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Abstract: Using coral aggregates instead of natural aggregates can save both raw material
transportation costs and time in island construction projects. However, coral aggregates
are characterized by high brittleness, low strength, and a high chloride content, which
result in the brittleness and durability of coral aggregate concrete (CAC). On the other
hand, carbon emissions are prominent in the production of Portland cement. A reinforced
concrete structure composed of a stainless-steel rebar (SSR), geopolymer concrete, and
coral aggregate was employed to address these challenges. Considering that columns
are commonly used structural elements, this paper investigates the eccentric compression
behavior of stainless-steel rebar-reinforced coral aggregate geopolymer concrete columns
(SCGCs) by varying eccentricity (e0 = 70, 140, 210, and 280 mm) and reinforcement ratio
(ρs = 0.302%, 0.536%, and 0.838%) values. The failure patterns, load–deformation curves,
and crack development of SCGCs were obtained. These results indicate that the failure
pattern of SCGCs under eccentric compression is similar to that of conventional reinforced
concrete columns. However, SCGCs exhibited a greater lateral deformation. A refined
load-bearing capacity prediction model for SCGCs was developed by integrating the
constitutive model of coral aggregate geopolymer concrete (CAGC). Furthermore, a crack
width prediction model specifically suited for SCGCs was developed, considering the
differences in the bond performance between CAGCs and the SSR compared to ordinary
concrete and carbon steel and the characteristic of the SSR lacking a yield plateau. The
calculations using the refined load-bearing capacity prediction model and the crack width
prediction model fit well with the experimental results, indicating that these two models
have good application prospects.

Keywords: coral aggregate geopolymer concrete; stainless-steel rebar; eccentric compression;
bearing capacity; crack width

1. Introduction
The large-scale development of island engineering projects is underway, driven by the

rapid expansion of the marine industry [1]. However, constructing these island projects
requires a substantial amount of building materials, and transporting these materials from
inland is both time-consuming and expensive [2]. Comprehensive studies have shown that
collecting and utilizing coral reef debris does not adversely affect marine ecosystems [3].
This approach, which involves the use of crushed and screened coral reef debris to replace
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gravel and seawater instead of fresh water, can effectively mitigate the environmental
impact of traditional construction materials while also reducing transportation and time
costs during construction [4]. To date, many scholars have validated the feasibility of
using coral aggregate concrete (CAC) in island engineering projects, with the research
focusing on the mechanical properties [5,6], shrinkage [7], bonding performance [8], and
durability [9] of CAC.

However, coral aggregate has drawbacks, such as high porosity (15–45%), a high
chloride ion content, and low strength (0.6–2.1 MPa) [10,11]. Under the same water–cement
ratio, the strength and durability of CAC are lower than those of Ordinary Portland Cement
(OPC) concrete. Moreover, the apparent chloride ion diffusion coefficient (Da) of CAC is
1 to 8 times higher than that of OPC, and its total free chloride ion content (Cf) is significantly
greater than that of OPC [12]. As a result, the corrosion of reinforcement within CAC
structures is more severe than in OPC structures when used in island construction projects.
It is also noteworthy that two drawbacks limiting its potential as an environmentally
friendly material are that the production of Portland cement consumes a large amount
of energy and emits significant quantities of CO2. According to the statistics, producing
one ton of cement generates approximately 10 kg of dust, 2 kg of nitrogen oxides, 1 kg
of sulfur dioxide, and other by-products [13]. Therefore, it is imperative to address the
issue of reinforcement corrosion within CAC structures in marine environments and to
seek more “green” alternatives for cementitious materials.

Geopolymer, as a novel and sustainable alternative cementitious material, primarily
utilizes industrial waste materials, such as slag, fly ash, and metakaolin, making it an ideal
substitute for traditional cement [14]. The combination of geopolymer concrete (GPC) with
coral aggregate facilitates the formation of the C-S-H gel phase at the mortar matrix–coral
aggregate interface, while the naturally dense pores of coral aggregate contribute to a tight
interface transition zone with the cementitious material [15,16]. Thus, the incorporation
of a geopolymer not only mitigates the carbon emissions issues associated with Portland
cement, but also enhances the split tensile strength, axial compressive strength, and elastic
modulus of CAC [17,18].

To prevent rebar corrosion, scholars have proposed various methods, such as applying
surface coatings to concrete, increasing the thickness of the concrete cover, using high-
performance concrete to block the penetration paths of corrosive agents, galvanizing the
rebar, coating the rebar with epoxy resin, using corrosion inhibitors, and providing cathodic
protection for the rebar.

However, the aforementioned measures cannot fundamentally solve the problem of
steel corrosion, and those measures can only extend the service life of the structure by
approximately 20 years [19]. Jing [20] studied the corrosion resistance of duplex stainless-
steel rebars (SSRs) used for the Hong Kong Zhuhai Macao Bridge and demonstrated that
the critical chloride ion concentration for the SSRs in simulated concrete pore solutions
is 3.9 to 3.95 mol/L, which is about 60 times that of a carbon steel rebar. Da [21] found
that the corrosion resistance of SSRs embedded in CAC is higher than that of carbon steel
rebars with surface coatings, with carbon steel rebars performing the worst. In summary,
the SSR exhibits excellent corrosion resistance, effectively addressing the problem of rebar
corrosion. However, the mechanical properties of SSRs lead to differences in the structural
behavior of stainless-steel rebar concrete (SSRC) structures compared to ordinary reinforced
concrete (ORC) structures. The plasticity of the SSR results in greater deformation and
wider cracks in SSRC structures during the service stage. Li [22] discovered through
experiments that eccentrically loaded SSR columns develop wider cracks than carbon
steel rebar columns with the same eccentricity and reinforcement ratio. The high ductility
of SSRs causes differences in the load redistribution and stress redistribution patterns
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in SSRC structures compared to ORC structures, and the asymmetry in the stress–strain
curves of SSRs under tension and compression render existing load-bearing capacity
calculation formulas unsuitable [19]. Scholars, such as Rabi [23,24], have pointed out that
the load-bearing capacity calculation formulas proposed in Eurocode 2 are not applicable
to SSRC beams.

In response, scholars have conducted extensive research on the mechanical behavior of
SSRC structures. Li [25] found that the strain distribution in the cross-section of four-point
bending SSRC beams adheres to the plane section assumption, and the failure pattern is
similar to that of ORC beams. Rabi [26] proposed a continuous strength method based
on the constitutive relationship of SSRs, which more accurately and reliably predicts the
load-bearing capacity of SSRC structures. Khalifa [27] suggested using equivalent stress
to replace the yield strength of duplex and austenitic SSRs to calculate the axial-flexural
capacity. Building on this, Li [22] developed a computational model for predicting the
N-M curves of SSRC columns. Additionally, scholars have also explored the fatigue
performance [28] and seismic performance [29] of SSRC structures.

However, although extensive experimental studies and theoretical design studies
have been conducted on SSRC structures, no studies have been reported on the eccentric
compression behavior of SCGC columns. In addition, since columns are the basic compo-
nents of frame structures, it is beneficial to study the mechanical properties of columns
in depth, and thus it is crucial to study their eccentric compression behavior [30,31]. In
this study, a novel concrete column structure that integrates geopolymers, CAC, and SSRs
is proposed to further address the limitations of carbon steel reinforcement in marine
structures. Considering that columns in real projects are usually subjected to eccentric
loading, in this paper, eight SCGCs with different eccentricity (e0) and reinforcement ratios
(ρs) were tested with eccentric loading to examine the mechanical behavior of SCGCs under
such conditions.

2. Experimental Program
2.1. Raw Material and Mix Ratio of Concrete

This study utilized coral fragments from the Philippines as coarse aggregates (Figure 1)
and fine aggregates (Figures 2 and 3). The original coral coarse aggregate (CCA) contained
a significant number of coral particles with diameters exceeding 20 mm. In this study, a jaw
crusher was used for secondary crushing to prevent an excessive proportion of large-sized
coral aggregates from affecting the development of concrete strength. The particle size
of the crushed CCA ranged from 2.36 mm to 19 mm, as shown in Figure 4, which was
determined based on the sieve analysis and material properties according to the standard
JGJ51-2002 [32]. Table 1 presents the physical properties of the CCA.
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Table 1. Basic properties of coral coarse aggregate.

No.
1 h Water

Absorption
(%)

24 h Water
Absorption

(%)

Bulk Density
(kg/m3)

Apparent
Density
(kg/m3)

Cylinder
Compressive

Strength
(MPa)

Silt Content
(%)

Coral coarse
aggregate 7.82 8.13 882 2092 2.1 4.2

In this study, coral coarse sand and coral fine sand were mixed in a 1:1 mass ratio to
obtain mixed coral sand, which helps avoid the issue of a single type of coral sand leading
to poor gradation, which can be detrimental to the development of concrete strength. The
particle size distribution of the mixed coral sand was analyzed, and its material properties
were measured in accordance with standards GB/T17431-2010 [33] and JGJ52-2006 [34].
The relevant parameters are presented in Figure 5 and Table 2. The blended coral sand
was classified as a lightweight aggregate, with a fineness modulus of 3.0, falling into the
medium sand zone II, and had a continuous grading.
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Table 2. Basic properties of mixed coral sand.

No.
1 h Water

Absorption
(%)

24 h Water
Absorption

(%)

Bulk Density
(kg/m3)

Apparent
Density
(kg/m3)

Moisture
Content

(%)

Silt Content
(%)

Mixed coral
sand 3.52 3.73 1296 2707 2.87 0.5

Table 3 presents the mix proportion for the CAGC. The binder included high-activity,
alkaline S95-grade slag powder, and Class I fly ash. The alkaline activator was a sodium
silicate solution with a modulus of 1.0, and seawater was prepared according to the artificial
seawater formulation by Liu [35], with the main components shown in Table 4 and Compo-
sition shown in Table 5. The slag powder (SL) was a high-activity, alkaline S95-grade slag
powder. The fly ash (FA) was Class I fly ash. The alkaline activator was prepared by mixing
liquid sodium silicate and solid NaOH particles, with sodium silicate having a modulus
of 2.46, and sodium silicate containing 12.40% Na2O and 29.54% SiO2. Additionally, the
NaOH used had a purity of 99% or higher. The combination of these materials adjusted
the sodium silicate modulus to 1.0. To improve the workability of the concrete, a QS-8020
polycarboxylate superplasticizer (PS) (Shanghai Qinhe Chemical Products Co., LTD) was
used. Uniaxial compression tests were conducted on cubic specimens (150 × 150 × 150 mm)
and prism specimens (150 × 150 × 300 mm) under the same curing conditions to obtain
their compressive strength (f cu), axial compressive strength (f c), and uniaxial compressive
stress–strain curves, where f cu is the measured compressive strength of the concrete cube
for 28d curing; f c is the measured value of the axial compressive strength of the concrete
for 28d curing.

Table 3. Mixing proportion.

Coarse
Aggregate

(kg/m3)

Fine Aggregate
SL

(kg/m3)
FA

(kg/m3)

Alkali Activator
Seawater
(kg/m3)

fcu
(MPa)

fc
(MPa)

Coarse
Sand

(kg/m3)
Fine Sand

(kg/m3)
Sodium
Silicate
(kg/m3)

NaOH
Solution
(kg/m3)

711 336 336 167 250 142 127 60 37.6 29.0
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Table 4. Main compound composition of artificial seawater.

No. NaCl MgCl2•6H2O Na2SO4 CaCl2

Content/(g/L) 28.1 7.22 2.43 1.12

Table 5. Composition and proportion of SL and FA.

No.

Ingredient Composition

Al2O3
(%)

SiO2
(%)

Fe2O3
(%)

CaO
(%)

MnO
(%)

MgO
(%)

K2O
(%)

Na2O
(%)

SL 14.3 36.5 3.2 33.6 0.8 7.5 \ \
FA 28.1 50.8 6.2 3.7 1.2 28.1 0.6 1.2

2.2. Tensile Performance of SSRs

Figure 6 shows the 304 SSR used in this study. According to the standard GB/T228.1-
2021 [36], a WAW-600 electro-hydraulic servo testing machine (Yanrun Light Machine
Technology Co., Ltd. in Shanghai, China)was employed to conduct tensile tests on SSRs
of various diameters at room temperature (Figure 7). Table 6 shows the fundamental
mechanical properties of the SSRs. Unlike an ordinary carbon steel rebar, the SSR did
not exhibit a yield plateau; therefore, its nominal yield strength was defined as the stress
corresponding to a 0.2% plastic strain. The nominal yield strength of the SSR was 515.0 MPa,
with a tensile strength of 804.1 MPa, an average elastic modulus of 167.1 GPa, and an
elongation after fracture of 40.0%, indicating it was a ductile rebar material.
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Table 6. Mechanical properties of SSRs.

d
(mm)

Nominal Yield Stress
RP0.2 (MPa)

Ultimate Stress
Rm (MPa)

Modulus of Elasticity
Es (GPa)

8 511.1 799.1 165.1
12 515.4 807.5 167.2
16 516.8 806.6 166.8
20 516.7 803.3 169.1

2.3. Eccentric Compression Column Design

Table 7 shows the detailed parameters of each specimen, where b is the width, h is the
height, and l is the length of the cross-section of the SCGCs, in mm; d is the diameter of
the longitudinal bars, in mm. Figure 8 shows the schematic diagram of the distribution of
reinforcement bars in the specimens, where “DSS” represents the 304 SSR used in this test.
The longitudinal and transverse reinforcement of the eight SCGC specimens used 304 SSRs,
labeled as SCGC1 to SCGC8, according to different values of ρs and e0. The specimens
had a rectangular cross-section with dimensions of 250 mm × 300 mm and a symmetrical
reinforcement arrangement. The central section included four longitudinal SSRs of the same
diameter, with the longitudinal reinforcement ratios set at 0.302%, 0.536%, and 0.838%, and
eccentricities set at 70 mm, 140 mm, 210 mm, and 280 mm. The stirrup diameter spacing
was set at 200 mm, with a cover thickness of 30 mm, to closely match practical engineering
conditions. Loading and end damage prevention were prioritized during testing. The
ends of the SCGC specimens were equipped with enlarged loading flanges and densified
stirrups in the flange area. The stirrup spacing was set at 100 mm. Additionally, two SSRs
of the same diameter were added to increase the reinforcement ratio.
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Table 7. Design parameters of SCGCs.

No. Strength
Grade

Size (b × h × l)
(mm)

e0
(mm)

d
(mm)

ρs
(mm)

Stirrup
(mm)

SCGC1 C30 250 × 300 × 1600 70 12 0.302 8@200
SCGC2 C30 250 × 300 × 1600 280 12 0.302 8@200
SCGC3 C30 250 × 300 × 1600 70 16 0.536 8@200
SCGC4 C30 250 × 300 × 1600 140 16 0.536 8@200
SCGC5 C30 250 × 300 × 1600 210 16 0.536 8@200
SCGC6 C30 250 × 300 × 1600 280 16 0.536 8@200
SCGC7 C30 250 × 300 × 1600 70 20 0.838 8@200
SCGC8 C30 250 × 300 × 1600 280 20 0.838 8@200Appl. Sci. 2025, 15, x FOR PEER REVIEW 8 of 26 
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2.4. Test Setup

The tests were conducted using a YE-1000F electro-hydraulic servo press (Bonwei
Electromechanical Control Engineering Co., Ltd. in Hangzhou, China) with a maximum
load capacity of 10,000 kN (Figure 9a). To simulate the realistic stress state of eccentrically
compressed members, a hinged support structure composed of rollers and loading plates
was installed at both ends of the specimen. Both rollers and loading plates were fabricated
from Q235 steel, with their long sides matching the width of the specimen’s cross-section
(Figure 9b). Pre-marked load application points on the top and bottom surfaces of the
specimen enabled the adjustment of the hinged support positions, thereby facilitating the
application of various eccentric loads. Strain and displacement data at each loading stage
were recorded using a DH3821 static strain measurement system (Donghua Test Technology
Co., Ltd. Jingjiang, China).
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Figure 9. Loading of specimen. (a) Column loading. (b) Load scheme.

Figure 10 shows the placement of lateral displacement meters, strain gauges on
longitudinal reinforcement, and strain gauges on concrete. Displacement meters were
evenly arranged along the height of the column to capture lateral displacements at different
stages. Additionally, a single displacement meter was placed on the side to monitor whether
the specimen was subjected to unidirectional eccentric compression during loading. A
crack width detector was used to observe and measure crack widths, while a ruler was used
to measure crack spacing. Concrete strain gauges were evenly attached at the mid-height
of the column to measure longitudinal strain at various stages. Strain gauges were also
attached at the mid-section of the longitudinal reinforcement and 200 mm above and below
this point to measure the strain behavior of the SSR at each stage.
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3. Test Result and Analysis
3.1. Failure Patterns and Crack Development

Figure 11 shows the failure patterns of the selected SCGC specimens (taking SCGC2,
SCGC5, and SCGC6 for examples). Figure 12 shows the crack propagation in the SCGCs
(taking SCGC2, SCGC5, and SCGC6 for examples). While the failure pattern of SCGCs
under combined compression and bending is similar to the eccentric compression patterns
observed in ORC columns by Li [22], the SCGCs exhibit greater lateral deformation.
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When the external load reached 10% to 16% of the ultimate load capacity (Nu), the
concrete in the tension zone of the eccentrically loaded columns began to crack, initiating
the first horizontal crack. When the load reached 18% to 25% of Nu, a second horizontal
crack appeared in the tension zone, and in some cases, a third crack was observed. At 30%
to 70% of Nu, the cracks formed in the earlier stages continued to propagate toward the
compression zone, while additional fine cracks emerged in the tension zone and progres-
sively widened. When the load reached 70% to 82% of Nu, the number of cracks stabilized,
and longitudinal cracks began to form at the supports and in the compression zone. When
the ultimate load was reached, the concrete in the compression zone suddenly crushed,
signaling the failure of the specimen. The total number of cracks ranged between 16 and 22.

Figures 13 and 14 present the experimental results of the cracking load (Ncr) and
ultimate load (Nu) of the SCGC. As the eccentricity increased, both Ncr and Nu of the SCGC
decreased; with the increase in the reinforcement ratio, Nu increased, but Ncr showed
no significant change. For the SCGC with the same ρs, when e0 was increased to 2, 3,
and 4 times its initial value of 70 mm, Ncr decreased by 25%, 67%, and 75%, respectively,
while Nu decreased by 40%, 71%, and 80%. For the SCGC with the same e0, when ρs was
increased by 1.77 times and 2.77 times from the initial 0.302%, Nu increased by 12.6% and
27.2%, respectively. However, before the SCGC cracked, the strain in the SSR was minimal,
resulting in negligible tensile stress. Therefore, the tensile resistance of the SCGC was
primarily provided by the concrete, making the influence of ρs on Ncr insignificant.
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Figure 15 shows the relationship between N/f cbh and the crack width. It can be
observed that an increase in e0 or a decrease in ρs accelerates the rate of crack width
development, and the crack width development for each SCGC shows an approximately
linear trend.
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3.2. Deformation Analysis

Figure 16 shows the effect of e0 and ρs on the load–axial displacement curves. While
the overall trends of these curves are similar, there are notable differences. The axial defor-
mation of the specimens consists of two components: the axial compression deformation
of the specimens themselves and the axial displacement due to bending. The latter is the
dominant factor. The curves show an almost linear relationship in the early and middle
stages of loading. However, the curves start to smooth out in the later stages, especially near
the peak load. The curves become progressively smoother as e0 increases (or ρs decreases),
indicating an increase in ductility.
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Figure 17 illustrate the effects of e0 and ρs on the load–midspan lateral displacement
curves. The overall trends of these curves are consistent. Cracks on the tension side of
the column appear earlier in the early stage of loading, as e0 increases (or ρs decreases).
This leads to a significant reduction in the lateral stiffness. Consequently, there is a marked
increase in the midspan lateral deflection. The lateral displacement curves of the column
become steeper as e0 increases (or ρs decreases) during the mid-to-late stages of loading.
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Figure 18 presents the lateral displacement curves of SCGC2, SCGC5, and SCGC6
under various loading stages. It can be observed from Figure 18 that the lateral displacement
curves exhibit a half-sine wave distribution form from the initial loading of the SCGC until
the failure stage. The shape conforms to the function of a standard sine curve, expressed as
f 1 = f sin(πx/l), where f 1 is the lateral deflection, in mm; f is the maximum midspan lateral
deflection under each load stage, in mm; and l is the height of the column, in mm.
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3.3. Strain Analysis

Figure 19 shows the N/f cbh—SSR strain relationship curves (taking SCGC2, SCGC5,
and SCGC6 for examples). In these curves, “CR” represents the compressive SSR, “TR”
represents the tensile SSR, and εsy represents the tensile yield strain of the SSR. It can be
observed that under large eccentricity (e0/h ≥ 0.7), the SSR on the side farther from the
axial force reaches its tensile yield strength, indicating full utilization. Additionally, the
tensile and compressive curves of the SSR show different rising trends, exhibiting distinct
tension–compression behavior, which is consistent with the findings of Yuan [19].
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Figure 19. N/f cbh—SSR strain relationship curves.

Figure 20 shows the concrete strain distribution at the midspan section during various
loading stages (taking SCGC1, SCGC4, and SCGC6 for examples). Here, εsc represents the
SSR strain on the side closer to the axial force and εst represents the SSR strain on the side
farther from the axial force. The average strain across the transverse section of the SCGC is
almost linearly distributed. As the external load increases, the neutral axis gradually shifts
toward the edge of the compressive zone of the SCGC. During loading, the concrete strain
of the midspan section varies roughly linearly along the height of the section, consistent
with the assumption of a planar section.
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4. Analysis of the Bearing Capacity and Crack Width of SCGCs
4.1. Constitutive Relationship of CAGC

The uniaxial constitutive model comprehensively reflects the mechanical behavior
of concrete under uniaxial loading and plays a crucial role in the design and analysis of
reinforced concrete structures [37]. When investigating the uniaxial constitutive relationship
of CAGC, the compressive results of prismatic specimens from Section 2.1 were compared
with studies by Liu [38] and Da [39], as shown in Figure 21.
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It can be observed that in the ascending segment, the curves for CAC, ordinary
aggregate concrete (OAC), and lightweight aggregate concrete (LAC) are almost identical
to the CAGC curve. However, in the descending segment, the CAGC curve is steeper
than the OAC and LAC, but flatter than the CAC. Overall, the constitutive relationship
curve of CAGC significantly differs from that of CAC, OAC, and LAC, indicating that their
stress–strain relationships are not applicable to CAGC.

Therefore, this paper proposes an optimized uniaxial constitutive model for CAC,
based on the work of Liu [38] and Da [39], as shown in Equation (1). A fitting analysis was
conducted, and the results are presented in Figure 22.

σ
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b(ε/ε0 − 1)2 + ε/ε0
ε0 ≤ ε ≤ εcu

R2 = 0.991 (1)

where σ is the stress of CAGC, in MPa; f c is the axial compressive strength of CAGC,
with a measured value of f c = 29.0 MPa in this study; ε is the strain of CAGC; ε0 is the
compressive strain of CAGC when the compressive stress reaches f c, with ε0 = 0.0024; εcu is
the ultimate compressive strain of CAGC, taken as εcu = 0.0028; and a and b are the control
parameters for the ascending and descending segments of the curve, with values of a = 1.31
and b = 7.892, respectively.
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This constitutive model is considered for practical engineering applications, with
attention to the safety reserve requirements of the project. Notably, the stress in the ε0

~ εcu range does not significantly decrease. This paper adopts a horizontal line for the
descending segment and truncates it at εcu, referring to the provisions of GB50010-2010 [40]
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4.2. Bearing Capacity
4.2.1. Calculation and Analysis of Nu

The calculation of Nu in this study is based on the following assumptions: (1) The
SCGC satisfies the plane section assumption during loading (verified in Section 3.3); (2) The
tensile strength of CAGC is not considered in the calculation; (3) The concrete stress in the
compression zone of the SCGC section is calculated using an equivalent rectangular stress
distribution; (4) With a slenderness ratio l/b = 1000/250 = 4, the test columns are considered
short columns, and second-order effects are neglected in the calculation.

This paper establishes formulas for different failure patterns and load-bearing capacity
based on these assumptions. As shown in Figure 24, the failure patterns of the SCGC
are classified into large eccentric compression and small eccentric compression. In these
formulas, ei, et, and ec represent the distances between the external load and the section
center, the tensile SSR, and the compressive SSR, respectively; σs and σs

′ are the SSR stresses
far from (As) and near (As

′) the external load; α1 is the rectangular stress coefficient; xc,
xb, and x denote the actual height of the CAGC in compression, the limiting height of the
compression zone, and the calculated height, where x = β1xc; εt and εy are the strains of the
SSR far from the external load and its nominal yield strain, respectively; and εc and εcu are
the strains of the SSR near the external load and at the section edge, respectively.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 19 of 26 
 

In summary, the SCGC specimens tested in this study do not exhibit full-section com-
pression. SCGC8 experienced premature failure due to the slippage of the reinforcement 
in the anchorage region, resulting in significantly lower load-carrying capacity and thus 
is excluded from the load-carrying capacity analysis. When e0 = 70 mm and 140 mm, the 
specimens exhibit small eccentric compression failure; when e0 = 210 mm and 280 mm, the 
specimens experience large eccentric compression failure. 

 
Figure 24. Force diagram of column section. (a) Column section (b) Large eccentric compression 
mode (c) Small eccentric compression mode. 

 

Figure 25. Relative depth of compressive area. 

4.2.2. Model Optimization 

Considering that the coral aggregate is a lightweight aggregate, according to the 
“Code for Design of Lightweight Aggregate Concrete Structures” (JGJ12-2006) [41], the 
calculation formula for Nu of a rectangular column under combined axial and bending 
loads is as follows: 

Figure 24. Force diagram of column section. (a) Column section (b) Large eccentric compression
mode (c) Small eccentric compression mode.



Appl. Sci. 2025, 15, 3570 18 of 25

When the external load acts on the SCGC with a small e0, the SCGC section will
experience a small eccentric compression, as shown in Figure 24b. At this time, the concrete
in the compression zone reaches its compressive strength, and the steel reinforcement on the
side farther from the axial force has not reached its yield state, whether it is in compression
or tension. Therefore, based on the plane section assumption and force equilibrium, the
following formula can be derived:

Nuet = α1 fcbx(h0 − x/2) + f ′y A′
s(h0 − a′s) (3)

Nu = α1 fcbx + f ′y A′
s − σs As (4)

where f ′y is the design value of the compressive strength of the SSR, in MPa. When e0 is
large, the SCGC section will experience large eccentric compression, as shown in Figure 24b.
The steel reinforcements that are farther from the axial force reach the yield state, and
the concrete in the compression zone reaches its compressive strength. However, it is
verified that the steel reinforcement that is closer to the axial force has not reached its yield
state based on the strain measurements of the SSR. Therefore, based on the plane section
assumption and force equilibrium, the following formula can be derived:

Nuet = α1 fcbx(h0 − x/2) + σ′
s A′

s(h0 − a′s) (5)

Nu = α1 fcbx + σ′
s A′

s − fy As (6)

where fy is the design value of the compressive strength of the SSR, in MPa. Determining
the compression state directly influences the force calculations, as observed from the
analysis. Additionally, the relative boundary compression zone height ξb serves as a key
criterion for distinguishing between large and small eccentric failures.

According to Equation (7), the boundary relative compression zone height is deter-
mined to be ξb = 0.443, which allows for the classification of the SCGC into large and small
eccentric compression categories, as shown in Figure 25.

ξb =
xb
h0

=
β1εcu

εcu + εy
(7)
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In summary, the SCGC specimens tested in this study do not exhibit full-section com-
pression. SCGC8 experienced premature failure due to the slippage of the reinforcement
in the anchorage region, resulting in significantly lower load-carrying capacity and thus
is excluded from the load-carrying capacity analysis. When e0 = 70 mm and 140 mm, the
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specimens exhibit small eccentric compression failure; when e0 = 210 mm and 280 mm, the
specimens experience large eccentric compression failure.

4.2.2. Model Optimization

Considering that the coral aggregate is a lightweight aggregate, according to the
“Code for Design of Lightweight Aggregate Concrete Structures” (JGJ12-2006) [41], the
calculation formula for Nu of a rectangular column under combined axial and bending
loads is as follows: 

Nu ≤ fcmbx + f ′y A′
s − fy As

Nue ≤ fcmbx(h0 − x/2) + f ′y A′
s(h0 − a′s)

e = ηei + h/2 − as

η = 1 + 1
1400(e0/h0)

(
l0
h

)2
ζ1ζ2

ζ1 = 0.5 fc A/N
ζ2 = 1.3 − 0.015l0/h
ei = e0 + ea

ea = 0.12(0.3h0 − e0)

(8)

where fy and f ′y are the tensile and compressive strengths of the reinforcement, in MPa,
respectively; As and A′

s are the cross-sectional areas of the tensile and compressive longitu-
dinal reinforcements, in mm2, respectively; as and a′s are the distances from the resultant
force points of the tensile and compressive reinforcements to the edge of the cross-section,
in mm, respectively; e is the distance between the point of axial load and the resultant force
point of the tensile reinforcement, in mm, respectively; ei is the initial eccentricity, in mm; e0

is the eccentricity of the axial load relative to the centroid of the cross-section, in mm; ea is
the additional eccentricity, in mm; f cm is the bending compressive strength of the concrete,
in MPa, where f cm = 1.05f cu; η is the moment increase factor due to second-order effects; l0
is the effective length of the member, in mm; and ζ1 and ζ2 are fitting parameters, where
ζ2 = 1 when l l0/h < 20.

The ultimate bearing capacity (Nu) of seven SCGC specimens under eccentric loading
was calculated based on the JGJ12-2006. The average ratio of the calculated values (Nu

c)
to the measured values (Nu) is 3.07, with a coefficient of variation of 0.58. As shown
in Figure 26, the bearing capacity calculated according to the JGJ12-2006 is generally
overestimated, leading to poor prediction results. The main reasons are as follows: (i) CAGC
is the combination of a geopolymer and coral aggregate, whose mechanical properties
differ significantly from those of GPC and lightweight aggregate concrete; (ii) The plastic
properties of the SSR result in greater deformation and wider cracks in SSRC structures
during normal service, and its high ductility leads to different load redistribution and stress
redistribution patterns compared to ORC structures. Additionally, the asymmetry in the
stress–strain curve of the SSR under tensile and compressive loads also contributes to the
inapplicability of the existing bearing capacity calculation formulas.

In order to cope with the problems above, Equation (8) is modified in this paper.
On the one hand, the differences in equivalent stress calculations are caused by the

distinct mechanical properties between the CAGC and LAC. This paper determines the
equivalent rectangular stress block for the compression zone of the SCGC based on ensuring
that the area of the equivalent rectangular stress block equals the area of the theoretical
stress block, and keeping the position of the resultant force unchanged.
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In the equivalent stress diagram (Figure 27), x represents the equivalent length (shaded
area in Figure 27). And OA corresponds to the parabolic portion of the theoretical stress
block, while AB represents the rectangular portion of the theoretical stress block:

OA =
ε0

εcu
x =

0.0024
0.0028

x =
6
7

x (9)

AB =

(
1 − ε0

εcu

)
x =

1
7

x (10)
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The resultant compressive force D of the concrete can be determined from the area of
the theoretical stress block:

D = D1 + D2 =
2
3

fc
24
28

xb + fc
4

28
xb = 0.714xb (11)
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According to the method of calculating the static moment of area, the distance from
the resultant compressive force point of the concrete to the compression edge of the section
can be determined:

1
2

β1x =

fcb
(

2
3
·24
28

x
)(

4
28

x +
3
8
·24
28

x
)
+ fcb

4
28

(
1
2
· 4
28

x
)

0.714xb
= 0.38x

(12)

The value of β1 is determined to be 0.76. The resultant compressive force D in
the concrete, based on the area of the equivalent rectangular stress distribution, can be
calculated as:

D = α1 fcβ1xb = 0.76α1σ0xb (13)

Equation (14) can be obtained from the equivalence principle.

0.76α1 fcxb = 0.714 fcxb (14)

Hence, the value of α1 is determined to be 0.94. For subsequent calculations, α1 is
taken as 0.94, and β1 is taken as 0.76.

On the other hand, as discussed in Section 3.3, only the SSR that is farther from the
axial force reaches the yield point under the large eccentricity failure pattern of the SCGC.
This differs from the assumption in the JGJ12-2006 [41] code, which states that both the
tensile and compressive reinforcements yield. However, the mechanical behavior of the
SSR is similar to that described in the JGJ12-2006 [41] code under the small eccentricity
failure pattern of the SCGC.

This paper derived Equations (15) and (16) based on the plane section assumption and
force equilibrium to address this issue, in conjunction with Figure 27. The bearing capacity
problem of large and small eccentric compression columns was resolved by solving these
equations simultaneously with Equations (5) and (6).

εt

εcu
=

h0 − xc

xc
→ εt = εcu

(
h0

xc
− 1

)
(15)

εc

εy
=

xc − a′s
h0 − xc

→ εc = εy

(
xc − a′s
h0 − xc

)
(16)

This paper utilized the JGJ12-2006 [41] code in conjunction with the modified
Ramberg–Osgood model to calculate the bearing capacity (Nu

S) of specimens SCGC1
to SCGC7, based on the aforementioned model revisions. The average ratio of Nu

S to
the measured bearing capacity Nu was found to be 0.94, with a coefficient of variation of
0.034. The calculation results are shown in Figure 26. In summary, the revised bearing
capacity calculation model, combined with the modified Ramberg–Osgood model, provides
a reliable prediction of the bearing capacity of SCGC.

4.3. Crack Width

Structural components must not only meet the relevant requirements for bearing
capacity but also control cracks and deformations during their service life. According to the
JGJ12-2006 [41], the calculation formula for the maximum crack width (ωmax) of rectangular
columns under combined compression and bending is as follows:

ωmax = αcrψ
σs

Es

(
1.9C + 0.04

deq

ρte

)
(17)



Appl. Sci. 2025, 15, 3570 22 of 25

where αcr is the structural characteristic coefficient; ψ is the non-uniformity coefficient,
ψ = 1.1 − 0.65 ft/ρteσs; σs is the tensile stress of the SSR, in MPa; Es is the elastic modulus
of the steel, in GPa; C is the concrete cover thickness, in mm; ρte is the ratio of the SSR
cross-sectional area Af to the effective tensile area of the concrete Ate, ρte = Af/Ate, where
Ate = 0.5bh, h and b are the height and width of the cross-section, respectively; and deq is the
equivalent diameter of the longitudinal tensile reinforcement, in mm, deq = ∑nidi

2/∑niυidi,
where di, ni, and υi are the nominal diameter (mm), number of bars, and relative bond
characteristic coefficient of the i-th type of longitudinal tensile reinforcement, respectively.

As shown in Figure 28 (taking SCGC1, SCGC3, SCGC4, and SCGC7 for examples), the
calculation formulas proposed by the aforementioned three standards fail to accurately
describe the N/f cbh–crack width curve. Considering the following factors: (i) the bond
performance between the CAGC and SSR differs from that between OPC and carbon steel
bars, so the ψ calculation formula has been revised as shown in Equation (18); (ii) under a
small eccentric load, the tensile SSR strain εs = εcu(h0/xc − 1), while under a large eccentric
load, the tensile SSR strain εs = εy. In summary, the revised crack width calculation formula
is shown below.  ωmax = αcrψεs

(
1.9C + 0.04

deq

ρte

)
ψ = 1.65 − 0.975 ft/ρteσs

(18)
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Columns, which in actual engineering practice, are typically subjected to standard
combination and quasi-permanent combination loads according to the GB50068-2018 [42].
The load factor γ is 1.367 for the standard combination. The relationship between
the axial force Nk under the standard combination and the axial force design value N
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is Nk = N/1.367 = 0.7N. Similarly, the load factor γ is 1.64 for the quasi-permanent com-
bination. The relationship between Nk under the quasi-permanent combination and N is
Nk = N/1.64 = 0.6N. Therefore, the standard combination and quasi-permanent combi-
nation loads correspond to 70% and 60% of the ultimate load, respectively. As shown in
Figure 28, Equation (18) not only accurately predicts the crack width under standard com-
bination (70% Nu) and quasi-permanent combination (60% Nu) loads but also effectively
captures the overall trend of the N/f cbh—crack width curve.

This paper proposes a column structure using a novel material—SCGC—that demon-
strates the potential for practical application in island and marine buildings. The use of
coral aggregates reduces material transportation costs and carbon emissions, while SSRs
can help the structure face the durability challenges posed by the marine environmental
context and extend the service life of marine structures. Therefore, this paper suggests the
use of SCGC in the marine area with more coral waste. The failure mode of SCGC is similar
to that of traditional concrete columns, but the mechanical properties of CAGC are different
from ordinary concrete, and the SSR does not have a yielding platform, which leads to the
existence of a special column stress situation and crack development, so this paper suggests
the use of SCGC in real projects. The load carrying capacity prediction can be referred
to Equations (5) and (6) and the crack width prediction can refer to Equation (18). The
accuracy of these equations is verified in this paper and the results show that the equations
are reliable.

5. Conclusions
This paper presents experimental and theoretical analyses of the eccentric compression

of SCGC with different reinforcement ratios and eccentricity, leading to the following
key conclusions:

(1) The failure patterns of SCGC under eccentric compression are similar to those of
ORC columns, and its lateral displacement curve resembles a sine wave. However, SCGC
exhibits greater lateral deformation compared to ORC.

(2) CAC, OAC, LAC, and CAGC exhibit a similar ascending branch. However,
in the descending branch, the CAGC curve is steeper than that of the OAC and LAC
curves, while flatter than that of the CAC curve. Through a systematic analysis of the
stress–strain response characteristics specific to CAGC, this paper proposes a novel consti-
tutive model for CAGC.

(3) When e0/h ≥ 0.7, SCGC experiences large eccentric failure; otherwise, it un-
dergoes small eccentric failure. Under large eccentric compression, the tensioned SSR
yields while the compressed SSR does not, which differs from that of reinforced OAC
columns. Conversely, under small eccentric compression, the yielding behavior of the SSR
is exactly opposite.

(4) This study proposes a novel load-bearing capacity prediction model for SCGC
columns through the introduction of the CAGC constitutive model. The refined model
demonstrates a strong agreement with the experimental results, indicating that it has
promising applications.

(5) An improved crack width calculation model based on the bond-slip theory is
developed, taking into account the different bonding characteristics between CAGC and
SSR compared to OAC and carbon steel bars and the characteristic of SSRs lacking a yield
plateau. The modified model is able to predict the crack width accurately.
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