
Academic Editor: Nuno Silva

Received: 10 February 2025

Revised: 17 March 2025

Accepted: 26 March 2025

Published: 3 April 2025

Citation: Spyridopoulos, L.;

Ntalaperas, D.; Konofaos, N. Qutrit

Control for Bucket Brigade RAM

Using Transmon Systems. Appl. Sci.

2025, 15, 3950. https://doi.org/

10.3390/app15073950

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Qutrit Control for Bucket Brigade RAM Using
Transmon Systems
Lazaros Spyridopoulos, Dimitris Ntalaperas * and Nikos Konofaos

Department of Informatics, Aristotle University of Thessaloniki, Biology Building, Main University Campus,
54124 Thessaloniki, Greece; lspyrido@csd.auth.gr (L.S.); nkonofao@csd.auth.gr (N.K.)
* Correspondence: ntalaperas@csd.auth.gr

Abstract: Qudits allow the encoding and manipulation of additional quantum information
compared to that stored to a two-level qubit system. Although manipulations of qudit
states are generally more complex and can introduce extra sources of noise, qudits can
still be used in a number of applications when this error can be kept sufficiently low. One
such application is the case of the Bucket Brigade Algorithm for realizing a Quantum
RAM (QRAM), which inherently uses qutrits for encoding the state of address switches.
In this paper, we study a methodology for qutrit manipulation that leverages efficient
encoding techniques and pulse calibration methods for the case of transmon systems.
The methodology employs an encoding scheme that allows the execution of controlled
operations, using the subspace spanned by the two lowest levels of the transmon; we show
how this scheme can be used for generating one- and two-qutrit gates by leveraging the
Qiskit and Boulder Opal frameworks to compute the parameters of pulses that implement
the quantum gates that are used by the BBA. For this type of gate, simulations show that
the pulses perform the required operations with a low infidelity when errors introduced by
the qutrit Hamiltonian dynamics are considered.

Keywords: quantum control; qutrit; transmon qubits; QRAM

1. Introduction
Although qubits logically represent two-level quantum systems, physical implementa-

tions are typically realized by systems that possess extra physical states. Good candidate
architectures for implementing qubits are those that can efficiently isolate a two-level
subsystem so that information does not leak to other states; fluxonium [1] and transmon [2]
qubits are typical examples of such architectures. However, these extra states can be ma-
nipulated in many cases either to facilitate the computation in the two-level scheme or to
expand the computational schema to include additional logical states. Tsukanov [3], for
example, has demonstrated efficient pulses for single-qubit operations in a double donor
structure; the pulses make use of the excited delocalized orbitals for achieving state transfer
between the localized states used for encoding the logical qubit.

Going beyond the two-level logical qubit, the concept of qudit is used to denote any
quantum information system that contains an n-level logical state. Examples of these
systems are qutrit (three-level system), ququart (four-level system), and so on. Similarly
to qubit operations, it can be demonstrated that universal gate sets for qudits can also
be derived. As shown by Brylinski and Brylinski [4], any two-qudit gate V, combined
with the collection of all 1-qudit gates A, constitutes a universal gate set, provided that
V is imprimitive. An imprimitive 2-qudit gate is one that when acting on a decomposable

Appl. Sci. 2025, 15, 3950 https://doi.org/10.3390/app15073950

https://doi.org/10.3390/app15073950
https://doi.org/10.3390/app15073950
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7560-3912
https://orcid.org/0000-0003-2949-1184
https://doi.org/10.3390/app15073950
https://www.mdpi.com/article/10.3390/app15073950?type=check_update&version=1

Appl. Sci. 2025, 15, 3950 2 of 21

state, its output is a state that, in general, cannot be decomposed. For example, if two
qudits with states |x⟩0 and |x⟩1 are acted upon by the operator V, then the resulting state
V(|x⟩0|x⟩1) cannot be decomposed into a product of the form |y⟩0|y⟩1, with |y⟩i being
single-qudit states. This situation is similar and can, in fact, be considered a generalization
to universality requirements for qubit gates, where at least one entangling gate is required
for a gate set to be universal. Wang et al. [5] also studied and demonstrated the existence
of universal gate sets for qudits, while also reviewing the extent to which alternative
quantum computational models based on qubits, such as measurement-based computing,
adiabatic quantum computing, and topological quantum computing, can also be adopted
for qudit-based computation. One particularly interesting use case is the possibility of
using hybrid qudit computation, in which qudits of different dimensions are used; such
hybrid approaches may offer more efficient algorithms when the problem to be solved has
some natural mappings that are better served by nonbinary mappings (e.g., simulation
of massive spin 1 systems). An algorithm for factorization using a hybrid approach has
already been presented in [6], where one spin 3/2 nuclei coupled with a spin 1 nuclei was
used to encode qudits of dimensions four and three, respectively.

One particular domain of the application of qudits that is also relevant to the scope of
the present work is its usage to compress quantum information in a manner that minimizes
the amount of operations and/or qubits needed to perform calculations. In this direction,
Baker et al. [7] have shown that by using qudits, it is possible to completely remove ancilla
qubits when their number is O(n) and produce an equivalent quantum circuit based on
qudits with the same order of depth. On the other hand, Gokhale et al. [8] constructed a
logarithmic depth decomposition scheme of the Toffoli gate based on qutrits, which uses
no ancilla qubits or qutrits. Two of the authors of the present work have moreover shown
that by using higher-energy states, quantum entanglement can be performed at the logical
level by only using the spectrum of a single transmon [9].

Since each quantum hardware can support natively different types of pulses and
two-qudit entanglement, the choice of single-qudit and two-qudit gates will naturally
be different for each architecture. For the regime of the transmon-based architecture, for
example, Fisher et al. [10] have shown that qudit control can be efficiently implemented
and have obtained excellent experimental results for the case of a cross-resonance gate in a
two-ququart system. On the other hand, Chi et al. [11] demonstrated an implementation
scheme of a qudit processor that uses silicon-photonic integrated circuits.

One of the main challenges of quantum computation is the design of efficient quantum
circuits and finding optimal transpilations for decomposing the logical quantum circuits
into a set of instructions that are supported by the native quantum architecture. The ADAPT-
VQE and the qubit-ADAPT-VQE algorithms [12,13], for example, provide techniques for
constructing hardware efficient ansätze for the Variational Quantum Eigensolver problem;
these techniques take into account the constraints of current NISQ processors, such as
the limited sized universal gate set and the also limited qubit couplings. This situation is
similar to the qudit-based computation; both the techniques employed and their efficiency
depend upon the characteristics of the problem at hand and the underlying architecture.

The present work investigates the process of designing optimal pulses for the
transmon-based system and for the case of qutrits used in the implementation of the
Bucket Brigade Algorithm (BBA), which is one of the candidate schemas for realizing a
Quantum RAM (QRAM). Similarly to classical RAM, a QRAM is composed of a set of
cells that contain quantum information (typically in the form of a quantum register). Each
cell has an address, and the QRAM allows the selection of cells based on the given ad-
dresses. Various possible methodologies have been proposed to implement QRAM [14,15].

Appl. Sci. 2025, 15, 3950 3 of 21

Briefly, some of the most promising frameworks for designing a QRAM can be summarized
as follows:

• The Bucket Brigade QRAM was the first architecture proposed for quantum mem-
ory [16] and is the architecture considered in the present work. The Bucket Brigade
QRAM uses qutrits for switches and requires the activation of O(n) switches to access
an address.

• The Fan-Out QRAM is a quantum extension of the classical Fan-Out RAM [14]. Al-
though Fan-Out QRAM does not need qutrits to implement switches to address cells,
it requires the activation of O(2n) switches to access and address a cell.

• The Flip-Flop QRAM [17] uses a three-stage process to store data; while it achieves
a linear circuit width in terms of the number of addresses, the depth of the circuit
is exponential.

• Parametric Quantum Circuit (PQC) QRAM is implemented by using a parametrized
quantum circuit (a parametrized quantum circuit is one that contains gates that de-
pend upon a set of parameters θi, which are typically computed by using an opti-
mization process). This novel approach uses the principles of Machine Learning to
train the parametrized circuit and produce a circuit that is efficient for addressing
datasets that have similar statistical characteristics with those used for the training
set. The Entangling Quantum Generative Adversarial Network (EQGAN) QRAM [18]
is one such approach that has shown promise in efficiently storing quantum infor-
mation, especially when this is used for tasks on the domain of Quantum Machine
Learning (QML).

As mentioned, our work is targeted towards the BBA QRAM model. Without going
into much detail, the BBA uses three-level systems to build the tree that addresses the
registers. Two states are used to denote the path (left–right) and one state is the “wait” state;
the path to the target register is obtained by following nodes that have a state different from
the “wait” state. Figure 1 depicts an example of an 8-qubit QRAM and how the switches
are activated to route to a specific address (see also [19] for a more detailed analysis and
how such trees can be simulated in quantum circuits).

Figure 1. Example of addressing single-qubit data registers using the Bucket Brigade Algorithm. At
each level of the tree, a value of 0(1) means a routing to the left (right) sub-tree. • states denote the
wait state. di represents the data register at address i. In this example, the data of the register with
address 101 are requested. Blue color indicates traversed nodes.

Appl. Sci. 2025, 15, 3950 4 of 21

In such a scheme, the address register is coupled to the routing qutrits and changes
the state from “wait” to the value of the ith qubit, where i denotes the index of the qubit in
the index register. For the example of Figure 1, the address register is |101⟩, which sets the
states of the corresponding qutrits accordingly. Although a single address is depicted in the
example, in general, the QRAM should be able to query a superposition of data registers,
according to

2n

∑
j=0

αj|j⟩|0⟩ →
2n

∑
j=0

αj|j⟩|dj⟩ (1)

where j denotes the addresses of the data registers we want to obtain, αj is the amplitude
of the superposition of addresses, and dj are the contents of the data register indexed at j.
For the 8-qubit RAM considered in the above example, and assuming 1-qubit data registers
for simplicity, if we wanted to obtain an equal superposition of the registers located at
positions indexed at 2 and 7, the QRAM would reply with the superposition:

1√
2
(|2⟩⟩d2 + |7⟩|d7⟩) (2)

where Equation (1) is instantiated with j = 2, 7 and with αj =
1√
2

for j = 2, 7, and αj = 0
otherwise. As the operations that are performed on qutrits in the BBA are of the form
of single-qutrit rotations to obtain the desired states and controlled operations to change
the state based on the incoming state (i.e., to change a qutrit value from waiting to zero
or one), the following architecture can be considered a good candidate architecture for
implementing a BBA circuit:

• It provides three-level systems with each state having a sufficiently high relaxation T1
and dephasing time T2 relative to the execution time of a quantum gate;

• It inherently supports gates for the arbitrary initialization of a qutrit state.
• It allows the execution of single- and two-qutrit gates as the ones required by the

BBA algorithm.

Giovanetti et al. presented a possible implementation of BBA using photons propa-
gating along a network of coupled cavities that contain trapped atoms [14]. In the regime
of transmon systems, Peterer et al. [20] demonstrated that transmons can be excited with
sequential pulses π up to the fourth excited state, with relaxation times that allow the
possibility of using these extra energy states for encoding quantum information. The main
aim of the work presented in this paper is to demonstrate that the necessary operations
needed for implementing a QRAM based on the BBA can be realized in transmon sys-
tems and provide a framework for dynamically finding pulse parameters that realize the
necessary transitions.

2. Materials and Methods
The present study leverages two methods for designing the desired pulses:

• A simple qutrit encoding schema that is used to map qutrit states to transmon energy
levels. The purpose of this schema is to reduce the number of controlled operations
that involve higher-energy states of the transmon.

• A simulation framework that leverages the Qiskit Dynamics [21] and the Boulder
Opal [22] libraries to perform an ML-assisted pulse optimization problem, that targets
the required logical transitions.

The two methods are presented in the following subsections.

Appl. Sci. 2025, 15, 3950 5 of 21

2.1. Qutrit Encoding

Transitions of single-qutrit states can be described by 3 × 3 unitary operators. In
the case of qutrits used for BBA, the most common operations are state preparations and
state-based transitions. We identify two kinds of operators:

• The translation operators Ti,j that perform a flip between the |i⟩ and |j⟩ basis states
of the qutrit; for example, the operator T0,2 alters the state |0⟩(|2⟩) to |2⟩(|0⟩), while
leaving the state |1⟩ invariant.

• The permutation operator P, which permutes the states according to |i⟩ → |(i + 2)
mod 3⟩.
In matrix form, the operators can be given by

T0,1 =

0 1 0
1 0 0
0 0 1

, T0,2 =

0 0 1
0 1 0
1 0 0

, T1,2 =

1 0 0
0 0 1
0 1 0

 (3)

for the translation operators, and

P3 =

0 1 0
0 0 1
1 0 0

 (4)

for the permutation operator. Similarly to qubits, controlled operations involve the change
of the state of a target qutrit based on the condition of the control qutrit. In direct extrapo-
lation, we can identify the control operation CTi,j that performs the operation Ti,j on the
target qutrit if the control qutrit is in state |2⟩. The implementation of pulses that perform
the Ti,j transitions can be performed by sending signals that are resonant with the i ↔ j
transition frequency. The permutation operators can be more difficult to implement directly;
however, they can be deconstructed by a set of Ti,j pulses by using the identity

P3 = T0,1T0,2 (5)

Equation (5) can be validated by direct matrix multiplication; however, it can be
instructive to see how it works to cycle qutrit states using qutrit translations. Reading
from right to left (to simulate how, as a quantum operator, it would act on a qutrit state)
and taking as an example the state |2⟩, the state is first acted on by T0,2. Since we consider
the state with index equal to 2 (we use a zero-indexed scheme, so the column indexed
at position 2 is actually the third column), the relevant column of the T0,2 operator is

T2
0,2 =

(
1 0 0

)T
which results in the transition to state |0⟩. We then take operator T0,1

and specifically its zero indexed column T0
0,1 =

(
0 1 0

)T
(since the state is now |0⟩) and

observe that it changes the state to |1⟩. This is exactly the same as the operation performed
by P3 alone as can be seen by taking Equation (4) and isolating the second-indexed column.
For a proof using explicit matrix multiplication, the reader can refer to Appendix A.

Considering the CTi,j gates, controlling an operation conditional on the control qutrit
being in the first hyper-excited state may involve the design of very complex pulses. The
operation itself may be prone to additional error since, generally, coupling operations
involve pulses that have a longer duration, and the first hyper-excited state has a lower
relaxation time than the two lower ones. Various approaches to surpass this problem can
be followed, such as redefining the control gates to involve other control states. For our

Appl. Sci. 2025, 15, 3950 6 of 21

purposes, however, we follow the simple approach of re-mapping the physical and logical
states of the system. For a single transmon, we adopt the following mapping:

|0⟩T → |0⟩L

|1⟩T → |2⟩L

|2⟩T → |1⟩L

(6)

where |⟩T denotes the physical state of the transmon and |⟩L the logical ones. Consider
now a pulse sequence that performs the usual two-qubit CNOT pulse. Such pulses are
implemented in modern hardware in such a manner as to ensure that there is minimum
leakage to higher excited states; indeed, the fact that the ground and excited states can
be separated by the higher ones is one of the key factors that constitute a good quantum
processor architecture, such as the one based on transmon systems.

Ignoring the specifics of the pulse and assuming that it operates in the space spanned
by the ground and first excited states, the transitions in the CNOT case for the transmon
and logical states can be summarized in Table 1.

Table 1. Correspondence between the physical and logical state evolution under a two-qubit CNOT.

Initial Physical
State

Final Physical
State

Initial Logical
State Final Logical State

|00⟩T |00⟩T |00⟩L |00⟩L
|01⟩T |01⟩T |02⟩L |02⟩L
|02⟩T |02⟩T |01⟩L |01⟩L
|10⟩T |11⟩T |20⟩L |22⟩L
|11⟩T |10⟩T |22⟩L |20⟩L
|12⟩T |12⟩T |21⟩L |21⟩L
|20⟩T |20⟩T |10⟩L |10⟩L
|21⟩T |21⟩T |12⟩L |12⟩L
|22⟩T |22⟩T |11⟩L |11⟩L

As can be seen in Table 1, the logical state of the target qubit makes the transition
|0⟩L ↔ |2⟩L when the logical state of the control qubit is |2⟩. This corresponds to the
operation of CT0,2, which in explicit matrix notation can be described as

CT0,2 =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0


(7)

The other controlled operations can be obtained by using the identities

CT0,1 = (I3 ⊗ P3)
2CT0,2(I3 ⊗ P3)

CT1,2 = (I3 ⊗ P3)CT0,2(I3 ⊗ P3)
2 (8)

where I3 is the three-dimensional identity matrix and the symbol ⊗ denotes tensor products.
Similarly to the interpretation given for Equation (5), the identities can be logically deducted
by observing that the (I3 ⊗ P3) operators act on the second qutrit subspace to alter its state

Appl. Sci. 2025, 15, 3950 7 of 21

accordingly, before and after the operation of the CT0,2 operator. As an example, consider
the application of the CT1,2 operator to a target qutrit in state |2⟩. If the control qutrit is
not in state |2⟩, then the CT0,2 operator will have no effect and, according to the second
equation of Equation (8), the permutation operator will be applied three times to the state,
performing the transitions |2⟩ → |1⟩ → |0⟩ → |2⟩, effectively leaving the state invariant. If,
however, the control qutrit is in state |2⟩, then after the second permutation, which sends
the state of the target qutrit to |0⟩, the CT0,2 operator will alter its state to |2⟩. The final
permutation will then send state |2⟩ to state |1⟩, thus performing the equivalent of a CT1,2

operation. We shall not exhaust all the other cases; the reader can refer to Appendix A for
the computation that derives all the CTi,j matrices using the identities of Equation (8).

Under all of the assumptions above, we can see that the desired logical operations can
be obtained by pulses that involve only single-qutrit Ti,j transitions and only one two-qutrit
gate that can be implemented by applying existing approaches that realize the two-qubit
CNOT gate.

2.2. Pulse Optimization

The methodology for designing efficient pulses for state preparations and controlled
state transitions relies on leveraging existing techniques for accessing the higher-energy
states of transmon systems, while also avoiding performing controlled operations that
involve higher excited states both as controls and as targets to reduce the computational
error. For estimating pulse parameters, we adopt the following Hamiltonian (see, for
example, the overview of Kratz et al. [23] for a complete description of how to describe the
static and interacting terms of transmon Hamiltonians):

H = ∑
i={0,1}

via†
i ai

+
1
2 ∑

i={0,1}
αia†

i ai(a†
i ai − I)

+ ∑
i={0,1}

di(t)(ai + a†
i)

+ J ∏
i={0,1}

(ai + a†
i)

(9)

where the first two rows refer to the free Hamiltonians of the two transmons with fre-
quencies v0 and v1 and with anharmonicities equal to α0 and α1. a†

i (ai) are the cre-
ation(annihilation) operator for qutrit i. di(t) refer to the drive signals that can be applied to
the transmons to achieve control; these can be further decomposed to the Rabi strengths and
the time signals themselves, but we keep these two terms together for simplicity. Factors of
2π are omitted for simplicity. Finally, the coupling of the systems with coupling strength
J is included in the final row. While a perfect transmon could be described by the Pauli
operators, we introduce the more generic annihilation and creation operators both to access
the higher-energy states and to ensure that unwanted leakage to other states is modeled
appropriately. To this end, we adopt a 5-level oscillator to accommodate both cases.

For the one-qutrit pulses, the following assumptions are made:

• Relaxation and dephasing times have been ignored as a first approximation. Our main
focus is to establish errors due to the leakage to unwanted states, which are typically
introduced due to imperfect calibrations or crosstalk terms. These are modeled in
our Hamlitonian.

• A maximum power of 1.0 is imposed on our simulations. Although driving a transmon
from its ground state directly to the second excited state is, in theory, possible, it may
involve the realization of strong pulses so that current architectures may not possess

Appl. Sci. 2025, 15, 3950 8 of 21

(the IBM Quantum Platform for example, has an upper limit of a pulse amplitude
equal to one; the value can be overridden but only for simulations).

Under those assumptions, the process for constructing the Ti,j pulse is the following
(for this section, the indices of the T pulses refer to physical states and not logical ones):

1. Perform a Rabi experiment to estimate the amplitude of the pulse.
2. Drive the qutrit and obtain the fidelity.
3. For the T0,2 pulse especially, use the two calibrated T0,1 and T1,2 pulses in sequence

(here, and for all single-qutrit operations described in the present section, we refer to
the physical operations that alter the |⟩T states of Equation (6)).

Using a frequency of 4.86 GHz for the first transmon and an anharmonicity of
−320 MHz (these, and all the other system parameters, are taken from the existing Almaden
backend from IBM Quantum Platform to make the experiments more realistic), the system
is simulated using the Qiskit Dynamics library. A five-level oscillator is used to model the
possibility of leakage to unwanted higher-energy states. For simplicity, constant pulses
are used. For modulating the pulses to signals, we use the v0 + α0 frequency as a carrier
frequency for the transition T0,2. Figure 2 shows the mixer output of the two combined
signals that performs a T0,2 transition. A Rabi strength of 0.21 is used. (Here, we use the
normalized dimensionless units that Qiskit uses. The exact strength and units of the signal
that a qubit would ‘feel’, is dependent on the physical realization of the qubit and of any
transformations that the signal converter would do. For a flux qubit, for example, the
signal would have to be converted to currents. Qiskit hides these details by exposing a
dimensionless amplitude parameters and performing the underlying signal conversions.)
The dimensionless coupling parameter is taken to be equal to J = 2 × 10−2.

Figure 2. Mixer output for the T0,2 signal which consist of a T0,1 and T1,2 signal in sequence.
The first part (blue) is the modulated signal of the first pulse T0,1 and the second one (orange)
of the second pulse T1,2. The two pulses are constant and are modulated with frequencies v and
v + anharm, respectively.

In Figure 3, some indicative examples of how states are evolved are depicted for the
case of the first qubit. As shown, T0,1 swaps the populations of |0⟩ and |1⟩ states, while
leaving state |2⟩ invariant. The T0,2 pulse, on the other hand, performs the |0⟩ → |2⟩
transition as expected.

Appl. Sci. 2025, 15, 3950 9 of 21

(a) (b)

(c) (d)

Figure 3. Indicative results for a combination of simulated pulses and starting states. (a–c) show
how the states evolve when a T0,1 pulse is performed, with starting states equal to |0⟩ (a), |1⟩ (b)
and |2⟩ (c). As expected, populations in states |0⟩ and |1⟩ are exchanged, whereas there is minimum
leakage to other states. When the system starts in state |2⟩, all populations remain unaffected to a
large degree. (d) shows the full evolution of state |0⟩ under a T0,2 pulse. The system firstly goes to the
excited state |1⟩; a resonant pulse with frequency equal to v0 + α0 then drives the |1⟩ → |2⟩ transition.
As the T0,2 pulse consists of two sequential pulses, its duration is the sum of the duration of the two
constituent pulses.

Regarding the pulses’ accuracies, these are estimated by calculating the corresponding
infidelities, which are obtained by comparing the relative populations between the target
and the computed states. More specifically, the infidelities in fTi,j are computed using the
type in fTi,j = 1 − fTi,j , where fTi,j are the Hellinger fidelities of the count distributions.
Removing the operator subscripts for clarity, for each operator, the Hellinger fidelities are
computed by

f = (
5

∑
i=0

√
qi pi)

2 (10)

where qi and pi denote the final populations of the simulated and ideal states, respectively,
for all possible outcomes. The possible outcomes are i = {0, 1, 2} for the possible qutrit
states and i = {4, 5} to include the possibility of unwanted leakage to even higher-energy
states. (It can be seen that, when comparing to ideal distribution, the sum degenerates to a
single term since pi = 0 for all populations not belonging to the target state. However, the
Hellinger fidelity thus defined is used since it can be directly computed by using Qiskit’s

Appl. Sci. 2025, 15, 3950 10 of 21

library and can be easily extended to more general cases.)For a description of the basic
setup and simulation parameters of the experiment, the reader can refer to Appendix B.

Table 2 shows the calculated infidelities for the three pulses. Note that the operations
are the physical ones that correspond to the energy levels of the transmon.

Table 2. Pulse infidelities for the Ti,j pulses.

Pulse Infidelity

T0,1 9.81 × 10−7

T1,2 9.86 × 10−7

T0,2 1.90 × 10−6

It is to be noted that even when the second qutrit is taken into account, noises due
to crosstalk can be minimal when the frequencies, anharmonicities, and couplings are
appropriately defined. Figure 4 for example, shows the evolution of the first qutrit under a
T0,2 gate, where the second qutrit involved has a frequency equal to v1 = 4.97 GHz, and an
anharmonicity of α1 = −320 MHz, in the presence of crosstalk due to the coupling.

Figure 4. State population of the 2-qutrit system under a T0,2 gate on the first qutrit.

2.3. Two-Qutrit Gates

As we have seen in Section 2.1, controlled qutrit operations can be reduced to a
series of Ti,j and 2-qubit CNOT operations with the appropriate encodings. Designing
a pulse for performing a CNOT in transmon can then be seen as a trivial problem since
we can calibrate existing pulses that modern quantum architectures offer. Figure 5, for
example, shows a schedule that performs a CNOT gate on the Valencia processor of the
IBM Quantum Platform.

The main issues of obtaining such pulses out of the box, calibrating them, if needed,
and applying them for qutrit manipulation according to the schematics presented are
the following:

• CNOT gates are rarely truly native gates in transmon architectures. For transmons
with fixed frequencies, they are usually based on the cross-resonance gates, which are
implemented by driving the control qubit with the target’s qubit frequency. Calibrating
such a CNOT may involve processes that are not directly applicable to processors that
expose different gate-sets (e.g., an ECR gate) and additional calibration processes may
need to be applied.

• As is usual with many transmon architectures, arbitrary rotations around the Z axis by
and angle θ (realized Rz(θ) gates) are implemented with virtual pulses (i.e., changes
of reference frames) that must be applied across channels in the case of a CNOT gate.
When higher-frequency states are involved, these rotations may need to be recalculated
to accommodate for the additional wiggle factors of the expanded basis set.

Appl. Sci. 2025, 15, 3950 11 of 21

Figure 5. Pulse schedule for the Valencia backend of the IBM Quantum Platform for the CNOT
gate. The target qubit is controlled by signals sent in the control’s qubit control channel that is
driven by the target qubit’s frequency. The figure shows the unmodulated Gaussian pulses used for
realizing the gate. Di channels are used to drive qubit i. The U control channel is used to perform
controlled operations in the cross-resonance scheme employed by the Valencia processor; pulses in
the U channel use the frequency of the target qubit to realize controlled rotations. Virtual Z rotations
are depicted as cyclic arrows with the notation VZ(ϕ), where ϕ is the angle of the virtual rotation.

To this end, we opt to adopt a more general approach in which a cross-resonance gate
can be defined using the characteristics of the underlying Hamiltonian. If such a schedule
is found, then a CNOT gate can be obtained by

CNOT = (I ⊗ Z)−1/2(X ⊗ Z)−1/2(X ⊗ I)−1/2 (11)

where (X ⊗ Z)−1/2 is the maximally entangling cross-resonance gate obtained from the
general Rxz(θ) = exp (−i θ

2 X ⊗ Z) gate.
The right term corresponds to a one-qubit

√
X; in the gate set used in our model, this

corresponds to a
√

T0,1 gate, which can be performed by the same pulse used for the T0,1 if
it is applied for half a duration of the pulse.

The leftmost term corresponds to a one-qubit
√

Z gate. Rz rotations, of which
√

Z is a
special case, can be performed by different methods in transmon systems. If an external
pulse V(t) of the form

V(t) = Ω cos (ωdt − ϕ) (12)

is applied to a transmon qubit, then the total Hamiltonian of the qubit can be written
as follows (we use the Pauli matrices for simplicity since we focus for now to two-level
systems; in addition, we remove all h̄ factors for convenience):

H = −ω0

2
σz + V(t)σx (13)

It can be shown that by changing to the frame that rotates with the qubit’s frequency
and under the rotating wave approximation, the rotating Hamiltonian can be expressed as

HR =
Ω
2

(
0 ei∆t−ϕ

e−i∆t−ϕ 0

)
(14)

Appl. Sci. 2025, 15, 3950 12 of 21

where ∆, assuming that we are studying the 0-indexed qubit, is equal to ∆ = ωd − ω0. For
∆ = 0, we have resonant pulses that perform rotations around the X axis; all single-gate
pulses that we have studied thus far fall under this category, with the main difference being
that they are performed on systems that have more than two states.

An Rz rotation can be performed via the following:

• Use a slightly off-resonant pulse to introduce a phase difference between the qubit’s
state vector and the rotating frame.

• Use the ϕ angle in Equation (14) to place the rotation axis parallel to the z axis.

Many platforms, such as the IBM Quantum Platform, use the second approach (please
also refer to https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.RZGate
(accessed on 6 February 2025)), as this phase change can be performed by simply ad-
justing the phase of the pulses; such frame changes, also referred to as virtual gates, can
be performed classically via the signal generators by introducing the appropriate delays.
At the cost of having to track the delays and changes across the channels via the program
that implements the pulse schedule of the whole quantum program, this approach imple-
ments Rz pulses with effectively zero duration and error (for a complete treatise of how to
implement virtual Rz gates and how update the phases to take into account subsequent
multi-qubit interactions, see [24]).

In our implementation, arbitrary Rz rotations are seldom needed for qutrit control that
is typically encountered in BBA circuits, while, due to the extra computational states used,
the extra wiggle factors of these states may increase the complexity of bookkeeping the
phase delays. We are therefore using a simple calibration process for identifying optimum
pulse parameters for implementing the

√
Z =

(
1 0
0 i

)
(15)

gate by using the Boulder Opal framework. The Boulder Opal framework offers a vast
array of functionalities for computing optimal parameters for quantum control and for
simulating systems, including, among others, superconducting qubits [25].

In similar fashion to the one-qutrit gates and the simulations based on Qiskit Dynamics,
we define a two fixed-frequency transmon system and use the same frequency, anharmonic-
ity, and coupling strengths. We then define the target operation and run the Boulder Opal
optimizer to generate a pulse that is being composed by piecewise-constant segments that
minimize the gate infidelity. Boulder Opal calculates the operational infidelity of a gate by
using the formula:

In f = 1 −
∣∣∣∣∣ Tr(U†

TU)

Tr(U†
TUT)

∣∣∣∣∣
2

(16)

where UT is the target operator (in our case, these operators are the (XZ)−1/2 two-qutrit
operator operating in the subspace of the two lowest energy states and

√
Z operating

in the subspace spanned by the two lowest energy states of the first qutrit) and the U is
the operator that corresponds to the pulses computed by Boulder Opal using gradient
optimization (the reader can refer to Appendix C for a brief description of how Boulder
Opal can be used to instantiate problems and compute infidelities). The optimized pulse
achieves an infidelity equal to 9.58 × 10−7 for the

√
Z gate, while the one computed for

the (XZ)−1/2 following the same methodology achieves an infidelity equal to 1.23 × 106.
The same methodology can be used for the (XZ)−1/2 gate. See Figure 6 for a plot of the
computed pulses. For each of the two pulses, the calculated Rabi amplitudes Ω are plotted
together with the corresponding phase ϕ (in contrast to the Qiskit experiment, Boulder

https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.RZGate

Appl. Sci. 2025, 15, 3950 13 of 21

Opal computes directly the relevant pulse amplitudes based on the provided Hamiltonian,
and as such, these are depicted with explicit units of MHz, which are typical units for
quantum systems coupled to microwave pulses).

(a) (b)

Figure 6. Pulse parameters (frequency and phase) for the
√

Z (a) and (XZ)−1/2 (b) pulses as
computed by using Boulder’s Opal optimization.

3. Results
This paper presented a methodology for designing efficient pulses on transmon sys-

tems that realize gates that are encountered in the Bucket Brigade Algorithm for QRAM.
It focused on transitions between basis states and controlled operations for conditionally
altering the state of one qutrit based on the other. In order to avoid the need of designing
pulses that control the first hyperexcited state (|2⟩), proper encodings were used, together
with additional pulses of one qutrit.

Ignoring the relaxation and dephasing times, and focusing only on errors introduced
by the Hamiltonian dynamics, such as crosstalk terms, the infidelities theoretically com-
puted by the simulation are depicted in Table 3, where the indices of the gates correspond
now to the logical states introduced in Table 1. Each gate is described by its relevant pulse.
For economy, composite gates that are performed by a series of pulses are listed by their
gate names in subsequent pulse schedules after they are first introduced (for example, the
T0,1 gate is described as a series of T1,2T0,2 pulses in the third row, but is subsequently listed
as T0,1 in pulse schedules). Furthermore, the gates

√
X,

√
Z and the maximally entangling

cross-resonance gate that act on the qubit subspace are listed as gates though, strictly
speaking, they are not part of the model’s gate set. This happens to list their infidelity
separately and for better visualizing the pulse schedules.

Table 3. Correspondence between physical and logical state evolution under a two-qubit CNOT.

Gate Pulse Realization Infidelity

T0,2 T0,2 9.81 × 10−7

T1,2 T1,2 9.87 × 10−7

T0,1 T1,2T0,2 1.90 × 10−6

P3 T0,1T0,2 3.70 × 10−6

Z−1/2 Z−1/2
0,1 9.58 × 10−7

X−1/2 T−1/2
0,2 9.81 × 10−7

XZ−1/2 XZ−1/2 1.30 × 10−6

CT0,2 (IZ)−1/2(XZ)−1/2(XI)−1/2 2.81 × 10−6

CT0,1 (I3P3)CT0,2(I3P3)
2 3.23 × 10−5

CT1,2 (I3P3)
2CT0,2(I3P3) 3.63 × 10−5

Appl. Sci. 2025, 15, 3950 14 of 21

All infidelities, except the last three, were obtained by performing the simulations
described in Section 2. The last three were obtained by applying the pulse parameters in
Boulder Opal and taking the average of infidelities of an ensemble of input states. The
results agree with what was expected on the basis of the constituent pulse infidelities.

4. Discussion
The results suggest that under the appropriate logical mappings, the qutrit control

operations required to operate addressing switches in QRAM based on the BBA architecture
can be realized by using the same entangling gates as the one used for quantum compu-
tation based on qubits. Although this was achieved at the extra cost of some additional
single-qutrit gates, we demonstrated that single-qutrit transitions can be easily defined
and calibrated for the case of qutrits that are realized using the energy levels of transmon
systems. A methodology for using existing tools to optimize the pulses needed was also
presented; this pipeline can be parametrized both in terms of the transmon parameters (e.g.,
resonance frequencies and anharmonicities) and in terms of the definition of the native
gates used, which can be set as target operators that the parametrized signals must approxi-
mate. The results suggest that using transmon systems to address quantum registers under
the Bucket Brigade scheme may be a promising technique for implementing a QRAM based
on BBA in transmons. However, there are various considerations and further steps that
need to be taken before the model can be adopted experimentally.

4.1. Noise Suppression and Mitigation

While the infidelities computed seem promising for realizing the described qubit
control, these were computed by only minimizing errors introduced by the dynamics of the
Hamiltonian, such as leakage to unwanted states or crosstalk terms that need to be canceled
for the cross-resonance gate to be effective. Couplings to the external environment that
introduce relaxation and dephasing were not considered; these, however, are an important
source of error in current NISQ architectures. Future work will focus on applying error
mitigation techniques and validating the results on real quantum hardware. Among others,
we will take advantage of the Fire Opal [26] package that has demonstrated good results in
applying error suppression techniques and that provides a good number of integrations
with hardware providers such as those of the IBM Quantum Platform.

4.2. Transmon Connectivity

Transpiling a logical quantum circuit into the native instruction set of a quantum
processor may drastically increase the depth of the resulting circuit, also called the In-
struction Set Architecture or ISA circuit. The efficiency of transpiling greatly depends
on the characteristics of the logical quantum circuit, the native instruction set, and the
qubit connectivity of the quantum processor; an efficient algorithm that produces small
native circuits for a specific class of problems may perform poorly for other classes even in
transpiled in the same quantum processor.

In the case of our model, the gates are implemented at the pulse level; as such,
translation to the native gate set is straightforward as long as the quantum hardware
supports access at the pulse level. Mapping the logical qutrits to the layout of the backend,
however (the so-called routing stage of transpilation), is an entirely different matter, as
this often involves quantum state transfers which are typically implemented via SWAP
gates for qubits. Designing such pulses with sufficiently low infidelity is one of the main
goals of our future work. This work will be supplemented with the investigation of routing
techniques for qutrit circuits, with the aim of possibly reducing the required amount of
qutrit SWAP operations.

Appl. Sci. 2025, 15, 3950 15 of 21

Author Contributions: Conceptualization, L.S. and D.N.; methodology, L.S., D.N. and N.K.; software,
D.N.; validation, L.S. and N.K.; formal analysis, L.S. and N.K.; investigation, L.S.; resources, D.N.;
data curation, L.S. and D.N.; writing—original draft preparation, L.S. and D.N.; writing—review and
editing, N.K.; visualization, D.N.; supervision, N.K.; project administration, N.K. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BBA Bucket Brigade Algorithm
EQGAN Entangling Quantum Generative Adversarial Network
ISA Instruction Set Architecture
NISQ Noise Intermediate Scale Quantum era
PQC Parametric Quantum Circuit
Pwc Piecewise continuous
QML Quantum Machine Learning
QRAM Quantum Random Access Memory
VQE Variational Quantum Eigensolver

Appendix A
In this appendix, we provide explicit proofs for some of the operator identities pre-

sented in the paper. Here, we provide an explicit proof of Equation (6). Written in matrix
form, the right-hand side of Equation (6) reads

T0,1T0,2 =

0 1 0
1 0 0
0 0 1


0 0 1

0 1 0
1 0 0


=

0 1 0
0 0 1
1 0 0


= P3

(A1)

For Equation (8), we first observe that

I3 ⊗ P3 =



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0


(A2)

Appl. Sci. 2025, 15, 3950 16 of 21

and

(I3 ⊗ P3)
2 =



0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0


(A3)

so that

CT0,2 ⊗ (I3 ⊗ P3) =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0





0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0



=



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0



(A4)

and

CT0,2 ⊗ (I3 ⊗ P3)
2 =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0





0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0



=



0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0



(A5)

Appl. Sci. 2025, 15, 3950 17 of 21

Multiplying on the left, we obtain

(I3 ⊗ P3)
2CT0,2 ⊗ (I3 ⊗ P3) =



0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0





0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0



=



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1


= CT0,1

(A6)

and

(I3 ⊗ P3)CT0,2 ⊗ (I3 ⊗ P3)
2 =



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0





0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0



=



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0


= CT1,2

(A7)

Appendix B
In this appendix, we give some sample code to demonstrate how the simulation and

population dynamics can be retrieved using Qiskit’s dynamics library for the case of single-
qutrit operations. Listing A1 shows how to construct a simple 5-level Duffing oscillator.
The static_term variable describes the Hamiltonian of the system when no interactions

Appl. Sci. 2025, 15, 3950 18 of 21

are present, while the drive_term corresponds to the Hamiltonian term that describes the
interaction with the pulse. For simplicity, the coupling to the second qutrit is omitted; this
is obtained by forming the appropriate Kronecker products of the operators and summing
two static terms and the coupling term which equals to 2 ∗ np.pi ∗ J ∗ ((a0 + a0_dag)@(a1 +
a1_dag)). The coupling will introduce a shift to the energy levels of the transmons; while
this will produce different values for the pulse parameters, the calibration process will be
the same.

Listing A1. Single-qutrit model.

Transmon parameters
v_0 = 4.86
r_0 = 0.22
dt = 1 / 22.
#dimensionality
dim = 5
#Anharmonicity of the transmon
anharm_0 = -0.32
I = np.eye(dim, dtype=complex)
a = np.diag(np.sqrt(np.arange(1, dim)), 1)
a_dag = np.diag(np.sqrt(np.arange(1, dim)), -1)
N_op = np.diag(np.arange(dim))
static_term = 2 * np.pi * v_0 * N_op + np.pi * anharm_0 * N_op * (N_op - I)
drive_term = 2 * np.pi * r_0 * (a + a_dag)

Pulses are built using the Pulse module of Qiskit. Listing A2 showcases the construc-
tion of a pulse that drives the qutrit from the ground to the |2⟩ state. This pulse consists of
two pulses performed in sequence, one that drives the qutrit to state |1⟩ and a second one
that waits for the first one to complete and then drives the qutrit to state |2⟩.

Listing A2. The construction of constant pulses for the 0 → 2 transition.

with pulse.build(name="X_{01} schedule") as sX_01:
pulse.play(pulse.Constant(duration_01, amp_01), pulse.DriveChannel(0))

with pulse.build(name="X_{12} schedule") as sX_12:
pulse.delay(duration_01, pulse.DriveChannel(0))
pulse.play(pulse.Constant(duration_02, amp_02), pulse.DriveChannel(0))

The two pulses are then sent to the mixer so that they can be modulated using the
carrier frequency (Listing A3). Note how the second uses a carrier frequency modified by
the anharmonicity of the transmon to construct the second signal.

Appl. Sci. 2025, 15, 3950 19 of 21

Listing A3. Pulse to signal conversion.

mixer_01 = InstructionToSignals(dt, carriers={"d0": v_0})
mixer_12 = InstructionToSignals(dt, carriers={"d0": v_0+anharm})

signal_01 = mixer_01.get_signals(sX_01)
signal_12 = mixer_12.get_signals(sX_12)

signals = signal_01 + signal_12

The solver parameters are depicted in Listing A4. While the channel carrier frequency
is the one of the driving channel, the second signal will have a modulation frequency that
is offset by the anharmonicty; that will drive the 1 → 2 transition, instead of having the
qutrit return to state |0⟩ as would be the case of a typical Rabi experiment with a constant
resonant frequency.

Listing A4. Solver parameters.

solver = Solver(
static_hamiltonian=static_term,
hamiltonian_operators=[drive_term],
rotating_frame=static_term,
rwa_cutoff_freq=2 * 5.0,
hamiltonian_channels=[’d0’],
channel_carrier_freqs={’d0’: v_0},
dt=dt

)

Appendix C
Boulder Opal uses a graph structure to represent a computation, with all important

parameters and optimizable signals being parts of the graph. To compute the pulse param-
eters that implemented our target operators, the run_optimization method of Boulder Opal
was used on the constructed graph. This method performs a gradient-based optimization fit
to find the best parameters that minimize the cost function. In our scenario, the parameters
were the amplitude and phase of the pulse, which was represented as a piecewise constant
(Pwc) function. Pwc functions are functions that are ’glued’ from constant segments, with
each segment having different values for the optimizable parameters. An optimization
process fits these parameters so that the overall function minimizes the cost function. The
cost was the operational fidelity defined in Equation (16).

The snippet in Listing A5, taken from the official Boulder Opal documentation, depicts
how a graph can be created to describe the problem of computing an infidelity. The target
operation is the identity, and this is compared to one signal that performs a sigma_z for a
duration of 0.1 s followed by a −sigma_z for another 0.1 s. When no noise is considered,
the two operations are the same and, thus, the infidelity is equal to zero.

Appl. Sci. 2025, 15, 3950 20 of 21

Listing A5. Example of an infidelity calculation.

>>> sigma_z = np.array([[1, 0], [0, -1]])
>>> hamiltonian = graph.pwc(
... durations=np.array([0.1, 0.1]), values=np.array([sigma_z, -sigma_z])
...)
>>> target = graph.target(np.eye(2))
>>> infidelity = graph.infidelity_pwc(
... hamiltonian=hamiltonian, target=target, name="infidelity"
...)
>>> result = bo.execute_graph(graph=graph, output_node_names="infidelity")
>>> result["output"]["infidelity"]["value"]
0.0

Defining the cost to be minimized using Boulder Opal can be easily performed by
using code as the one depicted in Listing A6. In this example, z_sqr is the matrix of the
ideal gate

√
Z acting on the subspace of the first qutrit, while the Hamiltonian variable is

the parametrized pulse to be optimized.

Listing A6. Example of an infidelity calculation.

cost = graph.infidelity_pwc(
hamiltonian=hamiltonian,
target=graph.target(operator=z_sqr),

)

References
1. Nguyen, L.B.; Koolstra, G.; Kim, Y.; Morvan, A.; Chistolini, T.; Singh, S.; Nesterov, K.N.; Jünger, C.; Chen, L.; Pedramrazi, Z.; et al.

Blueprint for a high-performance fluxonium quantum processor. PRX Quantum 2022, 3, 037001. [CrossRef]
2. Koch, J.; Yu, T.M.; Gambetta, J.; Houck, A.A.; Schuster, D.I.; Majer, J.; Blais, A.; Devoret, M.H.; Girvin, S.M.; Schoelkopf, R.J.

Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A—At. Mol. Opt. Phys. 2007, 76, 042319. [CrossRef]
3. Tsukanov, A.V. Single-qubit operations in the double-donor structure driven by optical and voltage pulses. Phys. Rev. B—Condens.

Matter Mater. Phys. 2007, 76, 035328. [CrossRef]
4. Brylinski, J.L.; Brylinski, R. Universal quantum gates. In Mathematics of Quantum Computation; Chapman and Hall/CRC: Boca

Raton, FL, USA, 2002; pp. 117–134.
5. Wang, Y.; Hu, Z.; Sanders, B.C.; Kais, S. Qudits and high-dimensional quantum computing. Front. Phys. 2020, 8, 589504.

[CrossRef]
6. Zobov, V.; Ermilov, A. Implementation of a quantum adiabatic algorithm for factorization on two qudits. J. Exp. Theor. Phys. 2012,

114, 923–932. [CrossRef]
7. Baker, J.; Duckering, C.; Chong, F. Efficient Quantum Circuit Decompositions via Intermediate Qudits. arXiv 2020,

arXiv:2002.10592.
8. Gokhale, P.; Baker, J.M.; Duckering, C.; Brown, N.C.; Brown, K.R.; Chong, F.T. Asymptotic improvements to quantum circuits via

qutrits. In Proceedings of the 46th International Symposium on Computer Architecture, Phoenix, AZ, USA, 22–26 June 2019;
pp. 554–566.

9. Ntalaperas, D.; Konofaos, N. Encoding two-qubit logical states and quantum operations using the energy states of a physical
system. Technologies 2021, 10, 1. [CrossRef]

10. Fischer, L.E.; Chiesa, A.; Tacchino, F.; Egger, D.J.; Carretta, S.; Tavernelli, I. Universal qudit gate synthesis for transmons. PRX
Quantum 2023, 4, 030327. [CrossRef]

11. Chi, Y.; Huang, J.; Zhang, Z.; Mao, J.; Zhou, Z.; Chen, X.; Zhai, C.; Bao, J.; Dai, T.; Yuan, H.; et al. A programmable qudit-based
quantum processor. Nat. Commun. 2022, 13, 1166. [CrossRef]

12. Tang, H.L.; Shkolnikov, V.; Barron, G.S.; Grimsley, H.R.; Mayhall, N.J.; Barnes, E.; Economou, S.E. qubit-adapt-vqe: An adaptive
algorithm for constructing hardware-efficient ansätze on a quantum processor. PRX Quantum 2021, 2, 020310. [CrossRef]

http://doi.org/10.1103/PRXQuantum.3.037001
http://dx.doi.org/10.1103/PhysRevA.76.042319
http://dx.doi.org/10.1103/PhysRevB.76.035328
http://dx.doi.org/10.3389/fphy.2020.589504
http://dx.doi.org/10.1134/S106377611205007X
http://dx.doi.org/10.3390/technologies10010001
http://dx.doi.org/10.1103/PRXQuantum.4.030327
http://dx.doi.org/10.1038/s41467-022-28767-x
http://dx.doi.org/10.1103/PRXQuantum.2.020310

Appl. Sci. 2025, 15, 3950 21 of 21

13. Grimsley, H.R.; Economou, S.E.; Barnes, E.; Mayhall, N.J. An adaptive variational algorithm for exact molecular simulations on a
quantum computer. Nat. Commun. 2019, 10, 3007. [PubMed]

14. Giovannetti, V.; Lloyd, S.; Maccone, L. Architectures for a quantum random access memory. Phys. Rev. A—At. Mol. Opt. Phys.
2008, 78, 052310.

15. Phalak, K.; Chatterjee, A.; Ghosh, S. Quantum random access memory for dummies. Sensors 2023, 23, 7462. [CrossRef]
16. Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum random access memory. Phys. Rev. Lett. 2008, 100, 160501.
17. Park, D.K.; Petruccione, F.; Rhee, J.K.K. Circuit-based quantum random access memory for classical data. Sci. Rep. 2019, 9, 3949.
18. Niu, M.Y.; Zlokapa, A.; Broughton, M.; Boixo, S.; Mohseni, M.; Smelyanskyi, V.; Neven, H. Entangling quantum generative

adversarial networks. Phys. Rev. Lett. 2022, 128, 220505. [CrossRef] [PubMed]
19. Arunachalam, S.; Gheorghiu, V.; Jochym-O’Connor, T.; Mosca, M.; Srinivasan, P.V. On the robustness of bucket brigade quantum

RAM. New J. Phys. 2015, 17, 123010. [CrossRef]
20. Peterer, M.J.; Bader, S.J.; Jin, X.; Yan, F.; Kamal, A.; Gudmundsen, T.J.; Leek, P.J.; Orlando, T.P.; Oliver, W.D.; Gustavsson, S.

Coherence and decay of higher energy levels of a superconducting transmon qubit. Phys. Rev. Lett. 2015, 114, 010501.
21. Puzzuoli, D.; Wood, C.J.; Egger, D.J.; Rosand, B.; Ueda, K. Qiskit Dynamics: A Python package for simulating the time dynamics

of quantum systems. J. Open Source Softw. 2023, 8, 5853. [CrossRef]
22. Q-CTRL. Boulder Opal. 2025. Available online: https://q-ctrl.com/boulder-opal (accessed on 2 February 2025).
23. Krantz, P.; Kjaergaard, M.; Yan, F.; Orlando, T.P.; Gustavsson, S.; Oliver, W.D. A quantum engineer’s guide to superconducting

qubits. Appl. Phys. Rev. 2019, 6, 021318. [CrossRef]
24. McKay, D.C.; Wood, C.J.; Sheldon, S.; Chow, J.M.; Gambetta, J.M. Efficient Z gates for quantum computing. Phys. Rev. A 2017,

96, 022330. [CrossRef]
25. Q-CTRL. Perform Model-Based Robust Optimization for the Cross-Resonance Gate. Available online: https://docs.q-ctrl.com/

boulder-opal/apply/superconducting-systems/perform-model-based-robust-optimization-for-the-cross-resonance-gate (ac-
cessed on 23 January 2025).

26. Q-CTRL. Fire Opal. 2025. Available online: https://q-ctrl.com/fire-opal (accessed on 2 February 2025).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://www.ncbi.nlm.nih.gov/pubmed/31285433
http://dx.doi.org/10.3390/s23177462
http://dx.doi.org/10.1103/PhysRevLett.128.220505
http://www.ncbi.nlm.nih.gov/pubmed/35714256
http://dx.doi.org/10.1088/1367-2630/17/12/123010
http://dx.doi.org/10.21105/joss.05853
https://q-ctrl.com/boulder-opal
http://dx.doi.org/10.1063/1.5089550
http://dx.doi.org/10.1103/PhysRevA.96.022330
https://docs.q-ctrl.com/boulder-opal/apply/superconducting-systems/perform-model-based-robust-optimization-for-the-cross-resonance-gate
https://docs.q-ctrl.com/boulder-opal/apply/superconducting-systems/perform-model-based-robust-optimization-for-the-cross-resonance-gate
https://q-ctrl.com/fire-opal

	Introduction
	Materials and Methods
	Qutrit Encoding
	Pulse Optimization
	Two-Qutrit Gates

	Results
	Discussion
	Noise Suppression and Mitigation
	Transmon Connectivity

	Appendix A
	Appendix B
	Appendix C
	References

