. the recognition accuracy and
cabinet is adopted.  insulation defects. . . o .
engineering applicability of the partial
discharge mode of the switchgear.
The nonlinear Through algorithm improvement and
characteristics of systematic verification, Mao
BP is used for PD partial discharge The huge workload  established the effectiveness of the BP
Mao [13] signals can be greatly reduces neural network in cable partial

feature recognition.

captured by a
multi-layer
structure.

the efficiency.

discharge identification and provided
a new tool for smart grid
fault diagnosis.

C. Mazzetti [14]

A partial discharge
identification
method of cable
terminal based on
an adaptive fuzzy
logic network.

It is suitable for
dealing with
complex scenes
with on-site noise
interference or
signal overlap.

Due to the
subjectivity and
complexity of fuzzy
rule parameter
setting, the
recognition
accuracy is affected.

C. Mazzetti solved the problem of
noise sensitivity and interpretability in
PD pattern recognition of cable
accessories through the innovative
application of neural fuzzy network,
which has both a theoretical
breakthrough and engineering
practical value.

The empirical mode decomposition (EMD) can obtain the intrinsic mode function,

and the useless information is filtered out. The filtering effect is higher than the other
filtering methods, and only the IMF containing the characteristic signal is left. The IMF
signal as the input of the classifier will greatly improve the recognition accuracy [15]. Deep
convolutional neural networks (DCNNs) are widely used in various fields [16-19]. It
can effectively alleviate the phenomenon of gradient disappearance and overfitting. It
has the advantages of short training time and stable convergence, which can effectively
improve recognition accuracy [20,21]. Therefore, this paper proposes a method based
on empirical mode decomposition and deep convolutional neural network (DCNN) for
partial discharge type identification of a 10 kV T-type terminal. In this method, the partial
discharge signal obtained by the experiment is decomposed by EMD, and the IMF signal is
obtained and used as the input of the deep convolutional neural network. Compared with
the EMD-SVD-RF method, the effectiveness of the proposed method is verified.

2. The Basic Theory of EMD and DCNN
2.1. The Basic Theory of Empirical Mode Decomposition

EMD uses time scale characteristics to decompose, which makes EMD have a good
effect on the processing of nonlinear signals. EMD can retain the advantages of time-

frequency localization in wavelet transform and overcome the difficulty of selecting a
wavelet basis function in wavelet transform because it does not need a basis function. In
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this paper, this method is used to process the partial discharge signal of the T-type terminal,
and a series of signals containing characteristic components are obtained.

EMD can decompose the original signal into multiple intrinsic mode functions contain-
ing characteristic components (IMFs) [22-24]. Among them, the IMF has two characteristics:
(1) the number of zero-crossing points and the number of extreme points differ by at most
one; (2) at any time, the average value of the extreme envelope is 0. The EMD process for
any signal x(t) is as follows:

By fitting all the extreme points of the initial signal x(t) with its corresponding en-
velopes e, (t) and e_(t), let the average values of e, (t) and e_ (t) be the mean envelope
my (t) of x(t). The corresponding expression is as follows:

er(t) +e(t)

my(t) = >

(1)
Among them, m (t) is the mean envelope of the initial signal x(t), e; (t) and e_ (t) are
all extreme points of the initial signal x(t) and their corresponding envelopes.
Using x(t) minus 17 (t) as the signal h} (t) to remove the low-frequency signal:

i) = x(t) — m (1) )

In general, hi (#) is a non-stationary signal, so hj (t) does not meet the characteristic
conditions of IMFs. By continuously carrying out the above steps, until the nth time, the
signal h] (t) satisfying the above conditions is obtained, and the first-order IMF component
is as follows:

c1 (t) = imfl(t) = hnl(f) 3)

Among them, imf(t) is the first-order IMF component, and c;(t) is equal to the
first-order IMF component im f(t).

By subtracting c;(t) from the initial signal, a new signal r;(t) is obtained, which
eliminates the high-frequency part:

() = x(t) —ei(t) 4)

The second-order IMF component c;(t) is obtained by obtaining c; (t) for r1(t), and
the above steps are repeated many times until the nth-order IMF component ¢, () or the
residual r,,(t) is less than the set value, which indicates that the EMD signal separation is
completed, and x(t) is decomposed into:

x(t) = ) ci(t) +ralt) ©)

M-

1

Among them, r,,(t) is the residual, representing the general trend of the signal, x(t) is
the initial signal, and ¢;(t) is the ith-order IMF component.

2.2. Deep Convolutional Neural Network

The structure of DCNN is shown in Figure 1 [25-28]. The convolution layer is the
most important part of DCNN. There are multiple feature maps on the convolution layer,
and each feature map is connected to the feature map of the previous layer through the
convolution kernel. The convolution kernel acts on the feature map, sets the corresponding
step size, and moves through the step size to obtain the characteristics of the input signal.
Each activation layer is located after the convolution layer, and the linearly inseparable
part is removed to achieve the purpose of linear separability.
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Convolution layer Convolution layer
Batch normalization Batch normalization Full cted |
layer layer | | Fully connected layer |
L e — —» —{  Results output
Activation layer Activation layer Activation layer
Pooling layer Pooling layer

Figure 1. Structure diagram of DCNN.

The role of the pooling layer is to replace the output of the signal in the segment
according to the overall trend of the adjacent part. The advantage of this is that the parame-
ters and dimensions of the output of the segment can be reduced, thereby accelerating the
operation speed and greatly reducing the occurrence of overfitting.

The role of the batch normalization layer is to solve the distribution changes in the
intermediate layer data. It can also speed up the convergence speed and is more stable and
faster when training models with more layers.

The function of the fully connected layer is to combine the above features and connect
all the nodes of the upper layer to achieve the purpose of classifying the features.

3. T-Head Cable Partial Discharge Signal Acquisition
3.1. Experimental Principle and Platform

The schematic diagram of the partial discharge experiment principle of the T-type
terminal is shown in Figure 2. When the T-terminal produces partial discharge, the current
signal flows into the ground wire. The current signal is collected by HFCT and stored in
the digital oscilloscope. The digital oscilloscope is connected to the PC, and the collected
partial discharge signal is analyzed by the PC.

Protective
Resistance

Step-up
Transformer

@)

Pressyre
Regulator

Figure 2. Schematic diagram of T-type terminal office discharge experiment.

To reduce interference, the experiment was carried out in an electromagnetic shielding
room. The noise of the shielding room is about 1 pC. The equipment required for the
experiment is as follows: a digital oscilloscope, 220 V AC power supply, test console,
HFCT, capacitive voltage divider, transformer, etc. The transformer selects the transformer
without partial discharge, and its rated capacity is 150 kVA. The rated voltage of C1 and
C2 voltage dividers is 200 kV, the high-voltage parameters are R = 800 M) and C = 75 pF,
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the low-voltage parameters are R = 0.08 M() and C =750 nF, and the voltage ratio is
10,000:1. HFCT uses a broadband (100 kHz-50 MHZz) self-integrating Rogowski coil for
partial discharge measurement [29]. The highest sampling rate of the digital oscilloscope
used can reach 600 MHz, and the sampling rate of this experiment is 100 MHz. Some
equipment parameters are shown in Table 2. The composition of the acquisition system
and the experimental wiring diagram of the partial discharge platform are shown in
Figures 3 and 4.

Table 2. Some equipment parameters.

Equipment Rated High-Pressure = Low-Pressure Load Division
P Capacity Parameters Parameters Ratio
. R =800 MQ, R =0.08 M), )
Voltage divider 200 kVA C=75pF C = 750 nF 10,000:1

"

(a) high-frequency current sensor (b) digital oscilloscope

Figure 3. Acquisition system.

Figure 4. Experimental platform.

3.2. Defect Types of T-Joints

Through a literature review, this paper designs three common defect models of partial
discharge of T-joints. The defect models are as follows: (1) damage caused by workers
construction and installation, or a series of improper operations. Such damage will not
cause problems in the short term but will cause partial discharge under long-term operation.
The length, width, and depth of the scratch on the insulation surface are set to 40 mm,
2 mm, and 2 mm, respectively; 30 mm, 2 mm, 2 mm; 20 mm, 2 mm, 2 mm; and other groups
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of data. As shown in Figure 5a, (2) due to improper installation or long-term operation, the
surface has not been cleaned, resulting in stains on the nozzle sleeve and causing partial
discharge. The solution of sodium chloride, silicon dioxide, and water in a ratio of 1:2:2 is
mixed to simulate the stain of the casing. The surface of the casing is treated with 3 drops,
6 drops, and 9 drops of solution to simulate the partial discharge phenomenon, as shown
in Figure 5b. (3) Due to the improper installation of the T-joint during the construction of
the workers, the joint looseness between the pair of nozzle sleeves occurs due to failure to
tighten and other reasons, resulting in partial discharge. In this experiment, this type of
partial discharge defect uses a knob to the middle position of the joint, a knob to a quarter
position of the joint, and a knob to a quarter position of the joint to simulate joint loosening,

as shown in Figure 5c.

(a) Main insulation scratch (b) Casing fouling (c) Loose joint connection

Figure 5. Defect model diagram.

3.3. Experimental Acquisition Method of Partial Discharge Signal

The pressurization methods of the partial discharge test include the constant pressure
method and the step-by-step pressurization method. The constant voltage method is to
apply a constant initial discharge voltage to the insulation in the sample until the insulation
is broken down. Although this method is most in line with the actual insulation working
voltage situation, it takes a long time. The step-by-step voltage method can quickly realize
the whole process of simulated discharge, obtain a large number of experimental data, and
greatly improve the experimental speed. The constant pressure method and the constant
voltage method have the same insulation aging effect. Therefore, the step-by-step voltage
method with faster speed is adopted in this paper.

The data samples under different defects were collected in the experiment with 0.02 s
as the cycle. According to the experimental platform shown in Figure 4, the voltage
is quickly raised to the rated voltage of the joint Uy = 8.7 kV. If there is a discharge
phenomenon, the voltage applied at this time is recorded, and if there is no discharge
phenomenon, the voltage is continuously raised. Under the same conditions as the
above conditions, the five data samples were measured, and the mean value of the five
data samples was taken as the initial discharge voltage. The initial discharge data of
different defects are obtained by working for 0.5 h at the initial discharge voltage. The
initial discharge voltage of the defects obtained by the experiment is shown in Table 3.
According to the table, the initial discharge voltage of the insulation scratch defect is
close to the rated voltage of the joint of 8.7 kV, while the other two defects are greater
than the rated voltage of the joint of 8.7 kV.

To accelerate the deterioration of insulation, a staged step-up method is adopted.
Starting from the initial discharge voltage, each voltage gradient is about 5 kV, each
voltage gradient is maintained for 30 min, and data samples are collected until the
discharge becomes serious (such as the number of discharge pulses becomes dense and
the experimental site hears a significant discharge current sound). The pressurization is



Appl. Sci. 2025, 15, 3962 8of 17

stopped, data are collected, the above steps are repeated for each defect, and each defect
is repeated ten times.

Table 3. Initial discharge incipient discharge voltage.

Insulation Scratch .
Joint Looseness

Defect Type (40 mm, 2 mm, Casing Fouling (1/2 Place)
2 mm)
8.7 10.7 11.7
9 10.9 12.1
Voltage/kV 9.1 10.8 12.1
9 11 12.4
8.1 10.7 12.2
Mean value/kV 8.8 10.8 12.1

Affected by the experimental environment, the collected current signal will be affected
by noise and low-amplitude stray pulses. These irrelevant signals need to be filtered. The
EMD filtering method is a commonly used signal noise filtering method. In this paper,
EMD filtering is used to filter out the noise signal, and the specific process is not described
too much.

After EMD filtering, the partial discharge test waveforms of the three defects are
shown in Figures 6-8, respectively.

Ly

Amplitude/A
(@)

-15 - - - -
0 5 10 15 20
Time/ms

Figure 6. Waveform diagram of an insulation scratch defect.

0.4
0.21
0|

Amplitude/A

—0.2}

—0.4 s - -
0 5 10 15 20
Time/ms

Figure 7. Waveform diagram of fouling defect.
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147
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Amplitude/A

=0.71

-1.4 - - - -
0 5 10 15 20
Time/ms

Figure 8. Waveform of joint loosening defect.

The distribution of partial discharge amplitude—pulse width-discharge times of each
defect is shown in Figures 9-11. The discharge times of different defects are different. The
distribution range of partial discharge amplitude and pulse width of insulation scratch
is mainly concentrated in the range of [-1,1] A and [0.08,0.12] us, and the maximum
amplitude and maximum pulse width are 1.75 A and 0.47 ps, respectively. The length
of the discharge amplitude distribution interval of the casing fouling is narrow, but the
discharge distribution is more uniform, and the approximate “pyramid” type concentrated
area can be observed. The pulse width amplitude of the loose joint is distributed in a
“one-character” shape along the x-axis, and the maximum amplitude and the length of the
amplitude distribution interval are larger than the other two types of defects.

4]
o

discharge
number
N
(3,

0
0.5

0.25 e 0
pulse 0 _
length/ u's amplitude/A

Figure 9. Insulation scratch defect amplitude—pulse width-discharge times diagram.

N
o

discharge
number
o

0
0.4 0 ;
pulse o -1 0.5 _
length/ 1 s amplitude/A

Figure 10. Casing fouling defect amplitude—pulse width—discharge times diagram.
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Figure 11. Joint looseness defect amplitude—pulse width—discharge times diagram.

4. EMD and DCNN Partial Discharge Type Recognition
4.1. EMD and DCNN Partial Discharge Type Identification Process

The flow chart of EMD and DCNN partial discharge type recognition is shown in
Figure 12.

(1) The original partial discharge signal x (t) of the three defects is obtained by collecting
the partial discharge signal of the T-head cable. The original partial discharge signal
x (t) is decomposed by EMD after noise reduction, and the intrinsic mode IMFi (t)
component of the original partial discharge signal x (t) of the three defects is obtained.

(2) The intrinsic mode IMFi (t) component separates the training samples and the test
samples at a ratio of 8:2, and the DCNN network trains the training samples. Through
the training of sample training, the T-type terminal partial discharge type recognition
classifier is obtained.

(38) The test sample set is used to test the T-type terminal partial discharge type recognition
classifier, test the validity and correctness of the model, and adjust the parameters.
The final model is applied to the identification of the T-type terminal partial discharge
type, and the corresponding recognition results are obtained.

The original partial discharge
signals x(t) of three T-type cable
defects were measured at 10 kV.

+

The IMFi(t) component is
obtained by EMD decomposition
after noise reduction.

istribution—
accordingto4:1

testing sample set

training sample set

Input DCNN for model training

The validity and accuracy of the modeland its
classifier are tested by test samples, and the model
parameters are corrected appropriately.

1

Applied to the actual fault
monitoring, the relevant
diagnostic results are obtained.

Figure 12. Flowchart of EMD-DCNN release type identification.

4.2. EMD and DCNN Partial Discharge Type Identification Analysis

Partial discharge signal is a key feature to reflect the insulation state of power equip-
ment, but it usually has the characteristics of non-linearity, non-stationarity, and strong
noise interference. Traditional methods (such as the Fourier transform and wavelet analysis)
have limitations in dealing with such signals. As an adaptive signal decomposition method,
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empirical mode decomposition has the following two main advantages in dealing with
partial discharge signals.

First, traditional signal analysis methods (such as wavelet transform) need to set
the basis function in advance, which is difficult to adapt to the complex time-varying
characteristics of partial discharge signals. The EMD adaptively decomposes the signal
into multiple intrinsic mode functions through a “screening” process, without any prior
basis function constraints. This feature enables it to accurately capture the transient pulse
waveform of the partial discharge signal.

Second, partial discharge signals are often contaminated by background noise (such
as white noise and periodic interference). EMD separates signal and noise through multi-
scale decomposition. High-frequency IMFs (such as IMF1-IMF2) mainly contain noise
components, while low-frequency IMFs (such as IMF3 and above) retain partial discharge
characteristics.

The network model DCNN is built by using the MatlabR2023a Deep Learning Toolbox,
the ReLU function is selected as the activation function in the network. The recognition
platform is a 3.0 GHz i7 processor, and the memory is 16 GB.

To determine the parameters of the DCNN model, the partial discharge signal IMF
waveform is used as input, and the identification targets are insulation scratch defect,
bushing fouling defect, and joint loosening defect, respectively. This paper compares the
recognition effect of the network when the learning rate is 0.01, 0.001, 0.0001, and 0.00001,
respectively, as shown in Figure 13. When the learning rate is set to 0.01, although the
network can quickly extract the initial features, the feature information is lost due to the
fast convergence speed, and the recognition accuracy is low, indicating that the model
cannot effectively capture features at high rates. By adjusting the learning rate to 0.001,
the network shows progressive optimization characteristics: The recognition rate exceeds
80% when the iteration is 60 times, and the subsequent trend continues to rise. It is worth
noting that when the learning rate is less than 0.001, although the model can still learn,
the learning rate is significantly slower. To achieve the same recognition accuracy as the
learning rate of 0.001, it takes more time to train. In addition, a learning rate that is too
small can also easily cause overfitting problems. Therefore, considering the convergence
speed and model stability, the learning rate of 0.001 becomes the optimal choice.

100

v10’e10° m10* ¢10°

o
S o
4
e

---------

recognition rate/%

AN
(@)

o’
.....
Chld
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(@)

0 20 40 60 80 100 120

iteration times

Figure 13. The recognition rate of the network under different learning rates.

The learning rate is set to 0.001, and the influence of the number of iterations on the
recognition rate is analyzed. The recognition effect is shown in Figure 14. It can be seen
from the recognition rate curve of the network that as the number of iterations increases,
the recognition rate gradually increases and finally stabilizes at about 95%. When the
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number of iterations reaches 320, the recognition rate and loss value tend to be stable. This
means that the performance of the model is relatively stable at this stage. If we continue to
increase the number of iterations at this time, although it may bring an extremely small
performance improvement, it will consume a lot of running time, which is not cost-effective
from the perspective of the input—output ratio.

100 12

S A

%80-‘\ recognition| o
c rate IS
= Alossvalue11;
c 3
260/ =
§ Avg.\

we e
A\«JA“%quﬁA’”\*p\A

0 100 200 300 400 500

iteration times

N
(@)

Figure 14. The influence of the number of iterations on the network.

After repeated tests, the EMD and DCNN partial discharge type recognition model is
set up, and the parameters of the model are set as shown in Table 4. To ensure the accuracy
of the training samples, more data are used as the input for the training samples. The
partial discharge signals of the three defects are randomly classified according to the ratio
of 4:1 (1200:300). Eighty percentage of the classified signals are used as the input for the
training samples, and the remaining signals are the test sample set.

Table 4. DCNN parameter settings.

Number of Convolution Parameter Ma- Activation
Network Layer Convolutional ~ Kernel Height Output Size trix/Number of Step Size Function
Kernels x Width Weights
Input layer 20 x 1 x 4096
Convolution layer-1 4 9x1 20 x 1 x 4096 4x1x9/4 1 ReLU
Pooling layer-1 2x2 20 x 1 x 2045 2
Convolution layer-2 8 9x1 20 x 8 x 2038 8x4x9/8 1 ReLU
Pooling layer-2 2x2 20 x 8 x 1019 2
Convolution layer-3 16 9x1 20 x 16 x 1013 16 x 8 x 9/16 1 ReLU
Pooling layer-3 2x2 20 x 32 x 506 2
Convolution layer-4 32 9x1 20 x 32 x 500 32 x 16 x9/32 1 ReLU
Pooling layer-4 2x2 20 x 32 x 250 2
Fully connected layer 100 x 1 100 x 8000/100 ReLU
Output layer 4x1 4 x 100/4 Softmax

Other parameters

Learning rate: 0.001; the maximum number of iterations: 320

4.3. Analysis of Effect

The original signal of the input three different defects is decomposed by EMD, and
the decomposition map of the 15 kV pollution pipe sleeve waveform is shown in Figure 15.
According to the obtained IMF information, the network training is performed according
to the set model parameters, and the obtained test results are shown in Figure 11. The
overall defect recognition rate of the sample in the test set reached 95.3%. The recognition
rates of insulation scratch, casing fouling, and joint loosening were 94%, 96%, and 94%,
respectively. The ratios of wrongly considered joint loosening and insulation scratch were
9.4% and 4.1%, respectively. No defect was wrongly considered as casing fouling.
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Figure 15. Charts of IMF components decomposed by EMD.

4.4. Comparison with Other Algorithms

0.016

0.018

0.02

In order to verify the effect of the model and algorithm, the random forest and EMD
are compared with the DCNN algorithm, in which the former uses the random forest as the
classifier. The Random Forest (RF) model is a supervised machine learning algorithm based
on decision tree construction. The IMF information obtained after EMD decomposition is

input into the RF model, and the recognition results are shown in Figures 16 and 17.
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Figure 16. Recognition results of EMD and DCNN.
86 4 10 86.0%
28.7% 1.3% 3.3% 14.0%
7 85 8 85%
2.3% 28.3% 2.7% 15%
12 6 82 82%
4.0% 2.0% 27.3% 18%
81.9% 89.5% 82.0% 84.3%
18.1% 10.5% 18.0% 15.7%
Insulation Casing joint
scratch fouling looseness
Actual type

Figure 17. Recognition results of EMD-SVD-RE.

The identification of the two methods is shown in Table 5. It can be seen from Table 5
that the EMD-DCNN recognition method can better identify the three types of defects,
and the average recognition rate is 95.3%. The average recognition rate of the traditional
algorithm is only 89.7%. The EMD-DCNN recognition method is higher than the traditional

mechanical learning algorithm, RF, in the recognition accuracy of each defect.

Table 5. Compares the results of the two algorithms.

Defect Tyvpe EMD-SVD-RF EMD-DCNN
yp Accuracy/% Accuracy/%
Joint looseness 82
Casing fouling 85
Insulation scratch 86
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SVD s a linear transformation that has a limited ability to express the characteristics of
nonlinear signals. SVD can classify and recognize low-dimensional features. When dealing
with high-dimensional data, training errors are easy to accumulate, resulting in distortion
of training results, which cannot maintain the accuracy of recognition. In addition, SVD
also needs to construct feature parameters manually, which has a great subjective influence.
When the feature dimension is high, the training and inference time of RF is significantly
increased, which makes the RF not ideal in scenes with high real-time requirements. In
addition, the EMD-DCNN recognition method is also superior to the traditional mechanical
learning algorithm, RF, in the recognition speed.

In this paper, EMD-DCNN is used as an improved CNN deep learning network
model, which can directly process the image and retain the original information of the
data structure. After multi-layer processing of the network and deep extraction of features,
without human interference, the deep and shallow feature information of the data is
automatically extracted layer by layer, and finally, a higher recognition rate and recognition
speed are obtained.

5. Conclusions

This paper introduces the principle of empirical mode decomposition and the deep
convolutional neural network model. The PD original signal of the T-type cable terminal is
obtained by the experiment, and the IMF signal is obtained by EMD decomposition. The
signal with characteristic information is used as input to identify the types of three kinds of
T-type cable terminal defects obtained by the experiment. The recognition results of the
proposed method and the traditional method are compared and analyzed. The conclusions
are as follows:

(1) Asanimproved CNN network model, the EMD-DCNN network used in this paper
can extract image features at a deeper level. Compared with the traditional model,
it has a better recognition effect and faster training speed in partial discharge defect
type recognition.

(2) In the process of sample training, the learning rate and the number of iterations
have an impact on the recognition results of the improved CNN network. It has
been verified that when the learning rate is 0.001 and the number of iterations is 320,
the training recognition rate of the network can be stabilized at about 95%, and the
network training loss value is also stabilized at a low level.

(3) The average recognition rate of the EMD and DCNN method proposed in this paper is
95.3%, while the average recognition rate of the EMD-SVD-RF method is only 89.7%,
which is 5.6% lower than that of EMD-DCNN method, and the recognition rate of each
defect is lower than that of EMD and DCNN method. In addition, the EMD-DCNN
recognition method is also superior to the traditional mechanical learning algorithm,
RE in the recognition speed, which makes EMD-DCNN deal with real-time signals
well.

Due to the above advantages, the EMD-DCNN method is more suitable for online
monitoring platforms and applied to engineering practice. It reduces operation and mainte-
nance costs at the economic level, extends equipment life, and promotes the development
of intelligence and standardization at the technical level.
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