
Academic Editor: Tao Zhou

Received: 6 February 2025

Revised: 12 March 2025

Accepted: 14 March 2025

Published: 19 March 2025

Citation: Ekle, O.A.; Eberle, W.;

Christopher, J. Adaptive DecayRank:

Real-Time Anomaly Detection in

Dynamic Graphs with Bayesian

PageRank Updates. Appl. Sci. 2025, 15,

3360. https://doi.org/10.3390/

app15063360

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Adaptive DecayRank: Real-Time Anomaly Detection in Dynamic
Graphs with Bayesian PageRank Updates
Ocheme Anthony Ekle 1,† , William Eberle 1,† and Jared Christopher 2,*

1 Department of Computer Science, Tennessee Technological University, Cookeville, TN 38505, USA;
oaekle42@tntech.edu (O.A.E.); weberle@tntech.edu (W.E.)

2 Department of Computer Science, Southern Illinois University, Edwardsville, IL 62026, USA
* Correspondence: jarchri@siue.edu
† These authors contributed equally to this work.

Abstract: Real-time anomaly detection in large, dynamic graph networks is crucial for
real-world applications such as network intrusion prevention, fraud transaction identifi-
cation, fake news detection in social networks, and uncovering abnormal communication
patterns. However, existing graph-based methods often focus on static graph structures,
which struggle to adapt to the evolving nature of these graphs. In this paper, we propose
ADAPTIVE-DECAYRANK, a real-time and adaptive anomaly detection model for dynamic
graph streams. Our method extends the dynamic PageRank algorithm by incorporat-
ing an adaptive Bayesian updating mechanism, allowing nodes to dynamically adjust
their decay factors based on observed graph changes. This enables real-time detection of
sudden structural shifts, improving anomaly identification in streaming graphs. We evalu-
ate ADAPTIVE-DECAYRANK on multiple real-world security datasets, including DARPA
and CTU-13, as well as synthetic dense graphs generated using RTM. Our experiments
demonstrate that ADAPTIVE-DECAYRANK outperforms state-of-the-art methods, such as
ANOMRANK, SEDANSPOT, and DYNANOM, achieving up to 13.94% higher precision, 8.43%
higher AUC, and more robust detection in highly dynamic environments.

Keywords: anomaly detection; real-time; dynamic graphs; node scoring; structural anomalies;
Bayesian updating; dynamic PageRank

1. Introduction
Research on anomaly detection in graph networks has increasingly focused on the

development of adaptive and real-time solutions capable of handling complex streaming
graph data [1,2]. Anomaly detection is an important task in both static and dynamic
networks. Unlike static networks, where the topology remains constant, dynamic net-
works are continuously (or periodically) changing their nodes and edges [2]. Figure 1
illustrates two graph representations: (a) a static graph, G, and (b) presents a snapshot of
the evolving dynamic graph (G = (Vt, Et, T )). The need for real-time graph-based detec-
tion algorithms tailored to dynamic graphs is critical for addressing diverse real-world
challenges. These applications span network intrusion prevention [3], fraud detection
in financial transactions [4], drug discovery and motif discovery in biological networks,
power grid monitoring [5], and machine learning-based vulnerability categorization [6].
The wide-ranging applicability of these methods reinforces the importance of adaptive
machine learning models in tackling real-world problems and highlights the growing
demand for innovative approaches to anomaly detection in dynamic graph settings.
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Figure 1. An Illustraction of Graph Representation: (a) Static graph G, and (b) evolving dynamic
graph G = (Vt, Et, T ), showing a series of graph snapshots with edge insertions, deletions, and node
insertions over time.
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Figure 1. An illustraction of graph representation: (a) Static graph, G, and (b) evolving dynamic
graph, G = (Vt, Et, T ), showing a series of graph snapshots with edge insertions, deletions, and node
insertions over time.

Existing graph-based anomaly detection methods in the literature focus more on static
graphs [7,8]. However, graph-based approaches still face significant limitations when it
comes to inductive learning and adapting to the evolving nature of real-world graphs [2],
where edge connections and node importance can change rapidly.

Among the proposed methods for anomaly detection in dynamic graphs, these can
be categorized into matrix factorization and tensor decomposition, probabilistic models,
distance-based methods, and deep-learning graph embeddings [2]. Despite their respective
successes, these techniques often face limitations in terms of speed, accuracy, adaptability to
concept drift, and scalability. Detecting anomalous network behaviors in real-world critical
infrastructures, such as power grids and nuclear plants, necessitates prompt responses
with maximum accuracy.

1.1. Hypothesis and Research Questions

Given a large, time-evolving graph stream, G = {Gt}T
t=1, where structural changes oc-

cur dynamically across timestamps, t, can we develop an adaptive, near-real-time, and scal-
able anomaly detection framework that leverages an adaptive decay factor with Bayesian
updating to effectively detect anomalous patterns with high precision and robustness.

We aim to address the following questions in our work:

• Q1: Can we detect sudden changes in dynamic graphs, including node insertions,
edge formations, and structural deviations, with high precision while minimizing
false positives?

• Q2: Can we ensure scalability in real-time anomaly detection for high-velocity graph
streams while maintaining low computational overhead.

1.2. Contributions

In this paper, we propose ADAPTIVE-DECAYRANK, a novel real-time and adaptive
anomaly detection model for dynamic graphs. This model utilizes a modified version
of the dynamic PageRank algorithm [9] tailored to adapt and continuously update node
scores based on recent structural changes in the graph. In ADAPTIVE-DECAYRANK, we
introduced a novel decay factor formula with Bayesian updating; this was inspired by
the “Weight Decay Regularization in ADAM." [10], where the authors propose decoupling
gradient-based updates from weight decay in both the SGD [11] and Adam [12] optimizers.
The decay factor in ADAPTIVE-DECAYRANK is strategically incorporated into the dynamic
PageRank algorithm and is dynamically adjusted based on the observed changes of edge
influx at each time step of the graph, utilizing a Bayesian updating mechanism.

The decay factor formula determines how quickly past information (nodes and edges)
is discounted, allowing the algorithm to react swiftly to recent changes. By incorporating
Bayesian updating inference, our model dynamically adjusts the decay factor for each node
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based on observed changes in node scores. This ensures that nodes with rapid changes
in connectivity receive higher scores, reflecting their increased importance and potential
anomalous behavior.

The motivation behind ADAPTIVE-DECAYRANK lies in its ability to capture abrupt
structural alterations in dynamic graph networks using the adaptive decay mechanism.
We consider anomalous behavior as sudden changes in the structural composition of node
scores, specifically the rapid addition of new edges between unrelated nodes as these
networks evolve over time. For example, a sudden increase in node scores might signify
a surge in activity, suggesting a noteworthy event or a potential security threat.

Our contributions are summarized as follows:

• We introduce ADAPTIVE-DECAYRANK, a modified dynamic PageRank with a Bayesian
updating mechanism and an adaptive decay factor for fast anomaly detection and
real-time adaptation to graph changes.

• We demonstrate that our ADAPTIVE-DECAYRANK prioritizes recent edge changes
and assigns higher anomaly scores to structural deviation, thereby improving
detection accuracy.

• We conducted extensive experiments on real-world dynamic graph datasets, demon-
strating that ADAPTIVE-DECAYRANK outperforms state-of-the-art baselines in both
precision and AUC while maintaining competitive runtime performance.

2. Related Work
In this section, we review existing methods for detecting anomalies in dynamic

graphs. We categorize these methods into four groups based on their algorithmic structures.
For a more comprehensive understanding of anomaly detection in dynamic graphs, we
refer readers to the following reviews [1,2].

Distance and similarity-based methods measure similarities between nodes using
time-evolving metrics to detect anomalies. Common metrics include PageRank [13] and
Betweenness Centrality [14]. However, these similarity-based methods rely on static graphs,
making them less effective in capturing real-time changes in dynamic graphs. The concept
of ranking nodes by their importance or influence has been extensively studied in network
science. Lü et al. [15] provide a comprehensive review of node centrality measures, includ-
ing various personalized PageRank (PPR) [16] approaches, which have also been adapted
for anomaly detection in dynamic graphs. Many methods in this category focus on identi-
fying vital nodes to maximize influence propagation (for example, in social networks or
epidemic spreading models [17]), but their applicability to streaming anomaly detection re-
mains limited due to computational constraints. SedanSpot [18] is a randomized algorithm
for detecting sparsely connected edges and identifying anomalies based on edge occurrence.
However, SedanSpot processes input streams linearly, making it highly computationally
expensive. In contrast, our method scales efficiently on large graphs in seconds. GBAD [19]
leverages the Minimum Description Length (MDL) principle and a probabilistic approach
to detect graph-based structural anomalies. AnomRank [20] applies personalized PageRank
to capture both structural and edge-weight anomalies. However, in contrast to our method,
AnomRank computes a global PageRank score, which does not scale efficiently for edge
streaming processing. Holme and Saramäki [21] introduced the concept of “Temporal
Networks”, which highlights the challenges of detecting anomalies in streaming graphs
with evolving nodes and edges. In contrast, our work focuses on anomaly detection in
dynamic graphs; temporal networks provide a strong theoretical foundation for under-
standing evolving structures. SnapSketch [22] is a sketch-based approach; however, it
struggles with detecting sudden structural changes in dynamic graphs, a limitation our
method addresses by incorporating adaptive sensitivity to micro-changes in evolving graph
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states. DYNWATCH [5] uses the Line Outage Distribution Factors (LODFs) sensitivity
measure for real-time detection in power grid sensors. DYNWATCH constructs a graph
from active grid devices such as nodes and performs temporal weighting based on graph
distances for anomaly detection. However, DYNWATCH relies on predefined sensitivity
measures like LODF, making it less adaptive to dynamic network topologies beyond power
grids. DynAnom [23] is a method to track node-level and graph-level anomalies using
personalized PageRank (PPR) in large graphs. It dynamically weights node representations
to reflect evolving graph structures. However, it is limited by its reliance on PPR, which can
introduce bias toward high-degree nodes and is less effective in capturing rapid structural
changes in graphs.

Probabilistic methods use probabilistic models to represent neighborhood relation-
ships in graphs. RHSS [24] employs Count-Min sketches to approximate graph properties
and generate probabilistic error bounds on each edge outlier scoring function. However,
RHSS has a limitation in its reliance on fixed probabilistic bounds, which may lead to
overestimation or underestimation of anomaly scores due to hash collisions. In contrast,
our method not only captures evolving patterns but also adjusts node importance scores
in real time. PENminer [25] explores the persistence of activity snippets in edge streams,
which is relevant for short sequences of recurring edge updates; however, it is not equipped
to detect subgraph- or graph-level anomalies. MIDAS-R [26] detects microcluster anoma-
lies in edge streams using Count-Min Sketches (CMSs) to track the frequency of edge
occurrences at each timestamp and, subsequently, utilizes the Chi-squared test to assess the
extent of deviation from typical edges in order to calculate anomaly scores. F-FADE [27]
discovers anomalies by estimating edge patterns using the maximum likelihood rule of
observed instances for each incoming interaction, while AnoEdge [28], an extension of
MIDAS-R, focuses on higher-order sketches. However, these methods (F-FADE, MIDAS-R,
and AnoEdge) require high computational time for large graph streams and primarily
target the detection of edge-level or subgraph-level anomalies. In contrast, our method cap-
tures both node-level and structural anomalies in real time, offering a more comprehensive
approach to anomaly detection in dynamic graph streams.

Matrix factorization methods decompose high-dimensional matrices into lower-
dimensional forms, revealing evolving patterns in graphs. Recent methods include
EdgeMonitor [29], an edge-detection approach that models dynamic graph evolution
as a first-order Markov process. However, a major drawback is its reliance on consistent
node ordering across all time steps, and it assumes a constant number of nodes per snap-
shot, which is often violated in large-scale graphs. DenseAlert [30] is an incremental and
continuously updating method for detecting dense subtensors in tensor streams. LAD [31]
applies the Laplacian spectrum for change detection by computing the singular value
decomposition (SVD) of the graph Laplacian to obtain a low-dimensional graph representa-
tion. MultiLAD [32] generalizes LAD to multi-view graph detection. Despite the successes
of matrix factorization-based methods like EdgeMonitor, DenseAlert, LAD, and Multi-
LAD, these approaches are computationally intensive, require manual extraction of graph
properties, and are highly susceptible to noise. In contrast, ADAPTIVE-DECAYRANK dynam-
ically updates node scores in real time without requiring global recomputation, ensuring
scalability and efficiency for large-scale graph streams.

Deep graph learning methods leverage neural networks to extract and learn graph rep-
resentations. H-VGRAE [33] employs graph autoencoders for embedding and node-level
detection, constructing a hierarchical model by combining a variational graph autoencoder
with a recurrent neural network (RNN). ROLAND [34] extends classical graph neural
networks (GNNs) to capture dynamic graph structures by leveraging a hierarchical node
state update mechanism. It allows static GNNs to be adapted for dynamic graphs using



Appl. Sci. 2025, 15, 3360 5 of 24

recurrent updates and an incremental training approach. However, ROLAND and other
deep learning approaches, such as H-VGRAE, assume that node embeddings can be incre-
mentally updated without complete recomputation, leading to information loss over long
sequences. In contrast, Adaptive-DecayRank is designed for real-time anomaly detection
in dynamic graphs. Unlike deep learning-based methods, it does not require retraining
from scratch or extensive hyperparameter tuning, making it computationally efficient and
scalable for large graph streams. Additionally, Transformer models, such as Graphomer [35]
and TADDY [36], have also been utilized for dynamic graph representation learning. How-
ever, these methods face limitations when dealing with highly irregular and evolving
topologies, as they often struggle to capture local structural dependencies efficiently.

In summary, our method, ADAPTIVE-DECAYRANK, addresses a broader range of
anomalies by detecting both node-level and structural anomalies in streaming graphs.
ADAPTIVE-DECAYRANK aligns with distance-based and similarity-based approaches, lever-
aging dynamic PageRank with a decay factor and Bayesian updating as a similarity metric to
assign node importance scores and conduct structural analysis. The dynamical Bayesian
updating incorporated in our algorithm tracks micro-changes in edges at each timestamp,
leading to faster and more accurate detection compared to existing methods in the liter-
ature, which are computationally intensive and slow to adapt to sudden deviations in
dynamic graphs. We provide a summary of our method’s properties compared to existing
approaches in Table 1.

Table 1. Comparison of relevant anomaly detection methods in dynamic graphs.

Property SedanSpot MIDAS-R F-FADE DYNWATCH DynAnom MultiLAD AnoEdge DecayRank Our
(2018) (2020) (2021) (2021) (2022) (2023) (2023) (May, 2024) Method

Edge Anomaly ✓ ✓ ✓ ✓ ✓ - -
Node Anomaly ✓ ✓ ✓ ✓

Real-time Detection ✓ ✓ ✓ ✓ ✓ ✓ ✓
Structural Anomalies ✓ ✓ ✓

Sudden Edge Changes ✓ ✓ ✓ ✓ ✓ ✓ ✓
Adaptive Bayesian Updating ✓

Note: The checkmarks (✓) indicate that the corresponding method supports the listed property. A dash (-) means the feature is not

applicable or not reported in the respective study.

3. Background
In this section, we present some definitions related to dynamic graphs, and review the

personalized PageRank algorithm. Additionally, we outline the problem formulation of
our anomaly detection method. The complete set of notations is provided in Table 2.

Definition 1. A graph, G = (V, E), is defined as a pair consisting of a set of nodes,
V = {v1, . . . , vn}, and a set of edges, E, which is a subset of the Cartesian product E ⊆ V ×V and
defines the connections between the nodes.

Definition 2. A weighted graph, G = (V, E, W), is a graph where each edge e ∈ E has
an associated weight, W(e) ∈ R.

Definition 3. A graph snapshot at a specific timestamp, t, is denoted as Gt = (Vt, Et, Wt), where
Vt = {v ∈ V | iv = t} is the set of nodes present at time t, and Et = {e ∈ E | ie = t} is the set of
edges existing between the nodes in Vt at time t; Wt represents the weights assigned to the edges in
Et, which may consist of plain or labeled edges.
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Table 2. List of Notations.

Symbol Definition

G = (V, E) Weighted graph with nodes, V, and edges, E.
G = {Gt}T

t=1 Dynamic graph as a sequence of snapshots at each timestamp, t.
Gt = (Vt, Et, Wt) Snapshot of the graph at time t, with a set of vertices, Vt, a set of

edges, Et, and edge-weights, Wt.
T Total number of time steps.
W(e) ∈ R Weight function, W : E→ R, assigning a real-valued weight, W(e),

to each edge, e ∈ E.
V Set of all vertices (nodes) in the graph.
vu Specific vertex, u, in the graph, with an associated PageRank score.
∆Et Change in edges (insertions or deletions) between t and t + 1.
∆Vt Change in nodes (additions or removals) between t and t + 1.
P Row-normalized adjacency matrix, P ∈ Rn×n, where P = D−1 A.
D−1, A Inverse degree matrix and adjacency matrix of the graph.
c Damping factor of PageRank, commonly set to 0.85.
h, h(t + 1) Starting probability vector, (n× 1), with potential changes over time.
f (v) Node-level anomaly scoring function.
f̂ Summary statistic (e.g., mean or median) of the score function,

f (v), ∀v ∈ V.
c0 Threshold for detecting anomalies based on score deviations.
| f (v′)− f̂ | Absolute difference between the score, f (v′), and the summary

statistic, f̂ .
N, n Number of nodes and edges in G.

Definition 4. We define dynamic graph, G = Gt
T
t=1, as a sequence of ordered sets of graph

snapshots at different timestamps, t, where T is the total time steps, and each Gt is a static graph
representing the state of the graph at timestamp t.

3.1. Personalized PageRank and RWR

The PageRank algorithm [13] assigns scores to web pages, treating the web as
a directed graph with pages as nodes. Variants like Random Walk with Restarts (RWRs) [37]
have been developed for specific tasks. The standard representation of the personalized
PageRank vector, vu [16], for the source node u is calculated as follows:

vu = cPTvu + (1− c)h, (1)

where PT ∈ Rn×n is the column stochastic transition matrix, which can be further expanded
as PT = D−1 AT . The parameter A ∈ Rn×n is the adjacency matrix, and D ∈ Rn×n is the
degree matrix of a given graph, G, with n nodes. h is the indicator (restart) vector for node
u (i.e., the teleport vector), and vu represents the stationary probability distribution over all
nodes, indicating the likelihood of being at any node in the graph after many random walk
steps. The parameter c is the damping factor, representing the probability that the random
walker follows an edge rather than teleporting, and it is commonly set to 0.85.

The personalized PageRank is commonly solved using power iteration and iterative
refinement until the probability that a random walker navigates the graph converges to the
personalized importance scores assigned to each node.

3.2. Dynamic PageRank Variant

Our method extends the Dynamic PageRank [9] variant to effectively handle real-time
anomaly detection in graph streams by incorporating temporal adaptability for real-time
updates. Traditional PageRank algorithms often fail to address challenges in dynamic
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graphs, such as high-frequency updates, computational overhead, and the temporal decay
of node relevance.

These properties make Dynamic PageRank particularly well-suited for dynamic
graphs, where the current node importance score, vi+1, can be updated incrementally
from previous scores, vi, based on recent structural changes in the graph. This adaptability
is especially critical in applications like intrusion detection and critical cyber-infrastructure
monitoring, where edge or node insertions and deletions often signify anomalies or poten-
tial cyber-threats [2], requiring immediate attention.

For example, consider a coordinated Distributed Denial-of-Service (DDoS) attack,
where multiple computers collectively exhibit malicious behavior or a social network
where a user’s connections fluctuate daily. A standard PageRank algorithm treats the
graph as static, missing short-term or evolving trends, such as a sudden influx of con-
nections indicative of spam activity. Personalized Dynamic PageRank variants, like our
proposed model, capture this behavior by incrementally updating scores with temporal
decay (i.e., the gradual reduction in the influence of older node or edge interactions over
time), thereby enabling timely anomaly detection. The formula to compute the dynamic
PageRank score is shown below:

vu(t + 1) = cP(t)vu(t) + (1− c)h(t + 1) (2)

Equation (2) follows directly from Equation (1), where P(t) is the stochastic transition
matrix, defined as P(t) = D−1 AT . This matrix depends on the graph’s structure at each
time step, t. The parameter c is the damping factor, and the indicator probability vector,
h(t + 1), allows the teleport vector to vary over time.

This formulation enables incremental updates to the PageRank scores upon the inser-
tion or deletion of edges, making it highly suitable for practical downstream tasks such
as graph learning. Previous studies [9,23] have demonstrated that Dynamic PageRank
performs effectively on graphs, establishing it as a robust scoring function for detecting
node-level structural anomalies in dynamic graphs.

3.3. Problem Formulation

Before outlining our specific node-level problem, we first define a node-level structural
anomaly in a dynamic graph.

Definition 5 (Node-level Structural Anomaly). Given a dynamic weighted graph, G = (Vt, Et, Wt)

= {Gt}T
t=0, consisting of the initial snapshot, G0, where Vt is the set of nodes, Et is the set of edges,

and Wt is the set of edge weights at time t. The total node set is V = ∪T
t=0Vt, and the total edge set

is E = ∪T
t=0Et. Each snapshot can have changes in edge events, |∆Et| ≥ 0, and changes in node

events, |∆Vt| ≥ 0. Let f : V → R be a specified scoring function. The set of anomalous nodes,
V′ ⊆ V, is defined such that ∀v′ ∈ V′, | f (v′)− f̂ | > c0, where f̂ is a summary statistic of the
score f (v), ∀v ∈ V, and c0 is a predefined threshold indicating a significant deviation.

Problem 1. Detect node-level structural anomalies in Gt. Specifically, a node, u, is considered
anomalous at time t if it experiences a significant deviation characterized by a sudden transition
in its connectivity, i.e., from its original set of outgoing edges to neighbors, ⟨v1, . . . , v∆n⟩, to a new
set, ⟨v̂1, . . . , v̂∆n⟩.

In Problem 1, ∆n is defined as a substantial change in the set of a node’s neighbors,
⟨v1, . . . , vn⟩, as shown in Equation (3):

∆n = N(u, t + 1) \ N(u, t), (3)
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where N(u, t) is the set of neighbors of node u at time t. A sudden transition occurs when
|∆n| exceeds a predefined threshold, τ, indicating a notable structural shift.

Figure 2 illustrates node-structure anomalies across two graph snapshots. Sudden
changes in node scores and the appearance of new edges could indicate potential cyber-
attacks on computer networks or a series of fraudulent transactions. Intuitively, to detect
such structural anomalies, our approach focuses on the existence of edges connecting nodes
rather than the frequency of edge occurrences between them. Additionally, we consider
the rapid occurrence of these edges (insertion or deletion) with fast adaptiveness and,
ultimately, an optimized vector score for each node in the dynamic graph.
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4. Proposed Method
In this section, we present our previous work, the DECAYRANK algorithm [38], along

with our novel ADAPTIVE-DECAYRANK algorithm. These approaches incorporate a dy-
namic node scoring function, an adaptive decay factor enhanced with Bayesian inference,
and an anomaly detection metric. The components are illustrated in Figure 3 and are
discussed in detail in Section 4.2.
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Figure 3. ADAPTIVE-DECAYRANK Framework: The framework consists of the Graph Input and
Snapshot Generation Phase, where dynamic graphs are converted into snapshots; the Dynamic Node
Scoring Phase, which computes node importance; the Adaptive Bayesian Updating Phase, where decay
factors are adjusted based on graph changes; and the Normalization and Anomaly Detection Phase,
which identifies nodes with significant deviations in real-time.

In Figure 3, the ADAPTIVE-DECAYRANK framework begins by transforming the dy-
namic graph input into snapshots based on timestamps, which serve as the foundation
for node score computations. The algorithm then iteratively updates node scores while
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dynamically adjusting the decay factor through Bayesian inference. This adaptive approach
ensures sensitivity to observed changes in the graph structure, enabling the quick detection
of evolving patterns. Finally, normalized anomaly detection metrics are applied to identify
nodes exhibiting significant deviations over time. The framework emphasizes the integra-
tion of real-time updates, adaptive mechanisms, and robust anomaly detection tailored to
dynamic graph environments.

4.1. Dynamic Node Scoring with Temporal Decay

Below, we provide a detailed explanation of the components of our proposed
ADAPTIVE-DECAYRANK algorithm, including the node scoring function and the foun-
dation for integrating an adaptive decay factor through Bayesian inference.

4.1.1. Node Scoring Function

Traditional offline scoring functions, such as HITS (Hyperlink-Induced Topic Search) [39]
and centrality measures (e.g., Betweenness Centrality) [14], are effective at identifying degree
centrality, influential nodes, or ego nodes in static graphs [2]. However, in an online setting,
where graphs evolve over time, capturing dynamic fluctuations becomes essential.

In our previous work, the DECAYRANK algorithm [38] was introduced to assign
importance scores to individual nodes by considering neighboring edges and evolving
graph properties. Based on the iterative formula in Equation (2), DECAYRANK incorporates
a fixed decay factor to dynamically adjust scores at every iteration. While effective, this
fixed decay factor posed limitations in adapting to varying graph dynamics, an issue
addressed by the proposed ADAPTIVE-DECAYRANK algorithm. The modified node score
vector, vu, for DECAYRANK is defined as

vu = cP̂vu + (1− c)hue−δ·(t−A(T)
u ) (4)

Here, P̂ is the row-normalized adjacency matrix, and the other parameters follow the

notation in Equation (2). The temporal decay function, e−δ·(t−A(T)
u ), reduces the influence

of older interactions, with the decay factor, δ, controlling the rate of decay. The term A(T)
u

represents the most recent timestamp when node u was last updated in the adjacency
structure of the graph. Specifically, it is derived from the adjacency structure, Au, which
maintains historical interaction records of node u. This ensures that more recent interactions
contribute more significantly to the node score, while older interactions decay exponentially
over time.

4.1.2. Temporal Decay Factor

The concept of our proposed novel adaptive-decay factor formula is inspired by the work
on “Weight Decay Regularization in the ADAM Optimizer” [10], where the authors propose
decoupling gradient-based weight updates in both the SGD [11] and Adam [12] optimizers.

In Equation (4), we introduced the temporal decay function e−δ·(t−A(T)
u ), which en-

hances the adaptability and responsiveness of our algorithm. The parameter δ, referred to
as the decay factor, controls the rate at which the influence of an edge or node decreases
over time. A higher δ value results in faster decay, gradually reducing the impact of older
interactions or edges. This ensures that older data have progressively less influence on
the computation of new graph snapshots and allows the algorithm to prioritize recent and
relevant changes in the graph structure. The variable t represents the current timestamp,
while A(T)

u denotes the timestamp attribute of node u. The term (t − A(T)
u ) calculates the

time difference between the current timestamp and the last update of node u.
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Algorithm 1 provides a summary of our previous work on the DECAYRANK algorithm,
which employs a fixed decay factor. While effective, this fixed factor struggles to adapt to
the varying dynamics of individual nodes, potentially resulting in suboptimal anomaly
detection and reduced sensitivity to recent changes in the graph.

To overcome these limitations, we propose the ADAPTIVE-DECAYRANK algorithm,
which utilizes a Bayesian updating mechanism to dynamically adjust the decay factor
in response to observed changes in node rank scores. This adaptive approach not only
enhances the algorithm’s responsiveness to evolving graph structures but also significantly
improves the accuracy and robustness of anomaly detection in dynamic and near real-time
graph environments.

Algorithm 1 DECAYRANK: Streaming Anomaly Scoring

Input: A: Array of dynamic graph outEdges over time
Output: v: Updated PageRank scores

1: Initialization:
2: Initialize PageRank values v[i]← c

n for all nodes i
3: while each timestep step from 0 to numSteps− 1 do

▷ Power Iteration:
4: Update scores based on graph structure.

▷ Decay Factor Application:
5: Apply decay factor δ to adjust scores over time.

▷ Update PageRank Scores:
6: Integrate new scores: v[i] += nq[i]
7: end while

▷ Normalization Anomaly Score:
8: return v← normalizeNodeScore(v, n)

4.2. ADAPTIVE-DECAYRANK Algorithm with Bayesian Updating

Next, we describe our ADAPTIVE-DECAYRANK algorithm, which incorporates
a dynamic scoring function with adaptive decay factors for responsive updates based
on graph changes, along with a Bayesian updating mechanism for further refinement.
The ADAPTIVE-DECAYRANK algorithm extends our previous DECAYRANK approach. This
innovation enables the algorithm to dynamically adapt to real-time changes in graph
structures, ensuring robustness and accurate anomaly detection in dynamic graph settings.

4.2.1. Bayesian Inference and Updating

The ADAPTIVE-DECAYRANK algorithm utilizes Bayesian inference [40] to dynamically
adjust decay factors, enabling responsive updates to evolving graph structures. Unlike
frequency-based approaches, which rely on fixed parameters and repeated sampling,
Bayesian inference treats probability as a measure of belief, updating prior distributions in
light of new data and observed changes. This makes it well-suited for dynamic, evolving
systems such as graphs.

Bayesian inference involves three key steps: (1) The prior distribution, π(θ), which
represents initial beliefs about the parameter θ (in this case, the decay factor δu) before
observing any data. (2) The likelihood function, L(θ), expressed as p(X|θ), captures the
probability of observing data, X, given a specific value of θ. This function reflects how
well θ explains the observed data. Finally, (3) the posterior distribution, π(θ|X), which
combines the prior and likelihood to update our beliefs about θ after observing data X.

Using Bayes’ theorem, the posterior is defined as

π(θ|X) =
L(θ)π(θ)∫
L(θ)π(θ)dθ

, (5)
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where π(θ|X) is the posterior distribution (updated belief about θ), L(θ) is the likelihood
function defined as L(θ) = ∏n

i=1 p(Xi|θ), and
∫

L(θ)π(θ)dθ is the normalizing constant
ensuring the posterior is a valid probability distribution.

4.2.2. Bayesian Updating in ADAPTIVE-DECAYRANK

In the context of ADAPTIVE-DECAYRANK, Bayesian inference is employed to update
the decay factor, δu, for each node, u. The Gamma distribution is used as a conjugate prior,
ensuring computational efficiency and tractability during updates on the observed changes
in node scores. The probability density function of the prior Gamma distribution for δu is
defined as

f (δu | αu, βu) =
βαu

u
Γ(αu)

δαu−1
u e−βuδu , (6)

where δu is a continuous variable taking non-negative values, (δu ≥ 0), αu is the shape
parameter that controls the shape of the distribution, βu is the rate parameter that controls
the scale of the distribution, and Γ(αu) is the Gamma function, which generalizes the
factorial function.

4.2.3. Adaptive and Dynamic Scoring Function

The ADAPTIVE-DECAYRANK formula with Bayesian updating is defined in Equation (7).
The Gamma distribution parameters αu and βu in Equation (6) represent our prior beliefs
about the decay factors. For each iteration, the algorithm observes and adjusts node scores
based on the recent changes. The scoring function is given by

v(k+1)
u = cP̂v(k)u + (1− c)hue−δu(k−A(T)

u ), (7)

where v(k+1)
u is the updated score for node u at iteration k + 1, c is the damping factor

controlling the influence of neighboring nodes, P̂ is the transition probability matrix, v(k)
u

is the node score for u at iteration k, hu is the personalization vector capturing the inherent
importance of node u, δu is the decay factor for node u, dynamically updated using Bayesian
inference, and (k− A(T)

u ) is the time elapsed since the last update of node u.
In Equation (7), the term cP̂v(k)u represents dynamic PageRank propagation, and the

adaptive temporal decay is represented with the expression (1− c)hue−δu(k−A(T)
u ), empha-

sizing recent interactions and diminishing the influence of older data.
Posterior updates: Equation (6) shows the prior distribution for δu; that is, the conju-

gate prior, ensuring efficient computation. The adaptive decay factor, δu, is computed as the
mean of the posterior Gamma distribution and is updated using αu and βu:

δu =
αu

βu
. (8)

The shape parameter (αu) is adjusted to reflect the magnitude of observed changes,
with larger changes resulting in fast updates.

α
(t+1)
u = α

(t)
u +

∣∣∣v(k+1)
u − v(k)u

∣∣∣. (9)

The rate parameter (βu) is updated to maintain stability, preventing drastic shifts when
changes are minimal:

β
(t+1)
u = β

(t)
u +

(
1−

∣∣∣v(k+1)
u − v(k)u

∣∣∣). (10)

By leveraging Bayesian inference, the ADAPTIVE-DECAYRANK algorithm dynamically
adjusts δu in real time, ensuring sensitivity to significant changes in graph structure while
mitigating noise. The conjugacy of the Gamma distribution guarantees computational
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efficiency, enabling scalability for large-scale dynamic graphs. This approach addresses con-
cerns about innovation, clarity, and robustness in anomaly detection for dynamic graphs.

4.3. Algorithm

Algorithm 2 implements the ADAPTIVE-DECAYRANK framework. The algorithm
processes a dynamic graph represented by the input, A, which is an array of outEdges
serving as the transition matrix. Each node maintains a list of outgoing edges, denoted
as A[i].out = {j1, j2, . . . , jk}, with corresponding weights, A[i].weight = {w1, w2, . . . , wk},
where wk is the weight associated with the edge connecting to each neighboring node,
jk. Additionally, the last observed timestamp (denoted as A[i].timestamp in algorithm
line 5) represents the last time node i was updated in the graph stream. In Equation (7),
this timestamp corresponds to A(T)

u , which represents the last time step at which node u
was modified. For example, if node A has outgoing edges to nodes B and C with weights
0.5 and 0.2, respectively, and the timestamp is 10, this implies that node A’s connections
were last updated at time step 10. The edge weights are assigned dynamically based on
edge updates in the evolving graph stream, while the adaptive decay factor, δ, reduces
edge influence over time.

Algorithm 2 ADAPTIVE-DECAYRANK: Node Anomaly Scoring

Input: A: Array of dynamic graph outEdges, v: Array of PageRank scores, n: Number of
nodes, numSteps: Streaming timesteps

Output: v: Anomaly scores {v(0), . . . , v(T)}
▷ Initialization of Parameters (δ, α, β):

1: Initialize DecayRank values v[i]← c
n for all nodes i

2: while each timestep step from 0 to numSteps− 1 do
▷ Power Iteration:

3: Update scores based on graph structure.
▷ Applying Adaptive Decay Factor:

4: for i = 0 to n− 1 do
5: time_diff← step− A[i].timestamp
6: observed_changes← (new_nq[i]− old_nq[i])
7: α[i] += o
8: β[i] += (1− o)
9: δ[i]← Γ(α[i])

Γ(β[i])
10: Adaptive_Decay[i]← min(δ[i], 1.0)
11: new_nq[i] ∗= exp(−δ[i]× time_diff)
12: end for

▷ Dynamic Updating of DecayRank Scores:
13: for i = 0 to n− 1 do
14: v[i] += new_nq[i]
15: end for

▷ Convergence Check:
16: if ∑n−1

i=0 (new_nq[i]− old_nq[i]) < EPSILON then
17: break
18: end if
19: end while

▷ Normalization:
20: return v← normalizeDecayRank(v, n)

The output, v, is the sequence of stochastic vectors for node scores. The algorithm
initializes node scores uniformly as v[i] = c/n, where c is the damping factor, and n is the
total number of nodes (as shown in line 1). At each time step, the algorithm iteratively
updates these scores based on the structure of A using power iteration (lines 2–3).
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The adaptive-decay factor δ[i] (as shown in lines 7–9) is dynamically adjusted using
Bayesian inference to reflect observed changes in the graph structure, enhancing sensitivity
to recent interactions while mitigating noise. The decay factor is computed as δ[i] in line 9,
where α[i] represents the prior update, and β[i] represents the posterior update, both of which
are updated based on observed changes (see details in Section 4.2.3). The scores, v[i], (up-
dated in line 14) are adjusted with the computed decay values (newnq[i]), and the process
continues until the convergence criterion (line 16–19) is satisfied. In line 16 , the EPSILON
is set to 0.0001 to balance accuracy and computational efficiency. After completing all itera-
tions, the scores are normalized as v[i] to maintain consistency across nodes and ensure
comparability, preventing high-degree nodes from dominating anomaly detection results
(see details in Section 4.4.1).

4.4. Anomaly Detection Metrics

After Algorithm 1 computes the score vectors for each node using an adaptive decay
factor, we apply similarity metrics from the work of Yoon et al. [20] to detect anomalous
behavior at each time step in the graph. The base parameter for the Adaptive Decay Factor,
δu, has an empirical range of [0.25, 0.55]. For stability, the tuning occurs dynamically
using Bayesian updating, where a higher decay factor reduces the influence of past edge
interactions. The anomaly detection metric was first introduced and theoretically analyzed
in [20] for tracking node score variations over time. Given a score vector, vu, the metric is
defined as

v′′u =
(vu(t + ∆t)− vu(t))− (vu(t)− vu(t− ∆t))

∆t2 (11)

In Equation (11), the metric v′′
u represents the discretization of the second-order derivative

of the score vector, vu. The second derivative captures acceleration or deceleration in score
changes over time, making it effective for identifying sudden shifts in node behavior that
may indicate anomalies. The discretization process approximates a continuous function in
a discrete form, ensuring computational efficiency and robustness in time-evolving graphs.

The theoretical justification is provided in [20], where the authors established a basis
for anomaly detection in dynamic graphs by modeling normal graph behavior using
Lipschitz continuity, ensuring smoothness in time-series updates. The study demon-
strates that normal graph streams exhibit bounded first- and second-order derivatives:
∥v′u∥1 ≤ K1, ∥v′′u∥1 ≤ K2, where K1 and K2 are positive real constants. Under this as-
sumption, normal graphs exhibit gradual changes, leading to small values of ∥v′u∥1 and
∥v′′u∥1. However, anomaly types, such as sudden structural changes, could cause these
bounds to increase significantly, making them strong indicators of anomalous behavior
(see Section 4.3 in [20] for more details and proofs ).

To maintain consistency across time and balance positive and negative fluctuations,
we apply centering and variance scaling, ensuring that anomaly scores remain comparable
across different time steps.

4.4.1. Online Normalization

To ensure that the derivative-based metrics are robust and consistent across time
steps, we normalize the ADAPTIVE-DECAYRANK scores, vs, and their derivatives online
by adjusting the mean, µ, and variance, σ2, of the scores, with the inclusion of the adaptive
decay factor δu to emphasize recent changes:

µnew[i] =
t

t + 1
× µ[i] +

1
t + 1

× vs[i] (12)

σ2
new[i] =

t
t + 1

× σ2[i] +
1

t + 1
× (vs[i])2 (13)
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Following Equations (9) and (10), the Bayesian update prior values are set to α = 1.0
and β = 1.0. These parameters control the rate of adaptation to changes in graph structures.
We set the number of iterations for Bayesian updating to numSteps = 10, ensuring stable
convergence while capturing micro-level changes in node importance. This normalization
centers the derivatives around zero and scales them to unit variance, balancing positive
and negative fluctuations as well as large and small variations, thereby making anomaly
comparisons across different time steps more consistent.

4.4.2. Anomaly Score Calculation

Finally, the anomaly score is computed by combining the effects of both first- and
second-order derivatives:

vs = max
i

(
n−1

∑
j=0
|d[i][j]| × total_max

max[i]

)
(14)

where d[i][j] is the derivatives for node i in step j, total_max is the product of the maximum
derivative values across all nodes, and max[i] is the maximum observed derivative for
node i.

To further illustrate the computation of Equation (14), we consider a small dynamic
graph with three nodes, where each row in the d−matrix represents a node, and each
column represents the derivatives of a node across three timestamps, as shown below:

d =

0.2 0.5 0.3
0.8 0.6 0.7
0.1 0.4 0.2


From the matrix, d, the maximum derivative per node (row1, row2, row3) is

max = {0.5, 0.8, 0.4}, and the total maximum is 0.8.
For Node 1, the anomaly score computed as

vs(1) =
2

∑
j=0
|d[1][j]| × total_max

max[1]

= (0.2 + 0.5 + 0.3)× 0.8
0.5

= 1.6

Similarly, for Node 2,

vs(2) = (0.8 + 0.6 + 0.7)× 0.8
0.8

= 2.1

and for Node 3,

vs(3) = (0.1 + 0.4 + 0.2)× 0.8
0.4

= 1.4

Finally, the anomaly score is determined as follows:

vs = max(1.6, 2.1, 1.4) = 2.1

This example illustrates how the anomaly score prioritizes nodes with significant
derivative changes, emphasizing abnormal patterns in the dynamic graph. The final score,
vs, reflects the anomalous behavior of the node relative to its past and to other nodes.
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5. Experiments
In this section, we evaluate the performance of ADAPTIVE-DECAYRANK in comparison

to three state-of-the-art baselines in terms of accuracy, scalability, and speed.

5.1. Datasets

We utilize three datasets—two real-world datasets and one synthetically generated
dataset—to evaluate the robustness, adaptability, and scalability of ADAPTIVE-DECAYRANK

under diverse graph structures and anomaly densities. These datasets were chosen to
represent different types of dynamic graphs, including network intrusion detection, botnet
traffic, and synthetic evolving networks with controlled anomaly injection. A summary of
dataset attributes is provided in Table 3.

DARPA: DARPA [41] contains 4.5M IP-IP communications between 9.4K source IPs
and 23.3K destination IPs over 87.7K timestamps, with each node representing an IP
address, each edge representing network traffic, and each IP-IP communication represented
as a directed edge, (timestamp, srcIP, destIP, attack). Anomalies in this dataset primarily
consist of network attacks, including Denial-of-Service (DoS), remote-to-local (R2L), user-
to-root (U2R), and probing (scanning) activities [41]. These anomalies were labeled using
ground-truth attack logs provided in the dataset, where each attack instance is timestamped,
allowing for an evaluation of how well the algorithms detect real-time intrusion attempts.

CTU-13: The CTU-13 dataset [42] consists of 13 scenarios capturing botnet traffic
mixed with normal background traffic. It includes approximately 100 million IP-IP commu-
nications, where nodes represent IP addresses, and directed edges signify network flows.
Anomalies in CTU-13 correspond to botnet activity, which involves infected machines com-
municating with command-and-control (C&C) servers, scanning targets, and launching
attacks [43]. The dataset’s PCAP (packet capture) files were processed to extract bidirec-
tional NetFlows (timestamp, srcIP, destIP, and label). We classify botnet-related connections
as anomalies, leveraging the dataset’s ground-truth labels for evaluation.

RTM Synthetic Graph: The RTM dataset was synthetically generated using the Re-
cursive Tensor Model (RTM) [44], where a Kronecker graph generation process is used
to simulate realistic time-evolving graph structures. The generated dense graph contains
512 nodes and approximately 19.6 million edges across 1000 timestamps. To assess the
robustness of our approach, we inject anomalies at two levels: a 10% injection of struc-
tural node anomalies, disrupting the normal connectivity pattern, and a 30% injection of
a higher concentration of anomalies to test the model’s robustness against varying anomaly
densities and structural changes in dynamic graphs. The dataset statistics, including
the number of nodes, edges, timespans, snapshots generated, and anomaly types, are
summarized in Table 3.

Table 3. Dataset statistics and characteristics. Graphs are read and processed as directed, with snap-
shots |G0,...,T | generated over time. Anomalies are detected after the specified initial snapshot (Init. t).

Dataset Nodes (|V |) Edges (|E|) Timespan Snapshots (|G0,...,T |) Anomalies

DARPA 33,221 4,616,321 2 months 1463 (256 init) Network traffic attacks
CTU-13 256 1,416,971 7 days 301 (50 init) Botnet-related

RTM Synthetic 512 19,683,000 1000 timestamps 101 (10 init) Injected (10% and 30%)

5.2. Experimental Setup

We implemented ADAPTIVE-DECAYRANK in C++ and ran experiments on a MacOS®

with 3.2 GHz Intel 8-Core™ 64-bit processor running at 3.2 GHz, a 7-Core™ GPU, 16-Core™
Neural Engine, and 8 GB unified memory (RAM).

We compared ADAPTIVE-DECAYRANK to four state-of-the-art distance-based methods
for anomaly detection: SEDANSPOT [18], ANOMRANK [20], DYNANOM [23], and DE-
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CAYRANK [38]. Our approach extends DECAYRANK and is closely related to ANOM-
RANK; however, we introduce a more robust and dynamic scoring function incorporating
an adaptive decay factor and Bayesian updating, enabling faster detection of micro-changes
at each timestamp. The average precision and algorithm runtimes are presented in Table 4.
The precision-recall curve for the top-k (50–800) anomalous snapshots is shown in Figure 4,
the AUC-ROC for DARPA is depicted in Figure 5, and the scalability analysis is illustrated
in Figure 6. However, due to constraints in algorithmic design and dataset compatibility,
we were unable to evaluate SEDANSPOT and DYNANOM on the CTU-13 and RTM datasets.

Table 4. Average precision and runtime for different datasets. (Note: The reported average precision
(Table 4) is threshold-dependent, computed as the mean of precision scores across multiple top-k
thresholds (Top-50, 100, ..., 800). Precision values for the Top-50 to Top-500 thresholds are presented in
Table 5. For a more robust, threshold-free evaluation, we also report the precision-recall (PR) curve
(Figure 4) and the Area Under the Curve (AUC) (Figure 5), which provide a more comprehensive
assessment of model performance).

Algorithms DARPA Runtime (s) CTU-13 Runtime (s) RTM-10 Runtime (s) RTM-30 Runtime (s)

SEDANSPOT 0.56 480 - − - − - −
DYNANOM 0.5840 379.334 - − - − - −
ANOMRANK 0.5665 4.02551 0.4118 0.690561 0.3125 11.9526 0.3095 12.529

DECAYRANK (δ = 0.65) 0.572 5.4555 0.6425 0.6265 0.5865 0.995 0.5699 1.09206

ADAPTIVE-DECAYRANK 0.64554 35.0083 0.6856 0.7040 0.6746 1.2231 0.6976 1.23785

Note: The average precision is computed as the mean of all precision scores across multiple thresholds (Top-k
anomalies, where k = 50, 100, 150, . . . , 800), as detailed in Table 5 and Figure 4. DECAYRANK: improves with
a high decay factor, δ, of 0.65 to 0.95.
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Figure 4. Precision-Recall Curves of ADAPTIVE DECAYRANK vs. ANOMRANK across three Datasets
for Top 50-800 Anomalies. (d) Accuracy (AUC) vs. Speed (Running Time) on the DARPA Dataset.

compared to DECAYRANK’s 0.5865 and ANOMRANK’s 0.31. This represents a 117.61% 559

improvement over ANOMRANK and 15.02% over DECAYRANK. Similarly, on the RTM-30 560

dataset (i.e., with 30% anomalies injected), ADAPTIVE-DECAYRANK achieves 0.6976 561

compared to ANOMRANK’s 0.30 and DECAYRANK’s 0.5699. This represents a 132.53% 562

improvement over ANOMRANK and 22.41% over DECAYRANK. These results further 563

demonstrate that our model is robust to detecting anomalies in large influx edge streams. 564

(Due to algorithm and dataset compatibility constraints, we were unable to implement 565

SEDANSPOT and DYNANOM on the CTU-13 and RTM datasets.) 566

5.3.2. Precision-Recall curve: 567

In Figure 4 (a), (b) and (c), ADAPTIVE-DECAYRANK demonstrates higher precision 568

and recall compared to ANOMRANK for all three datasets. It consistently achieves higher 569

precision on various anomalous snapshots (top50, 100, 250, . . . , 800). This indicates that 570

ADAPTIVE-DECAYRANK effectively identifies anomalies while maintaining a low false 571

positive rate. This is crucial in real-world scenarios such as the power grid, fraud detection, 572

and cyber threats, considering that anomalous instances are associated with a significant 573

influx of unusual patterns. 574

5.3.3. AUC-ROC: 575

Figure 5 presents the ROC curves for ADAPTIVE-DECAYRANK, ANOMRANK, and 576

DECAYRANK on the DARPA dataset. The ROC curve illustrates the trade-off between the 577

true positive rate (TPR) and the false positive rate (FPR) at various thresholds. ADAPTIVE 578

DECAYRANK achieves the highest AUC score of 0.90, indicating its superior ability 579

to distinguish between normal and anomalous patterns. This represents a significant 580

improvement over ANOMRANK (AUC: 0.86) and DECAYRANK (AUC: 0.83), demonstrating 581

Figure 4. Precision-recall curves of ADAPTIVE-DECAYRANK vs. ANOMRANK across three datasets for
Top 50–800 anomalies. (a) Precision-recall curve for the DARPA dataset, (b) Precision-recall curve for
the CTU-13 dataset, (c) Precision-recall curve for the RTM dataset, and (d) AUC vs. speed (Running
Time) on the DARPA dataset. The Area Under the Curve (AUC) quantifies the model’s ability to
distinguish between normal and anomalous patterns, where a higher AUC indicates better overall
detection performance.
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Figure 5. AUC-ROC for DARPA Dataset: A comparison of ADAPTIVE-DECAYRANK (0.90),
ANOMRANK (0.86), and DECAYRANK (0.83), showcasing the superior anomaly detection performance
of ADAPTIVE-DECAYRANK.

Table 5. Precision of Top 50-500 Anomalies of ADAPTIVE-DECAYRANK vs. ANOMRANK Across
DARPA, CTU, and RTM Datasets

Anomalies DARPA CTU-13 RTM-30
ADAPTIVE-DECAYRANK

Top-50 1.000 1.000 1.000
Top-100 0.980 1.000 1.000
Top-10 0.980 1.000 1.000

Top-200 0.880 1.000 1.000
Top-300 0.683 0.907 0.880
Top-400 0.563 0.680 0.660
Top-500 0.520 0.544 0.528

ANOMRANK

Top-50 1.000 1.000 1.000
Top-100 0.950 0.980 0.840
Top-200 0.670 0.610 0.420
Top-300 0.563 0.407 0.280
Top-400 0.510 0.305 0.210
Top-500 0.474 0.244 0.168

the effectiveness of the adaptive decay factor and Bayesian updating mechanism employed 582
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Figure 6. ADAPTIVE-DECAYRANK scalability analysis on DARPA, CTU-13, and RTM-30 datasets.

Table 5. Precision of Top 50–500 anomalies of ADAPTIVE-DECAYRANK vs. ANOMRANK across
DARPA, CTU, and RTM datasets.

Anomalies DARPA CTU-13 RTM-30

ADAPTIVE-DECAYRANK

Top-50 1.000 1.000 1.000
Top-100 0.980 1.000 1.000
Top-10 0.980 1.000 1.000
Top-200 0.880 1.000 1.000
Top-300 0.683 0.907 0.880
Top-400 0.563 0.680 0.660
Top-500 0.520 0.544 0.528

ANOMRANK

Top-50 1.000 1.000 1.000
Top-100 0.950 0.980 0.840
Top-200 0.670 0.610 0.420
Top-300 0.563 0.407 0.280
Top-400 0.510 0.305 0.210
Top-500 0.474 0.244 0.168

5.3. Accuracy and Speed
5.3.1. Precision and Recall

Using each dataset, we evaluated the performance of ADAPTIVE-DECAYRANK using
the precision-recall metric. First, we computed the anomaly score for all graph snapshots
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in each dataset and calculated the top-k most anomalous snapshots (k = 50, 100, . . . , 800).
As shown in Table 3, DARPA has 1463 snapshots, CTU-13 has 301 snapshots, and RTM has
101 snapshots.

In Table 4, ADAPTIVE-DECAYRANK achieves a high average precision score of 0.6455
on DARPA, compared to the baselines: ANOMRANK with 0.5665, DECAYRANK with 0.572,
DYNANOM with 0.58, and SEDANSPOT with 0.56. This represents a 13.94% improvement
over ANOMRANK, 12.86% over DECAYRANK, 11.28% over DYNANOM, and 15.27% over
SEDANSPOT. Additionally, our model’s total runtime is 35 s faster than both SEDANSPOT

and DYNANOM. However, ANOMRANK and DECAYRANK have runtimes of 4.03 and
5.46 s, respectively, which are faster than our method. Despite this, our model outperforms
the baseline models in both precision and AUC, processing 1 million edges in 14.23 s
(more details are provided in Section 5.4). This result is understandable given our iterative
implementation of the decay factor with Bayesian updating at each time step.

Likewise, on CTU-13, ADAPTIVE-DECAYRANK achieves a high average precision
of 0.6856 compared to ANOMRANK’s 0.4118 and DECAYRANK’s 0.6425. This represents
a 66.49% improvement over ANOMRANK and 6.71% over DECAYRANK. On the RTM-10
synthetic dataset (with 10% anomalies injected), ADAPTIVE-DECAYRANK achieves 0.6746
compared to DECAYRANK’s 0.5865 and ANOMRANK’s 0.31. This represents a 117.61%
improvement over ANOMRANK and 15.02% over DECAYRANK. Similarly, on the RTM-
30 dataset (i.e., with 30% anomalies injected), ADAPTIVE-DECAYRANK achieves 0.6976
compared to ANOMRANK’s 0.30 and DECAYRANK’s 0.5699. This represents a 132.53%
improvement over ANOMRANK and 22.41% over DECAYRANK. These results further
demonstrate that our model is robust for detecting anomalies in large influx edge streams
(due to algorithm and dataset compatibility constraints, we were unable to implement
SEDANSPOT and DYNANOM on the CTU-13 and RTM datasets.)

5.3.2. Precision-Recall Curve

In Figure 4a–c, ADAPTIVE-DECAYRANK demonstrates higher precision and recall
compared to ANOMRANK for all three datasets. It consistently achieves higher precision
on various anomalous snapshots (top50, 100, 250, . . . , 800). This indicates that ADAPTIVE-
DECAYRANK effectively identifies anomalies while maintaining a low false positive rate.
This is crucial in real-world scenarios, such as the power grid, fraud detection, and cyber-
threats, considering that anomalous instances are associated with a significant influx of
unusual patterns.

5.3.3. AUC-ROC

Figure 5 presents the ROC curves for ADAPTIVE-DECAYRANK, ANOMRANK, and DE-
CAYRANK on the DARPA dataset. The ROC curve illustrates the trade-off between the
true positive rate (TPR) and the false positive rate (FPR) at various thresholds. ADAPTIVE

DECAYRANK achieves the highest AUC score of 0.90, indicating its superior ability to
distinguish between normal and anomalous patterns. This represents a significant improve-
ment over ANOMRANK (AUC: 0.86) and DECAYRANK (AUC: 0.83), demonstrating the
effectiveness of the adaptive decay factor and Bayesian updating mechanism employed by
ADAPTIVE-DECAYRANK, particularly in capturing sudden changes in dynamic graph struc-
tures. Meanwhile, Figure 4d plots accuracy (AUC) vs. running time (log scale, in seconds,
excluding I/O), further showcasing ADAPTIVE-DECAYRANK’s efficiency and scalability
compared to the baselines, including SEDANSPOT, which achieves an AUC of 0.64.

This represents a 4.65% improvement in AUC over ANOMRANK and an 8.43% improve-
ment over DECAYRANK. Additionally, compared to SEDANSPOT (AUC: 0.64), ADAPTIVE-
DECAYRANK shows a 40.63% improvement, further highlighting its superior performance
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in anomaly detection. In [23], the AUC score for DYNANOM was not implemented; hence,
it is missing from our Figure 5.

5.4. Scalability and Robustness
5.4.1. Robustness Across Different k

In Figure 4, we observe that at k ≥ 250, ADAPTIVE-DECAYRANK consistently out-
performs baseline methods in terms of precision, demonstrating its robustness as the
number of detected anomalies increases. Table 5 further highlights this, showing that
ADAPTIVE-DECAYRANK achieves perfect precision (1.000) for Top-50 anomalies across all
datasets. Even at Top-100 and Top-200, its precision remains notably high, outperform-
ing ANOMRANK, which drops significantly, especially on RTM-30. This suggests that
ADAPTIVE-DECAYRANK is more effective at identifying the most critical anomalies while
maintaining a higher precision threshold.

As k increases, the performance gap between the two methods becomes more evi-
dent. At Top-300 anomalies, ADAPTIVE-DECAYRANK maintains 0.683 on DARPA, 0.907 on
CTU-13, and 0.880 on RTM-30, whereas ANOMRANK struggles at 0.563, 0.407, and 0.280,
respectively. At Top-500, the difference becomes even more pronounced, particularly in
CTU-13 and RTM-30, where ADAPTIVE-DECAYRANK maintains a robust detection perfor-
mance compared to the declining precision of ANOMRANK. These results demonstrate our
model’s superior ability to detect micro-changes and structural anomalies across diverse
real-world dynamic graph datasets while preserving high detection quality, even as the
number of anomalies increases.

5.4.2. Scalability

Figure 6 shows how well ADAPTIVE-DECAYRANK scales with increasing edges across
four datasets. We plot the wall-clock time required to process the first 21, 22, . . . , 222

edges of each dataset. On DARPA, which contains 4.6M edges and 1463 snapshots,
the elapsed time for small inputs (10, 100) remains in microseconds, demonstrating
ADAPTIVE-DECAYRANK’s efficiency for small graphs. At medium sizes (1000–10,000),
the elapsed time remains relatively low (milliseconds), confirming its ability to han-
dle moderate-sized graphs effectively. However, for larger inputs (100,000–1,000,000),
the elapsed time increases slightly from 0.77 to 14.23 s, indicating higher computational
requirements for large-scale graph updates. On CTU-13, which contains 1.4M edges and
301 snapshots, the algorithm processes small graphs efficiently (microseconds for 10, 100),
and even for the largest input size (1,000,000), it completes in 0.1057 s, reinforcing its scala-
bility for real-time applications. On RTM-30, which includes 19M edges and 101 snapshots,
processing times remain efficient, with 0.08 s required for 1,000,000 edges, demonstrating
near real-time anomaly detection performance. Across datasets, ADAPTIVE-DECAYRANK

scales efficiently, maintaining microsecond-level times for small graphs, millisecond-level times
for moderate-sized graphs, and handling larger graphs in seconds. Future work will explore
how graph structure (e.g., density, connectivity) influences runtime performance.

6. Discussion
In this section, we analyze the key findings from our experiments, comparing

ADAPTIVE-DECAYRANK with state-of-the-art methods and explaining its superior perfor-
mance in detecting anomalies in dynamic graph streams.
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6.1. Comparison with State-of-the-Art Methods
6.1.1. Detection Accuracy

ADAPTIVE-DECAYRANK consistently achieves higher detection accuracy across all
datasets. On the DARPA dataset, it attains an average precision of 0.6455, outperform-
ing ANOMRANK (0.5665), DECAYRANK (0.572), DYNANOM (0.5840), and SEDANSPOT

(0.56). As shown in Table 4, this represents a notable 13.94% improvement over ANOM-
RANK and a 12.86% gain over DECAYRANK. Similarly, on the CTU-13 dataset, ADAPTIVE-
DECAYRANK achieves an even higher precision of 0.6856, improving over ANOMRANK

(0.4118) by 66.49% and DECAYRANK (0.6425) by 6.71%.
For the synthetic RTM-10 dataset, which contains 10% injected anomalies, our model

achieves a precision of 0.6746, significantly outperforming ANOMRANK (0.31) by 117.61%
and DECAYRANK (0.5865) by 15.02%. The results are even more pronounced in the RTM-
30 dataset, where 30% of nodes are anomalous. Here, our approach achieves 0.6976,
surpassing ANOMRANK (0.30) by 132.53% and DECAYRANK (0.5699) by 22.41%.

Beyond precision, the AUC-ROC curve in Figure 5 highlights the model’s ability to
distinguish between normal and anomalous patterns. ADAPTIVE-DECAYRANK attains the
highest AUC score of 0.90 on DARPA, exceeding ANOMRANK (0.86) and DECAYRANK

(0.83), reinforcing its capability to detect subtle structural deviations in dynamic graphs.
ADAPTIVE-DECAYRANK’s superior performance stems from its ability to capture short-

term deviations and micro-pattern changes in edge streams using an adaptive decay factor
and Bayesian updates. Unlike static methods that treat all edges equally over time, our
approach assigns higher weights to recent anomalies while gradually reducing the influence
of older observations. This makes it particularly effective in dynamic environments where
sudden structural changes or coordinated attacks occur.

6.1.2. Types of Anomalies Detected

ADAPTIVE-DECAYRANK effectively captures both structural anomalies and micro
changes in node influence. Structural anomalies arise when nodes exhibit sudden, un-
expected changes in connectivity patterns, as seen in botnet behavior in CTU-13 [42] or
network intrusion patterns in DARPA [41]. These are particularly challenging for methods
relying on static graph snapshots, as they fail to adapt to rapidly evolving structures.

Additionally, the model detects micro-changes in node influence, where nodes sub-
tly shift their interaction patterns over time. Such anomalies occur in stealthy cyber-
intrusions, where attackers gradually increase their influence within a network without
abrupt changes [2]. The adaptive decay factor in our model ensures that these incremental
deviations accumulate and get flagged as anomalies, making it particularly well-suited for
cyber-threat detection.

6.1.3. Computational Efficiency

While ANOMRANK and DECAYRANK execute faster on small datasets (taking 4.03 s
and 5.46 s, respectively, on DARPA), their lower precision limits their effectiveness.
ADAPTIVE-DECAYRANK, in contrast, maintains efficiency, even at large scales. As seen in
Table 4 and Figure 6, our model processes 1 million edges in just 14.23 s, outperforming
both SEDANSPOT and DYNANOM, which require substantially more computation.

The model’s efficiency stems from its incremental Bayesian updating and adaptive
decay factor, which avoids full-graph recomputation by updating rankings dynamically.
Unlike traditional PageRank-based methods that recompute anomaly scores from scratch,
ADAPTIVE-DECAYRANK maintains a dynamic node importance measure that adapts to
graph changes in real time, significantly reducing redundant computations.
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6.1.4. Robustness Against Noise

Figure 4 demonstrates that ADAPTIVE-DECAYRANK maintains high precision across
various anomaly thresholds, effectively suppressing false positives, an essential feature
for cyber-security and fraud detection applications. For Top-500 anomalies (as shown
in Table 5), it retains a precision above 0.520 on DARPA, 0.544 on CTU-13, and 0.528 on
RTM-30, whereas ANOMRANK drops to 0.30 or lower under similar conditions, highlighting
its superior reliability in distinguishing true anomalies from random fluctuations.

Existing research [1,2] has shown that several anomaly detection models struggle with
false positive rate (FPR), meaning the proportion of normal instances that are incorrectly
classified as anomalies, particularly in highly dynamic datasets, where normal variations
may be misclassified as anomalies. ADAPTIVE-DECAYRANK mitigates this issue through
its adaptive decay mechanism, which prioritizes recent, sustained anomalies while filtering
out transient noise.

A practical example of this robustness is observed in the CTU-13 dataset, where
botnet interactions often mimic normal traffic patterns, making static ranking approaches
like ANOMRANK highly prone to false positives. In contrast, ADAPTIVE-DECAYRANK

effectively differentiates meaningful botnet behaviors from normal fluctuations, achieving
a 6.71% higher precision than DECAYRANK and a 66.49% improvement over ANOMRANK

(as shown in Tables 4 and 5).

6.1.5. Scalability

As demonstrated in Figure 6, ADAPTIVE-DECAYRANK scales linearly with increasing
edge updates, making it suitable for real-time applications. On the DARPA dataset, it
efficiently processes small updates in microseconds, moderate graphs in milliseconds,
and 1M edges or large-scale datasets in 14.23 s. Even on RTM-30, which contains 19M
edges, our model maintains a processing speed of 0.08 s per 1M edges, demonstrating its
capability for near real-time anomaly detection. This scalability is essential for applications
in cyber-security, where rapid identification of network threats is critical. It is also beneficial
in financial fraud detection, where monitoring evolving transaction patterns in real time
can help detect coordinated fraudulent activities.

6.2. Addressing Research Questions

As outlined in Section 1.1, our study directly addresses the research questions posed
in this paper. Specifically, ADAPTIVE-DECAYRANK successfully detects the sudden
(dis)appearance of anomalous patterns in dynamic graphs, including node and struc-
tural anomalies (Q1). The proposed method achieves high detection accuracy, precision,
and AUC through its adaptive decay factor and Bayesian updating, effectively prioritizing
recent anomalous behaviors. Additionally, our scalability analysis (Figure 6) demonstrates
that ADAPTIVE-DECAYRANK efficiently processes large-scale dynamic graphs while main-
taining sub-linear time complexity, confirming its suitability for real-time anomaly detection
in streaming graph environments (Q2).

6.3. Limitations and Future Work

While ADAPTIVE-DECAYRANK achieves strong performance, it requires more robust
fine-tuning of the decay factor to optimize results across different datasets. Additionally,
although it effectively detects anomalies in dynamic graphs, it does not leverage deep
feature learning, as seen in graph neural networks (GNNs). Future work will explore
integrating self-supervised learning to improve anomaly detection in complex graph
structures. We also aim to optimize performance further using GPU acceleration, enabling
even faster real-time analysis for large-scale networks. Lastly, we will extend our method
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to more diverse domains, including Autonomous Vehicle (AV) security detection, medical
data analysis, and industrial IoT security.

7. Conclusions and Future Work
In this work, we propose ADAPTIVE-DECAYRANK, an unsupervised, real-time

anomaly detection approach for identifying node-level and structural anomalies in dynamic
graph streams. ADAPTIVE-DECAYRANK is a modified dynamic PageRank algorithm with
a decay factor and Bayesian updates, which enable rapid adaptation to sudden, short-term
deviations and facilitate fast, accurate anomaly detection in graph streams. Our exper-
iments demonstrate that ADAPTIVE-DECAYRANK outperforms baseline approaches by
11.28–15.27% in terms of precision and 4.65–40.63% in terms of AUC. While processing
4.6M edges across 1463 snapshots, our model achieves a processing rate of 1 million edges
in just 14.23 s—making it 4.53 times faster than the baseline approaches (SEDANSPOT and
DYNANOM). For future work, we will explore more real-world applications, such as finan-
cial transactions, medical data, and drug discovery. Additionally, we aim to investigate
how GPUs could be leveraged to optimize linear scaling for larger streaming edge sets.
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