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denis.jurecic@grf.unizg.hr (D.J.); tvrtko.grabaric@grf.unizg.hr (T.G.)

2 Department for Multimedia, University North, Jurja Križanića 31b, 42 000 Varaždin, Croatia;
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Abstract: The Six Sigma methodology for quality improvement enabled a high degree of
process compliance and enhanced process capability. This research develops a new model
for optimizing the offset printing process based on the Six Sigma approach, with the aim
of reducing process variability and achieving stable, predictable production outcomes.
Special focus was placed on defining Critical Product Characteristics (CPCs) and Critical
to Quality (CTQs) points and analysing their impact on process output quality, defined
by the sigma level. Based on the research, variability limits of production parameters
were defined to ensure consistency and high product quality. The integration of Artificial
Intelligence (AI) within the Six Sigma framework allowed for additional automation and
model adaptation to changing production conditions. The use of the Random Forest model
enabled efficient analysis of critical variability points, prediction of potential deviations,
and real-time process adjustment. AI is utilized to improve precision and efficiency in
quality management, which further enhances process stability and optimization in line
with the dynamic demands of modern production. The proposed model represents an
innovative approach that facilitates maintaining stable production results and provides a
sustainable foundation for future process optimizations in the printing industry.

Keywords: offset printing; optimization; quality; Six Sigma; process variability; Artificial
Intelligence; machine learning; Random Forest

1. Introduction
Quality has become a key factor for competitiveness in the industry, and Six Sigma is

one of the most effective methodologies for improving quality and reducing variability in
production processes. Six Sigma is a methodology based on statistical analysis, aiming to
reduce process variability to achieve the highest possible level of quality. The primary goal
of Six Sigma is to reach a defect rate of 3.4 defects per million opportunities, which results
in an almost perfect process [1–3].

The printing industry, although technologically advanced, faces numerous challenges
in maintaining production stability and quality. Introducing the Six Sigma methodology
can bring significant benefits. Although Six Sigma was initially developed for production
processes in other industries, its application in the printing industry is becoming more
prevalent and holds great potential for improving performance and achieving production
process stability.

Variability in the printing process can be caused by various factors such as material
variations, machine settings, and human factors. By implementing the Six Sigma method-
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ology, it is possible to identify and reduce these variations, leading to more consistent
production. The optimization process involves defining Critical to Quality (CTQs) points
and analyzing process capability. Through the analysis of these points, it is possible to
identify the main sources of variability and take steps toward their elimination.

This paper explores the possibilities of applying an AI-driven Six Sigma methodology
in graphic production, with a particular focus on the offset printing process. In contrast
to traditional applications of Six Sigma, which are typically employed as a framework for
optimizing the entire production process, this study introduces the principles of Six Sigma
as a numerical indicator for evaluating the quality and consistency of individual printed
sheets. The Sigma level serves not only as a quantitative measure to assess the stability
and predictability of the offset printing process but also as a basis for the identification and
continuous optimization of key process parameters. By integrating statistical methods with
the Random Forest model, this study provides a data-driven framework for determining
optimal parameter combinations to achieve the highest possible sigma level corresponding
to first-class print quality. This approach provides practitioners with an accurate tool to
monitor and improve print quality in real time, actionable insights on parameter adjust-
ments, and a methodology to stabilize offset printing processes. It also ensures that quality
assessment is both objective and accurate, minimizing reliance on subjective assessment
methods. By combining robust statistical analysis and machine learning, this methodology
provides a scalable solution that can be adapted to a variety of production environments. It
also bridges the gap between theoretical advances and real-world applications in graphic
production by enabling consistent, high-quality results and reducing production variability.

The Six Sigma methodology encompasses the definition of critical product or process
characteristics, measurement of current performance, data analysis to identify the causes
of variability, implementation of improvements, and the establishment of control mech-
anisms to ensure the maintenance of achieved results. The introduction of the Six Sigma
methodology in the graphic industry requires adaptation to the specific characteristics of
that industry, but its basic principles can be applied with the goal of achieving more stable
and efficient production processes.

Thus, an analysis of existing research and theories was conducted to identify key
factors affecting production variability and propose measures for AI-driven optimization
and standardization of the offset printing process.

Numerous studies explore the application of the Six Sigma methodology and its
modalities across various industries. However, in recent years, the application of Six
Sigma has been contextualized with artificial intelligence. The rapid advancement of
technology, particularly AI, has significantly impacted organizations, especially within
Industry 4.0, where traditional methods like Six Sigma face limitations when dealing with
complex, high-volume data [4–8]. Adopting AI-based strategies in manufacturing improves
decision-making, productivity, and system performance [9]. Specifically, the integration
of Artificial Intelligence (AI) and Lean Six Sigma (LSS) practices has the potential to
revolutionize operational excellence through enhanced digital capabilities and innovative
applications [10,11].

Given the generally limited number of published works in the field of graphic technol-
ogy, particularly printing, this paper draws upon the application of AI-driven Six Sigma
methodology in other manufacturing sectors.

In the context of industrial production, the primary goal of engineering is continuous
improvement in process performance by maximizing manufacturing efficiency and product
quality. To achieve these goals, advanced, robust process optimization techniques have
been designed, implemented, and applied to the manufacturing process. Starting from
the Six Sigma approach, an analysis of the production process of ultrasound (US) probes
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for medical imaging was conducted, and the PDCA (Plan-Do-Check-Act) methodology
was implemented, with an emphasis on robust optimization [12]. Perera et al. [13] utilized
artificial intelligence, specifically Natural Language Processing (NLP), to bridge gaps in
understanding the causal mechanisms that contribute to Lean Six Sigma (LSS) success.
The study developed a streamlined model, highlighting how LSS elements drive quality
performance, customer satisfaction, and overall business efficiency, with validation against
the existing Six Sigma frameworks to enhance its explanatory power.

A group of authors employed the Surface Tension Neural Network (STNN) as an
innovative tool within the Lean Six Sigma framework to improve efficiency in the food
industry. By using neural networks, they achieved a deeper understanding of the rela-
tionships between key production variables and enabled real-time process control. This
resulted in increased operational efficiency and reduced waste, directly impacting produc-
tion sustainability [14]. Nader [15], in a case study, illustrates the successful implementation
of LSS tools, such as the design of experiments, which resulted in efficiency improvements
in a brewery, emphasizing the potential of AI-augmented LSS for various industries.

Sharma and Singh [16] describe a modified LSS 4.0 model for a sustainable textile
industry, integrating Lean, Six Sigma, and Industry 4.0 technologies to optimize processes,
reduce defects, and enhance sustainability, quality, and competitiveness within the sector.

An advanced algorithm was developed to accurately measure the geometry and
printability of shape patterns in nanoparticle-based printed electronic devices, aiming
to establish international standards. The algorithm uses image processing techniques
to quantify edge waviness and widening across the entire pattern boundary, leading to
reduced deviation in pattern dimensions [17].

Artificial intelligence (AI) is transforming various engineering fields, including the
corrugated board industry. This study demonstrated how AI, particularly artificial neural
networks (ANNs), can predict the crush resistance of corrugated packaging, encompassing
typical boxes as well as those with ventilation holes or perforations. By optimizing input
parameters such as material properties, box dimensions, and structural features like open-
ings, the study achieved a predictive model with an error below 10%, showing the potential
for efficient compressive strength prediction and improved load-bearing calculations in the
corrugated packaging industry [18,19].

Although it is about printing, three-dimensional (3D) printing is not necessarily related
to graphic production. Integration of Six Sigma (6S) with additive manufacturing (AM)
addresses quality management challenges like process repeatability and customization [20].
Three-dimensional (3D) printing, also known as additive manufacturing (AM), has already
shown its potential by demonstrating remarkable applications in various manufacturing.
A group of authors presented a novel concept of utilizing artificial intelligence (AI) to
support quality control in the additive manufacturing (AM) of medical devices made
from polymeric materials. The publication aims to demonstrate how AI enhances the
efficiency, adaptability, and speed of the inspection process, bringing innovative scientific
and technological solutions with significant economic and social impact [21].

An overview of machine learning-driven 3D printing technology, given by Zhang et al. [22],
highlights its advancements in process optimization, monitoring, and motion planning. They
found that supervised learning is effective for process optimization and surface quality inspec-
tion, while reinforcement learning and deep learning excel in path planning for multi-degree of
freedom printing platforms, such as those involving a 6-DOF robotic arm. These AI advance-
ments pave the way for innovative applications in additive manufacturing.

Recent advancements in integrating artificial intelligence (AI) with 3D printing have
enhanced design precision, material selection, and production efficiency, ultimately foster-
ing an environment-friendly manufacturing process. Authors [23], in their review, highlight
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the potential of AI-driven predictive modelling, quality control, and design optimization in
advancing 3D printing towards sustainable and efficient production solutions.

Building on the advances in three-dimensional (3D) printing, the work of a group
of authors [24] presents an intriguing and forward-looking study that integrates machine
learning (ML) to predict raster angles in fused deposition modelling (FDM), optimizing
additive manufacturing (AM) processes. Using algorithms like Random Forest Regression
(RFR), the research achieves high prediction accuracy, reducing production costs and lead
times without compromising quality. This novel application of ML to FDM raster angle
estimation represents a promising advancement for improving efficiency in AM.

In the field of 3D printing, interesting is the work that systematically explores the
integration of artificial intelligence (AI) in the three-dimensional (3D) printing process
for architectural structures, highlighting its transformative potential. AI is utilized to
optimize design, printing parameters, and quality control, providing real-time feedback
and enhancing efficiency [25].

Furthermore, Lean Six Sigma (LSS) has been enhanced with machine learning and
artificial neural networks (ANNs) to tackle high scrap rates in Small Mixed Batch (SMB)
production. This study applies the improved LSS methodology in a case involving bakery
machine manufacturing, demonstrating process improvements through DMAIC and an
ANN-based model to predict critical-to-quality (CTQs) characteristics, ultimately reducing
variability in input materials, demonstrating the effectiveness of combining AI with LSS
for improved quality and sustainability [26].

Taking into account all the aforementioned studies and analyses, the application of Six
Sigma principles as a mathematical framework in the graphics industry offers significant
opportunities to increase production stability, reduce variability, and achieve a high level
of quality.

Importantly, this study does not employ Lean Six Sigma (LSS) as a structured process
improvement methodology, nor does it incorporate its standardized tools such as DMAIC
cycles, predefined process control frameworks, or hierarchical belt certification structures.
Instead, the Six Sigma level in this research serves solely as a high-resolution quantita-
tive metric for print quality assessment, mathematically derived through a structured
correlation between Critical to Quality factors (CTQs) and Critical Process Characteristics
(CPCs) to quantify process capability and ensure a statistically grounded evaluation of
print stability.

The proposed model introduces a methodologically rigorous and mathematically
formalized approach to print quality assessment, establishing a systematic relationship
between sigma levels and key process parameters. Unlike conventional Six Sigma imple-
mentations that focus on holistic process optimization, this model contextualizes sigma
as a probabilistic measure of conformance within a defined quality spectrum, directly
linking it to the functional requirements of print output rather than to a broader process
control strategy. While Six Sigma methodologies are traditionally applied in high-volume
manufacturing to optimize entire production chains, the approach presented in this study
is fundamentally different. It does not seek to standardize operational procedures or
minimize process inefficiencies across a complex production environment. Instead, it is de-
signed to function as a precise mathematical descriptor of print quality variability, offering
a quantifiable means of evaluating deviations in critical process characteristics relative to
defined quality thresholds.

The novelty of this model lies in its ability to mathematically formalize print quality
evaluation through the integration of sigma levels into a structured analytical framework.
This enables a more precise, objective, and scalable methodology for assessing print stability
and quality consistency across different production scenarios. While this framework
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has been developed within the offset printing domain, its generalizable architecture and
analytical scalability enable its application to a broader range of quality-influencing factors
within the printing process. Furthermore, the intrinsic adaptability of the model allows for
its direct transposition to alternative printing technologies, reinforcing its potential as a
universally applicable and theoretically extensible paradigm for the quantitative assessment
of print quality across diverse technological environments.

2. Modelling Background
In order to establish models for the optimization and control of the production process,

this chapter provides the background of modelling and defining key parameters related to
product quality in the context of offset printing. To provide a clearer perspective on the
research process, Figure 1 outlines the main stages of the study, the methods employed,
and the connections between these stages.
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Figure 1. General Framework of Research.

This framework provides an overview of the study and its methodological approach,
serving as the basis for the modelling and analysis presented in this chapter.

2.1. Defining Critical to Quality and Critical Product Characteristics

Considering the principles of the Six Sigma methodology, it was necessary to define
potential variability limits in the process by determining the functional requirements of
the product and the methods for controlling them. Critical Product Characteristics (CPCs)
were also defined, analysed, and grouped according to cause categories. The functional
requirements of the product are most often defined by its design and can be categorized
as [27,28] product usability, ergonomic adaptability, technical reliability, and aesthetic
sensitivity.

Based on the functional requirements, the current sigma level (kσ) of the process was
calculated. To identify Critical to Quality (CTQs) points through process analysis, Critical
Product Characteristics (CPCs) were defined as dependent variables, which include:

• Dot gain at 40% halftone value for cyan, magenta, yellow and black inks
• Dot gain at 80% halftone value for cyan, magenta, yellow and black inks
• Ink density at 100% halftone value for cyan, magenta, yellow and black inks
• Grey balance
• Print register (alignment)
• Geometric deformations of halftone elements (slurring, doubling, smudging)
• Paper folding register
• Paper cutting register
• Print rub register
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Critical Product Characteristics (CPCs) are the points on the product that are closely
associated to the Critical to Quality (CTQs) points.

• W1: ink temperature (◦C)—crucial for maintaining ink viscosity stability and uniform
ink transfer

• W2: dampening solution temperature (◦C)—ensures stable transfer of the dampening
solution to the rollers and process balance

• W3: dampening solution acidity (pH)—controls chemical stability during printing
• X1: paper temperature (◦C)—ensures the dimensional stability of the paper during the

printing process
• X2: paper humidity (%)—is related to the hygroscopic nature of the paper and its

stability during the printing process
• Z1: ink viscosity (mPa·s)—ensures consistent ink application and print quality
• Z2: dampening solution conductivity (µS/cm)—enabled proper interaction between

the dampening solution and the paper surface
• Z3: dampening solution hardness (dH)—helps to maintain the stability of the solution

during the printing process
• Z4: alcohol content in the dampening solution (% vol.)—crucial for stable solution

transfer and preventing excessive evaporation.

From the analysis of the relevant literature and processes, it was concluded that the
most critical and characteristic points for quality in the offset printing process are the ink
temperature, the dampening solution temperature, and the pH of the dampening solu-
tion [29–55]. These independent variables in the model, identified through preliminary
process analysis and research, directly influence the chemical and physical interactions
within the printing process. Their control is crucial for maintaining consistency, stabil-
ity, and high-quality print outcomes. In particular, ink temperature (W1) affects drying
speed, dot gain, and colour balance; dampening solution temperature (W2) is essential for
maintaining process stability and the balance between ink and water; and the dampening
solution acidity (W3) directly affects the chemical stability of the solution and ensures
proper ink distribution.

The impact of these variables on the Critical to Quality (CTQs) characteristics was
analysed using statistical tools such as correlation analysis and descriptive statistics. The
selection of these parameters was based on their strong association with quality metrics such
as process stability and print accuracy. The specification limits for these parameters, listed in
Table 1, include the lower specification limit (LSL), the upper specification limit (USL), and
the target value (TV). These limits were defined to minimize process variability, considering
industry standards and experimental research results to minimise process variations to
ensure optimal process performance and reduce variability that could negatively impact
print quality.

Table 1. Defined Specification Limits of Variables in the Model (LSL, USL, TV).

Var W1 W2 W3 C40 M40 Y40 K40 C80 M80 Y80 K80 C100 M100 Y100 K100

LSL 21.0 8.0 4.0 9.0 9.0 9.0 12.0 8.2 8.2 8.2 9.0 1.5 1.5 1.35 1.8

USL 24.0 12.0 7.0 17.0 17.0 17.0 20.0 13.2 13.2 13.2 14.0 1.55 1.55 1.40 1.8

TV 22.0 10.2 5.6 13.0 13.0 13.0 16.0 10.7 10.7 10.7 11.5 1.53 1.53 1.38 1.8

This trio of parameters has a direct impact on a wide range of chemical and physical
reactions that are critical to the quality of multicolour and multitonal reproduction. These
reactions can be described and monitored by Critical Product Characteristics (CPCs) such
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as dot gain, ink density, grey balance, and print register, ensuring a high level of quality
control in the offset printing process.

Additionally, the maximum range for each characteristic was defined, determined
by the lower and upper specification limits (LSL or Lower Specification Limit and USL or
Upper Specification Limit), as well as the target value (TV) [56].

Table 1 showed the specified limits (LSL—Lower Specification Limit, USL—Upper
Specification Limit, TV—Target Value) for the key controlled variables in the experimental
model. The target values for W1 (ink temperature) and W2 (dampening solution temper-
ature) are not centered but are defined according to the machine specifications, which
recommend optimal settings to ensure process stability. For W1, the decentered target
value ensures the stability of ink viscosity and consistent transfer to the substrate, while
for W2 it helps to maintain the balance between ink and dampening solution as well as the
stability of the printing process. In contrast, W3 (dampening solution acidity) is cantered
within its limits to ensure chemical stability and consistent print quality. The decentralized
target values reflect the technical requirements of the machine and the process-specific
characteristics, while the limits for other variables are aligned with industry standards and
the analysis of the initial process.

The values listed in Table 1 include the lower (LSL) and upper (USL) specification
limits as well as the target values (TVs) for key process variables. The tolerances are defined
to ensure that the variables remain within the permissible limits and thus meet the process
stability and quality requirements. The target values (TVs) are adjusted according to the
machine specifications and process characteristics so that minor variations without affecting
the quality of the final product.

The following diagram (Figure 2) illustrates the model of the offset printing process,
including key input variables (ink temperature, dampening solution temperature, and
dampening solution acidity), output variables (CTQs, CPCs, and sigma level), controlled
constants (paper temperature and paper humidity), and absolute constants (ink viscosity,
dampening solution conductivity, dampening solution hardness, and alcohol content in
the dampening solution). This model illustrates the relationships between parameters,
whereby the input variables define the process conditions, the output variables assess
quality, and the constants represent controlled conditions.
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The specification limits (Lower Specification Limit, Upper Specification Limit) and tar-
get values (Target Value) are defined based on experimental data, and the output variables
are used to calculate the sigma level.

For additional clarity, the factors in the model are categorized as follows:
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• Controlled variable factors (W1, W2, W3): the main factors or variables in the experi-
mental model with clearly defined values

• Controlled constants (X1, X2): Stable input factors or controlled constants that are
not varied but are important for the model and are included in the calculation of the
number of repetitions

• Non-controlled or absolute constants (Z1, Z2, Z3, Z4): Factors that are kept as absolute
constants during the experiment to eliminate their influence

• Process output Y: CPCs required for calculating the sigma level

2.2. Materials and Eqiupment

The research was conducted under strictly defined and controlled microenvironment
conditions to minimize any potential external impact of temperature and humidity on the
printing process. Therefore, the temperature in the production facility was maintained at
22 ◦C, with a relative air humidity of 45%. Printing was performed on a six-colour KBA
Rapida 105 press, B1 format. All prints were made on identical printing substrates, Brigl &
Bergmeister BioMatt 130 g/m2.

Quality control of the offset printing process was carried out both densitometrically
and spectrophotometrically using control strips on the printed sheets. For this purpose,
measurement strips for grey balance, relative print contrast, tonal errors, and ink efficiency
were used, along with signal strips that indicate geometric deformation of halftone elements
(i.e., for detecting slurring, doubling, and smudging), as well as signal strips for detecting
print register and alignment errors (Figures 3 and 4).
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For measurements, a thermometer and hygrometer for paper (the so-called ‘sword’)
Dostmann P300W (Dostmann electronic GmbH, Wertheim am Main, Germany), a densito-
meter TECHKON SpectroDens D-61462 A603013 Advanced (TECHKON GmbH, König-
stein im Taunus, Germany), and a photometer Hanna Instruments HI96735 (Hanna Instru-
ments, Woonsocket, RI, USA) were used, along with the KBA Rapida 105 LogoTronic and
ErgoTronic professional software (for regulation and control of all machine conditions)
and KBA Rapida 105 DensiTronic (for regulation and control of ink application) (Koenig &
Bauer Gruppe GmbH, Würzburg, Germany).

The key process parameters, i.e., main input variables, in the future model are:

• W1 (ink temperature): the ink temperature is defined as a key process parameter and
is automatically set and controlled by the ErgoTronic system integrated into the press.



Appl. Sci. 2025, 15, 2266 9 of 33

The ink temperature set point is maintained within a precise range of ±0.1 ◦C to
ensure stable ink viscosity and consistent application to the offset plate. Continuous
monitoring and regulation of the temperature prevents possible variations in ink
viscosity, which are essential for consistent printing at all halftone values.

• W2 (dampening solution temperature): the dampening solution temperature is defined
as a key process parameter and is automatically set and controlled by the ErgoTronic
system. The temperature is maintained within the specified range with a regulation
precision of ±0.1 ◦C. Controlling the dampening solution temperature ensures optimal
stability in solution transfer to the offset plate, minimizing the transfer of dampening
solution to the paper and ensuring the dimensional stability of the paper and the
print quality.

• W3 (acidity of the dampening solution): the acidity of the dampening solution is
defined as a key process parameter and is precisely set and controlled by the ErgoTronic
system with a regulation accuracy of ±0.1. Proper pH control ensures the chemical
stability of the dampening solution throughout the printing process and prevents
unwanted reactions between the dampening solution and the ink. The pH value is
defined according to industry standards.

The output variables (CTQs) associated with Critical Product Characteristics (CPCs)
and required for the calculation of the sigma level are controlled and maintained within
the defined values through the integration of the DensiTronic and ErgoTronic systems.
DensiTronic analyses and measures colour parameters, including dot gain at different
halftone values, ink density, and grey balance. The system uses spectral and densitometric
measurements to detect deviations from the specified values, with the results displayed
on the ErgoTronic console. It also detects geometric deformations of halftone elements
(slurring, doubling, and smudging). ErgoTronic uses the data obtained from DensiTronic to
precisely adjust the machine settings and controls the registers (print register, paper folding
and cutting register, and print rub register). The control strips are additionally verified
using a densitometer.

In this study, controlled factors are defined as process parameters with predetermined
values that are kept constant throughout the experiment. These parameters play a key
role in ensuring the stability of the conditions and the reliability of the research results.
They were regulated by precise measuring devices and control systems integrated into the
printing machine. The controlled factors are:

• X1 (paper temperature): defined at 22 ◦C, measured with a Dostmann P300W ther-
mometer (i.e., ‘sword’), to prevent dimensional deformation of the paper and maintain
stability during the printing process.

• X2 (paper humidity): defined at 45%, measured with a Dostmann P300W hygrometer
(i.e., ‘sword’). The humidity content of the paper is related to its hygroscopic nature
and directly affects dimensional stability.

• Z1 (dampening solution conductivity): defined at 1950 µS/cm, a value chosen based on
industry standards and previous research to ensure proper interaction of the solution
with the paper surface. Conductivity is measured using a digital conductometer
integrated into the ErgoTronic system, enabling continuous monitoring and precise
control of conductivity throughout the process. This system automatically adjusts
the dampening solution concentration to maintain the defined conductivity level,
eliminating the possibility of variations and ensuring process stability.

• Z2 (alcohol content in the dampening solution): defined at 8.5%, which is the opti-
mal value according to industry standards for stable printing operation and proper
distribution of the dampening solution on the roller surface. The alcohol content is
measured using an alcohol concentration sensor integrated into the ErgoTronic system,
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enabling continuous monitoring and automatic regulation of the alcohol level. This
system ensures that the alcohol content remains within the defined limits, preventing
excessive evaporation or improper solution mixture, which could affect press stability
and print quality.

• Z3 (ink viscosity): defined at 160 mPa·s for cyan, 180 mPa·s for magenta, 140 mPa·s
for yellow and 150 mPa·s for black, according to the specifications of factory-prepared
inks used in the experiment. Since the viscosity of the ink is not regulated during
the printing process, inks with factory-defined values were used, which comply with
industry standards for offset printing. The stability of the ink viscosity was ensured
by controlling the ink temperature (W1) using the ErgoTronic system, minimizing
viscosity changes caused by temperature fluctuations during the process. Maintaining
proper viscosity was crucial for consistent ink application and uniform print quality
across different halftone values.

• Z4 (dampening solution hardness): defined at 9 dH, in line with industry standards
for offset printing. This value ensures optimal stability of the dampening solution and
prevents the formation of deposits on rollers and other parts of the press. The hardness
of the solution was determined based on the chemical properties of the water used to
prepare it and adjusted with appropriate additives before the printing process began.
The hardness measurement was performed using the Hanna Instruments HI96735
digital photometer to analyze water hardness. After the initial setting, hardness was
not regulated during printing, as this parameter remains stable throughout the process.

The ErgoTronic system ensures precise regulation and maintenance of parameters
throughout the printing process, eliminating the need for additional manual measurements.

3. Preliminary Process Analysis
The research was based on determining the process potential and fulfilling the pro-

cess function through preliminary process capability indices and sigma levels in order to
identify all influential factors of process variation. Before determining the key variables in
experimental planning, it was necessary to gain insight into the actual state of the printing
process. Process analysis was essential to verify whether the process was in a state of
statistical control and whether it followed a normal distribution, indicating stability, which
allows for the prediction of its performance. When the process is under control, there is
a lower likelihood that the observed process parameters will exceed the specified control
limits. It was also necessary to verify if the process was properly centered in relation to the
already defined and monitored Critical Product Characteristics (CPCs).

In addition to controlling the characteristics related to the functional requirements
of the product, it was important to monitor the factors influencing the process. These
included the paper temperature (◦C) and humidity (%), the ink viscosity (mPa·s) and
ink conductivity (µS/cm), the hardness (dH), and the alcohol content in the dampening
solution (% vol.). The paper temperature and humidity are defined as controlled constants,
while the ink viscosity, dampening solution conductivity, hardness, and the alcohol content
in the dampening solution are defined as absolute constants. Therefore, it was not necessary
to define LSL (Lower Specification Limit), USL (Upper Specification Limit), or TV (Target
Value) for them.

This approach is in line with the principles of the Six Sigma methodology, which
emphasizes process stability and control as a prerequisite for reducing variability and
improving quality. Constant values for these parameters minimized the influence of
uncontrolled factors on the process. This allowed the analysis to focus on optimizing key
variables and ensuring process performance within predefined quality standards.
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It is important to note that the frequency and sample size of 100 measurements
were based on the preliminary process capability assessment, which is carried out at the
beginning of the process or after a relatively short monitoring period, where a sample of at
least 100 units is taken.

3.1. Descriptive Analysis of Variables in the Model

In the first step, a descriptive analysis of the obtained data was conducted to assess
their consistency and stability. This analysis provides insight into the statistical character-
istics of the variables, allowing for the identification of deviations from the target values
and an evaluation of compliance with the specification limits (LSL and USL). Descriptive
analysis also enabled the identification of potential issues in the data, such as outliers,
skewness, or high coefficients of variation, which may indicate the presence of variability
within the process [57].

Table 2 presents a descriptive analysis of the key variables in this study, which provides
a detailed insight into the behaviour of the offset printing process. The following statistical
characteristics were quantified:

Table 2. Descriptive Statistical Analysis of Key Variables in the Model.

Var N Min Max Mean Median Mode Var Std. Dev. Co. Var. Skew. Kurt.

W1 100 26.9 27.2 27.024 27.0 1.0 0.0039 0.0622 0.2230 0.3042 0.3345

W2 100 9.2 10.5 10.0 10.1 1.0 0.1147 0.3387 3.3874 −0.6523 −0.4379

W3 100 5.5 6.1 5.751 5.7 1.0 0.0187 0.1367 2.3769 0.4870 −0.1629

C40 100 13.5 14.1 13.816 13.8 1.0 0.0161 0.1269 0.9185 0.6402 0.2448

M40 100 13.4 13.8 13.588 13.6 1.0 0.0071 0.0844 0.6213 0.2325 −0.5494

Y40 100 13.6 14.0 13.752 13.7 1.0 0.0106 0.1030 0.7487 0.3418 −0.4664

K40 100 16.6 17.0 16.807 16.8 1.0 0.0108 0.1037 0.6171 −0.1422 −0.3098

C80 100 11.3 11.7 11.486 11.5 1.0 0.0079 0.0888 0.7730 0.1922 −0.2935

M80 100 11.0 11.4 11.253 11.3 1.0 0.0102 0.1010 0.8972 −0.7445 0.2602

Y80 100 11.4 11.9 11.63 11.6 1.0 0.0122 0.1106 0.9506 0.2929 −0.2066

K80 100 12.1 12.6 12.338 12.3 1.0 0.0095 0.0972 0.7879 0.1116 0.4783

C100 100 1.48 1.56 1.5189 1.52 1.0 0.0003 0.0166 1.0909 0.1514 −0.4351

M100 100 1.49 1.56 1.5252 1.52 1.0 0.0002 0.0154 1.0101 −0.0468 −0.5247

Y100 100 1.34 1.39 1.365 1.36 1.0 0.0002 0.0125 0.9167 0.0789 −0.4870

K100 100 1.78 1.82 1.8004 1.8 1.0 0.0000 0.0042 0.2358 1.0581 14.2819

• Minimum and Maximum: define the extreme values of the data for each variable and
illustrate the range within which the variables are distributed.

• Mean: Represents the arithmetic mean of the values for each variable and provides
information about its central tendency.

• Median: Indicates the middle value of the data and divides the dataset into two equal
halves, regardless of the extreme values.

• Mode: indicates the most frequently recorded value, which is useful for identifying
dominant patterns in the data.

• Variance: quantifies the overall variability of the data and indicates how far the values
deviate from the mean.

• Standard deviation: represents the average deviation of the data from the mean, which
is a key indicator of process stability.
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• Coefficient of variation: expresses the relative variability as a percentage and enabled
the comparison of variables with different measures.

• Skewness: indicates an imbalance in the data distribution. Positive values indicate a
higher frequency of low values, while negative values indicate the opposite trend.

• Kurtosis: describes the shape of the data distribution. A high positive value indicates
a peaked distribution, while a negative value indicates a flat and broad distribution.

These statistics provide a basic insight into the stability, distribution, and variability of
a process and enable model validation and the identification of optimization opportunities.

The analysis showed that all variables are within the specified tolerance limits and the
deviations from the target values are negligible. All measured values in Table 2 remained
within the specification limits, with the exception of variable W1 (ink temperature), whose
mean value was above the upper limit defined in Table 1 (USL: 24.0 ◦C). This deviation
is the result of the specific operating conditions in the pre-analysis phase, in which the
actual operating settings were adapted to industrial practice and not to the experimental
conditions. For the purpose of the experiment, the controlled parameters were adjusted
within the limits defined by the specifications, ensuring complete process stability and
precision of the results.

This indicates process stability and high-quality control in the production process. In
addition, the symmetrical distribution of most variables and the low coefficient of variation
indicate a high level of measurement consistency, which is critical for maintaining the
robustness and predictability of the process in accordance with Six Sigma standards. These
results indicate that key production parameters are well defined and controlled, thereby
minimizing variability and ensuring process quality and stability. Further analysis of the
key variables (W1, W2, W3) provides deeper insights into their behaviour and relationships:

• W1 (ink temperature): showed a low coefficient of variation (Co. Var. = 0.22%) and
a low standard deviation (Std. Dev. = 0.0622), which indicates a high stability of
this variable. This consistency is crucial for maintaining the viscosity and uniform
application of the ink.

• W2 (dampening solution temperature): showed a relatively higher variability
(Co. Var. = 3.39%) and a negative skewness (Skew. = −0.6523), indicating a tendency
towards lower temperature values. This indicates the need for precise control to
maintain process stability.

• W3 (dampening solution acidity): showed a standard deviation of 0.1367 and a positive
skewness (Skew. = 0.4870), indicating a slight tendency towards higher pH values.
Such deviations could have an effect on the chemical stability of the process.

Furthermore, interrelationships among these variables, especially the strong correla-
tion between W2 and W3, confirm their mutual influence on the overall performance of
the process. This underlines the importance of collective regulation of these parameters to
ensure optimal process conditions.

This descriptive analysis confirms the process stability and provides a robust founda-
tion for the optimization steps in this research. Consistent data from the analysis enabled
the development of a reliable, AI-driven Six Sigma model that aims to further reduce
variability, improve production performance, and enhance overall process quality.

3.2. Calculation of the Current Sigma Level of the Process

Before implementing the Six Sigma methodology or a model based on it, it was
necessary to calculate the current sigma level of the process, which should be at least within
the range of average global companies, i.e., (3 ÷ 4) · σ [58]. The calculation of the current
sigma level for processes (kσ), based on Allen [3], is determined by the number of products
or outputs from the process, the number of requirements that define the conformity of the
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process outputs, and the number of errors in the processes. The mathematical expression is
as follows:

δ =
ε1 + ε2 + . . . εn

G × z
(1)

where: δ is errors per unit, ε is the number of errors for a defined requirement, G is the total
number of products (process outputs), and z is the number of requirements.

Since sigma is evaluated per million units, the result (errors per unit) is multiplied by
one million to obtain the number of errors per million products or process outputs (N).

N = δ · 106 (2)

Table 3 showed the current, initial sigma level of the process to verify whether the
process has a sigma level above 3, which represents a critical threshold for assessing process
stability and quality and for determining the need to introduce the Six Sigma model for
further optimization and reduction in variability. These 20 requirements are related to the
Critical Product Characteristics (CPCs), key characteristics defined according to quality
standards. They cover specific aspects of the product that have a direct impact on its
functionality and aesthetic value.

Table 3. Calculation of the Current Sigma Level of the Process.

G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

100 20

0 0 0 0 0 0 0 0 5 4

33 0.01650 16,500 3.625ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20

6 9 2 2 1 2 2 0 0 0
where: ε1 is the number of errors in dot gain at a 40% halftone value for cyan, ε2 is the number of errors in dot
gain at a 40% halftone value for magenta, ε3 is the number of errors in dot gain at a 40% halftone value for yellow,
ε4 is the number of errors in dot gain at a 40% halftone value for black, ε5 is the number of errors in dot gain at an
80% halftone value for cyan, ε6 is the number of errors in dot gain at an 80% halftone value for magenta, ε7 is
the number of errors in dot gain at an 80% halftone value for yellow, ε8 is the number of errors in dot gain at an
80% halftone value for black, ε9 is the number of errors in the 100% coverage value for cyan, ε10 is the number of
errors in the 100% coverage value for magenta, ε11 is the number of errors in the 100% coverage value for yellow,
ε12 is the number of errors in the 100% coverage value for black, ε13 is the number of errors in the print register,
ε14 is the number of errors in halftone element slurring, ε15 is the number of errors in halftone element doubling,
ε16 is the number of errors in halftone element smudging, ε17 is the number of errors in grey balance, ε18 is the
number of errors in the folding register, ε19 is the number of errors in the cutting register, and ε20 is the number of
errors in print rub resistance.

Table 3 showed the current sigma level of the process (kσ = 3.625), calculated based
on the total number of products (G = 100), the number of requirements (z = 20), and the
total number of defects (Σε = 33). The Errors per unit (ε/u = 0.0165) are defined as the ratio
between the total number of defects and the total number of products and requirements.
The parameter ε/u (errors per unit) represents the number of defects per unit and is defined
as the ratio of the total number of defects to the total number of products and requirements,
as expressed in Equation (1). This metric serves as a key measure of process performance,
providing a direct assessment of defect rates within the production process. This value is
used to calculate the number of defects per million products (N = 16,500) and the sigma
level (kσ). It is important to emphasize that δ is not the standard deviation of the population
but a key indicator that enabled the evaluation of process stability and quality within the
Six Sigma methodology. Unlike standard deviation, which measures dispersion within a
dataset, δ is derived directly from defect rates and reflects process performance rather than
statistical variance. The sigma level of kσ = 3.625 includes a standard sigma shift of 1.5,
which is common in the Six Sigma methodology for processes that are not perfectly stable.
The sigma shift of 1.5 takes into account potential long-term fluctuations in the process
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that may occur due to changes in input parameters, environmental conditions, or other
uncontrolled factors.

Here, k represents the process sigma level, which is calculated based on the defect rate
and adjusted for long-term process variations using the standard sigma shift. The primary
sigma level was calculated before including the sigma shift based on the number of defects
per million products (N = 16,500) and is 2.13. The initial sigma value was determined
using standard Six Sigma conversion tables, which correlate defect rates (DPMO) with
corresponding sigma levels. By adding a sigma shift of 1.5, the final sigma level was
adjusted to kσ = 3.625, which better reflects the long-term stability and predictability of the
process. This practice enabled more consistent assessments of process quality and ensured
that results are comparable to industry standards.

Therefore, it is evident that the current sigma level of the process is 3.625, which meets
the initial conditions for the implementation of a model based on the Six Sigma approach.

A calculation of the current sigma level (kσ) was also performed, considering the
number of process outputs, the requirements defining the conformity of process outputs,
and the number of errors in the processes, along with the calculation of preliminary process
capability. This approach to calculating the current sigma level is directly tied to the
product’s functional requirements and is based on the number of products coming out of
the process, the number of requirements defining the conformity of the process outputs, and
the number of errors in the processes. The sigma level value obtained from this calculation,
based on the aforementioned set of dependent variables, was used as a dependent output
variable in the optimization model.

3.3. Calculation of the Preliminary Process Capability

Understanding the structure of the process and quantifying its performance are essen-
tial for improving it and successfully implementing and executing the Six Sigma model.
Therefore, process capability analysis is an extremely important and well-defined tool of
statistical process control, serving the function of continuous quality improvement [59].
Process capability is its ability to produce a product that meets specifications. A process
will be capable when all products are produced within the given tolerances based on
objective evidence regarding process performance [1]. In other words, process capability
refers to a process that can produce a product within specific tolerance intervals for certain
quality characteristics [59]. Process capability is defined as the range that encompasses
all potential values of specified quality characteristics produced by the process under
defined conditions [60,61]. The Six Sigma methodology evaluates process performance by
considering the shift (σ) within the process; however, assessing process capability through
Process Capability Indices (PCIs) offers a more comprehensive understanding of the pro-
cess. PCIs focus on key aspects such as process consistency, uniformity, and losses within
the process [62,63].

Preliminary process capability assessment is performed at the beginning of the process
or after a relatively short period of process monitoring (with a sample size of at least
100 units). In this context, the term ‘performance’ is used instead of ‘capability’ in the index
nomenclature, but the indices are calculated in the same way as process capability indices.
Process capability, measured using the Cp index, relates to the variation in the process
around the mean value. Therefore, the index measures potential capability, assuming that
the process mean is equal to the midpoint of the specification limits and that the process
operates under statistical control [1,60]. If the process is centered within the tolerance limits,
i.e., when the

Appl. Sci. 2025, 15, x FOR PEER REVIEW 15 of 32 
 

ering the shift (𝜎) within the process; however, assessing process capability through Pro-
cess Capability Indices (PCIs) offers a more comprehensive understanding of the process. 
PCIs focus on key aspects such as process consistency, uniformity, and losses within the 
process [62,63]. 

Preliminary process capability assessment is performed at the beginning of the pro-
cess or after a relatively short period of process monitoring (with a sample size of at least 
100 units). In this context, the term ‘performance’ is used instead of ‘capability’ in the in-
dex nomenclature, but the indices are calculated in the same way as process capability 
indices. Process capability, measured using the Cp index, relates to the variation in the 
process around the mean value. Therefore, the index measures potential capability, as-
suming that the process mean is equal to the midpoint of the specification limits and that 
the process operates under statistical control [1,60]. If the process is centered within the 
tolerance limits, i.e., when the 𝑥̿ = (𝐿𝑆𝐿 + 𝑈𝑆𝐿)/2, the index is equal to: 𝐶௣ = ௎ௌ௅ି௅ௌ௅଺ఙ   (3)

As the minimum acceptable value for this index, a value of 1.33 is taken, meaning 
that the width of the range of acceptable values or process tolerance should not exceed 
75% of the USL–LSL span. Since the process is not centered within the tolerance limits but 
is closer to one of the limits, i.e., the mean is often not at the midpoint, the resulting meas-
ure is the Cpk index. 𝐶௣௞ = 𝑀𝑖𝑛 ቂ௎ௌ௅ି௫̿ଷఙ , ௫̿ି௅ௌ௅ଷఙ ቃ  (4)

It is also considered acceptable if its value is at least 1.33. 
For the purposes of this study, the following preliminary process capability indices 

were calculated (Table 4): 

• Pp—potential process capability 
• Pr—capability ratio 
• Ppk—demonstrated performance 
• Ppl—lower potential capability 
• Ppu—upper potential capability 
• K—non-centring correction factor 

The data required to calculate the Pp values, including the sample means, are listed 
in Table 2 and were used for the calculations shown in Table 4. 

Table 4. Preliminary Process Capability Indices. 

Var 
Lower 
Const  
C (±) 

Upper 
Const  
C (±) 

LSL Nom USL Pp Pr Ppk Ppl Ppu K 

W1 −3.0000 3.0000 26.00 27.00 28.00 5.3634 0.1865 5.2346 5.4921 5.2346 0.0240 
W2 −3.0000 3.0000 8.00 10.20 12.00 1.9681 0.5081 1.9681 1.9681 1.9681 0.0000 
W3 −3.0000 3.0000 4.00 5.60 7.00 3.6577 0.2734 3.0457 4.2698 3.0457 0.1673 
C40 −3.0000 3.0000 9.00 13.00 17.00 10.5065 0.0952 8.3632 12.6498 8.3632 0.2040 
M40 −3.0000 3.0000 9.00 13.00 17.00 15.7935 0.0631 13.4718 18.1151 13.4718 0.1470 
Y40 −3.0000 3.0000 9.00 13.00 17.00 12.9492 0.0772 10.5148 15.3837 10.5148 0.1880 
K40 −3.0000 3.0000 12.00 16.00 20.00 12.854 0.0777 10.2613 15.4481 10.2613 0.2018 
C80 −3.0000 3.0000 8.20 10.70 13.20 9.3859 0.1065 6.4350 12.3369 6.4350 0.3144 
M80 −3.0000 3.0000 8.20 10.70 13.20 8.2541 0.1212 6.4283 10.0799 6.4283 0.2212 
Y80 −3.0000 3.0000 8.20 10.70 13.20 7.5378 0.1327 4.7337 10.3418 4.7337 0.3720 
K80 −3.0000 3.0000 9.00 11.50 14.00 0.9350 1.0695 0.5879 1.2821 0.5879 0.3712 
C100 −3.0000 3.0000 1.50 1.53 1.55 0.5029 1.9883 0.3802 0.3802 0.6257 0.2440 

= (LSL + USL)/2, the index is equal to:

Cp =
USL − LSL

6σ
(3)



Appl. Sci. 2025, 15, 2266 15 of 33

As the minimum acceptable value for this index, a value of 1.33 is taken, meaning that
the width of the range of acceptable values or process tolerance should not exceed 75% of
the USL–LSL span. Since the process is not centered within the tolerance limits but is closer
to one of the limits, i.e., the mean is often not at the midpoint, the resulting measure is the
Cpk index.

Cpk = Min

[
USL −
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It is also considered acceptable if its value is at least 1.33.
For the purposes of this study, the following preliminary process capability indices

were calculated (Table 4):

• Pp—potential process capability
• Pr—capability ratio
• Ppk—demonstrated performance
• Ppl—lower potential capability
• Ppu—upper potential capability
• K—non-centring correction factor

Table 4. Preliminary Process Capability Indices.

Var
Lower
Const
C (±)

Upper
Const
C (±)

LSL Nom USL Pp Pr Ppk Ppl Ppu K

W1 −3.0000 3.0000 26.00 27.00 28.00 5.3634 0.1865 5.2346 5.4921 5.2346 0.0240

W2 −3.0000 3.0000 8.00 10.20 12.00 1.9681 0.5081 1.9681 1.9681 1.9681 0.0000

W3 −3.0000 3.0000 4.00 5.60 7.00 3.6577 0.2734 3.0457 4.2698 3.0457 0.1673

C40 −3.0000 3.0000 9.00 13.00 17.00 10.5065 0.0952 8.3632 12.6498 8.3632 0.2040

M40 −3.0000 3.0000 9.00 13.00 17.00 15.7935 0.0631 13.4718 18.1151 13.4718 0.1470

Y40 −3.0000 3.0000 9.00 13.00 17.00 12.9492 0.0772 10.5148 15.3837 10.5148 0.1880

K40 −3.0000 3.0000 12.00 16.00 20.00 12.854 0.0777 10.2613 15.4481 10.2613 0.2018

C80 −3.0000 3.0000 8.20 10.70 13.20 9.3859 0.1065 6.4350 12.3369 6.4350 0.3144

M80 −3.0000 3.0000 8.20 10.70 13.20 8.2541 0.1212 6.4283 10.0799 6.4283 0.2212

Y80 −3.0000 3.0000 8.20 10.70 13.20 7.5378 0.1327 4.7337 10.3418 4.7337 0.3720

K80 −3.0000 3.0000 9.00 11.50 14.00 0.9350 1.0695 0.5879 1.2821 0.5879 0.3712

C100 −3.0000 3.0000 1.50 1.53 1.55 0.5029 1.9883 0.3802 0.3802 0.6257 0.2440

M100 −3.0000 3.0000 1.50 1.53 1.55 0.5409 1.8487 0.5366 0.5453 0.5366 0.0080

Y100 −3.0000 3.0000 1.35 1.38 1.40 0.6660 1.5015 0.3996 0.3996 0.9324 0.4000

The data required to calculate the Pp values, including the sample means, are listed in
Table 2 and were used for the calculations shown in Table 4.

The value of the Pp index should be greater than 1.33, but it is evident that the variables
K80, C100, M100, and Y100 have a lower value than this threshold. Since the Pr index is
the reciprocal of the Pp index, deviations in the same variables are expected, meaning the
index value is greater than 1. The Ppl and Ppk indices, representing the lower and upper
process capabilities, are also below the defined values for these variables. The Pp and Pr
indices alone do not indicate how the process is positioned relative to the specification
limits, which can be determined by comparing these two indices. Identical values suggest
complete process centering (the index values are equal to the Cp index), while a value less
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than 1 indicates non-conformance. Moreover, the process shifts towards the specification
limit with the smaller index value. The Pp index can be corrected for non-centring by
calculating the non-centring correction factor K. This gives the demonstrated performance
index Ppk. For perfectly centered processes, K equals zero, and the Ppk index is equal to
the Pp index. As the process moves away from the target value (midpoint of the tolerance
range), K increases, and the value of the Ppk index becomes smaller than the Pp index.

As shown in Table 4, all Ppk index values are smaller than the Pp index values, and
the correction factor K equals zero only for the process variable W2, where the values of
the Pp, Ppl, and Ppk indices are equal, indicating that the process is fully centered (green
markings of index values). Orange markings in the table indicate the borderline index
values, while red markings indicate deviations. Deviations are evident in the 80% halftone
value of black and in the 100% ink coverage. These deviations are due to the fact that
for this substrate type, a slightly thinner ink layer can achieve the same visual effect
and satisfactory aesthetic quality from the consumer’s perspective. At the same time, it
simplifies and reduces the cost of the production process by shortening drying time and
reducing the amount of silicate needed in the infrared drying process. From the process
analysis, it can be concluded that the process meets the initial conditions for implementing
a model based on the Six Sigma approach.

4. Multi-Criteria Process Analysis
4.1. Defining Factors and Factor Combinations in Multi-Criteria Analysis

Given that the experimental concept on which the model for optimizing the offset
printing process was based relies on the ability to control influential factors in the studied
process, the design of the research model itself was based on a stochastic approach, more
specifically with technologically acceptable parameters. Therefore, all limiting factors in
the problem were considered, as well as the optimality criteria defined by the objective
function. This objective function is essentially a formalized (analytical) form of assessing
the desired outcome in the process.

The next step, in accordance with the defined critical product characteristics, Critical
to Quality (CTQs) points, and process analysis, was to determine the maximum range
for each characteristic, i.e., the factors of multi-criteria analysis and the variation in the
process for each of the mentioned characteristics. Given that the process analysis revealed
the most common deviations of ±0.2 from the target value, the ranges in which the three
controlled factors (independent variables) will extend, as well as their combinations, are
shown in Table 5. The deviation of ±0.2 from the target values refers to the most frequently
observed differences between the actual and target values of the controlled factors under
stable conditions of the initial process. This deviation is not defined as a tolerance but as
the empirically observed range of variation within which the factors W1 (ink temperature),
W2 (dampening solution temperature), and W3 (dampening solution acidity) have varied
under normal conditions.

Table 5. Combinations of Optimization Factor Triads.

Variable
W1 Ink

Temperature
Range (◦C)

W2 Dampening
Solution Temperature

Range (◦C)

W3 Dampening
Solution Acidity

Range (pH)

Combination
26.8 = W1.1
27.0 = W1.2
27.2 = W1.3

10.0 = W2.1
10.2 = W2.2
10.4 = W2.3

5.4 = W3.1
5.6 = W3.2
5.8 = W3.3
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This range of ±0.2 was defined as the basis for determining the modalities of the
controlled factors in the experimental model in order to study their interactions on the
output variable and determine the optimal settings for each one. The modalities of W1 (ink
temperature) were defined as W1.1, W1.2, and W1.3, while the modalities of W2 (dampening
solution temperature) and W3 (dampening solution acidity) were defined in the same way
(W2.1, W2.2, W2.3, and W3.1, W3.2, W3.3).

An experimental model is based on these modalities, including all possible combi-
nations (33 = 27 combinations), to evaluate their impact on the sigma level of the process.
The main objective of this approach is to identify the optimal combination of modalities
that leads to the highest sigma level, thus minimizing process variability and ensuring
consistent production quality. This approach enabled a systematic study of how the vari-
ability of controlled factors affects process stability, providing a basis for improving and
optimizing production.

Furthermore, the selection of these three controlled factors is based on a detailed
analysis of recent literature in the field of the offset printing process. The studies show that
W1, W2, and W3 are key parameters that have a direct impact on print quality and process
stability, making them the most important input variables for the analysis. For example,
maintaining a stable ink temperature (W1) regulates viscosity, while W2 and W3 ensure the
balance between ink and dampening solution, thus minimizing errors in the transfer of
information from the offset cylinder to the paper.

The values listed in Table 5 are based on target values (TV) defined according to the
machine specifications and industry standards, while the mean and median values in
Table 2 reflect the actual process behaviour in the initial state.

According to the established combinations of optimization triads, 27 series (33) of
partial measurements, i.e., partial processes, were carried out with a defined number of
experimental repetitions under strictly defined plant conditions and printing press settings.

4.2. Defining the Number of Experimental Repetitions

Since the degree of the multi-factorial plan is directly related to the degree of the
mathematical model and given that this is a second-degree mathematical model, a second-
degree multi-factorial experimental design will be applied. After defining the process
input values, i.e., independent influencing factors (independence assumed in the first
approximation), it was necessary to determine the levels of factor variation. Orthogonal
plans with two-level factor variation are most commonly used, i.e., xi,min and xi,max. Plans
in which factors are varied at two levels are called 2k, which represents the number of
factors, or independent variables [56].

The total number of experimental repetitions for each combination of measurement
conditions was calculated using the following formula:

N = 2k + 2k + n (5)

where: N is the total number of experimental repetitions, k is the number of factors, and n
is the number of repetitions at the center of the experiment to ensure statistical stability
by minimizing the influence of variability in the experimental conditions. Central point
repetitions play a crucial role in estimating inherent process variation and improving the
reliability of the derived mathematical model.

In this study, the value of n = 10 was determined based on the factorial experimental
design and the structural requirements of the second-degree mathematical model. The
selection of ten central repetitions was made to ensure a sufficient number of data points
for evaluating process stability while maintaining experimental feasibility. The applied
design incorporated 33 combinations of three controlled factors, while two additional fixed
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factors were introduced to maintain stable experimental conditions. The number of central
repetitions was optimized to improve model accuracy and mitigate variability due to
uncontrolled influences, in accordance with established experimental design principles.

The formula for calculating the number of repetitions is based on five factors, where
X1 (paper temperature) and X2 (paper humidity) are treated as controlled constant factors.
Although they were not varied in the experiment, their inclusion in the formula ensures
consistency of experimental conditions and reduces potential variability.

The three controlled factors (W1, W2, W3) were defined with three levels, resulting in
a total of 27 combinations (33) in the experimental model. In addition, the constant factors
(X1, X2) were set to stable initial values to ensure the consistency of the input conditions
during all measurements.

This approach enabled the analysis of interactions between variable factors at the
sigma level, while the constant factors contributed to the stability of the experimental
process. In addition, the uncontrolled factors (Z1, Z2, Z3, Z4) were kept constant during the
experiments to eliminate their influence on the results.

Using k = 5 and n = 10, the total number of repetitions was calculated as:

N = 25 + 2 · 5 + 10 = 52 (6)

Therefore, with 3 factors, 33 or 27 combinations were obtained for the controlled mea-
surement conditions, and 52 repeated measurements were carried out for each condition.

4.3. Defining the Sampling Plan

A simple random sample of size n elements is obtained from a population that has N
elements if the selection is made such that each sample of size n that can be chosen from
that population has the same probability of being selected. However, for the purposes of
this study, the systematic sampling method was used. In this method, the sample fraction
f was calculated as the ratio of the number of units in the sample to the total population
size [64]:

f =
n
N

(7)

where: f is the sample fraction, n is the number of units in the sample (52), and N is
the total population size, corresponding to the total production volume of 15,000 printed
sheets. This distinction clarifies the statistical approach used and ensures consistency in the
interpretation of the parameters.

From which it follows:
f =

15, 000
52

= 0.00347 (8)

The reciprocal value of the sample fraction, known as the sampling step, is calcu-
lated as:

N
n

=
15, 000

52
= 288 (9)

This means that one of 288 units of the population was selected. To extract the sample,
the starting point was determined by choosing a number within the range [1, 288], in this
case the number 100. This number was chosen to facilitate tracking on the machine counter.
From this point, every 288th unit was selected until all 52 units were included in the sample.

5. Modelling
The values of the output factor Y (current sigma level of the process) were calculated

in the same manner as the initial sigma level when assessing the process’s suitability for
further analysis and the introduction of the Six Sigma-based model (Table A1). As expected,
all current sigma levels fall within the range of (3.6 ÷ 3.8) · σ, which is within the (3 ÷ 4) ·
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σ range. This satisfies the initial condition for designing the optimization model based on
the Six Sigma approach.

The first step in modelling was selecting the mathematical apparatus that would
provide the model, in the first approximation, with a sufficiently accurate representation of
the actual, unknown, analytical form of the response function. Defining the mathematical
model not only involves determining its degree but also making a predictive selection of the
independent influencing parameters that enter the model. All other potential parameters
must remain constant [65,66].

5.1. Approximation of the Model Function

A mathematical model, if adequate, represents a suitable approximation of the actual,
unknown, analytical form of the response function.

For the purposes of this study, a multivariable quadratic function is assumed, of
the form:

F(x1, x2) = a · x2
1 + b · x2

2 + c · x1x2 + d · x1 + e · x2 + f (10)

If, in a process where the actual state function is unknown, inputs (xi, i = 1, 2, 3, . . ., k),
are defined, then the mathematical process model can be written in the form:

η = ∅ (x1, x2x3, . . . , xk) (11)

The function η is a hypothetical quantity, and in the mathematical model obtained
after experimental testing, the experimental error ε is also present, so the following expres-
sion holds:

η = ∅ (x1, x2x3, . . . , xk) + ε (12)

Since there is non-linearity in the model and a linear function is not an adequate
approximation, a higher-order polynomial, typically second-order, is required:

y = β0 + ∑k
i=1 ·βixib + ∑k

i=1 ·βijx2
i + ∑i<1 +∑j=2 ·βijxixj + ε (13)

Given that data on the value of the function f in points x1, x2, . . ., xm, i.e., f (x1), f (x2),
. . ., f (xm), has been obtained, the goal is to approximate the function f with a polynomial:

h(x) = anxn + an−1xn − 1 + ... +a1x + a0 (14)

where n is the degree of the polynomial, and n < m ensures that the polynomial is properly
fitted to the available data points without overfitting, allowing for a balance between model
flexibility and accuracy in function representation.

For each polynomial, corresponding errors or deviations of the approximation
are defined:

εi = f (x1)− h(xi), i = 1, 2, . . . , m (15)

The best approximation is the one for which the sum of squared deviations is minimal,
i.e., for which:

min f (a0, a1, . . . , an) = ∑m
i=1[ f (xi)− h( x)]2 (16)

or:
min f (a0, a1, . . . , an) = ∑m

i=1[ f (xi)− (an xn
i + an−1xn−1

i + ... + a1x1 + a0] (17)

Given the relationship between three parameters (W1, W2, W3) and the output value Y,
the goal was to obtain an equation that best describes this relationship. Once the equation
is obtained, it can easily be optimized to find the specific input values that produce the
best output, i.e., 6σ. To simplify the process of finding an appropriate equation that best
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describes the system’s response to input parameters, the least squares method was used.
This method was the most appropriate and straightforward in this case, as it attempts to
minimize the deviation from the model and the known output data y, ensuring that the
deviation is no greater than 1% from the measured results, as was later proven.

Thus, the goal is to minimize the function:

R2 ≡ ∑[yi – f (xi, a1, a2, . . . , an)]2 (18)

By finding the minimum, the process description that is closest to the measured
outputs yi based on the inputs xi is obtained.

It was determined that parameters a i b exist such that, for each value of the indepen-
dent variable X, the dependent variable Y can be written as:

Y = xT Ax + Bx + c + ε (19)

where: A is an upper triangular matrix, B is a vector, c is a scalar, x is the input vector, and
is a normal random variable with an expectation E() = 0 and standard deviation V() = 2,
and 2 is constant for all x.

Of all possible lines y = ax + b, the most probable regression line is the one for which
the sum of squared deviations is minimal.

f (a1, a2, . . . , b1, b2, . . . , c) = ∑N
i=1

[
→
y i −

→
xi

T
A
→
xi + BT→

xi + c
]

(20)

The sum of squared deviations is minimized when the following hold simultaneously:

∂ f
∂a1

,
∂ f
∂a2

, . . . ,
∂ f
∂b1

, . . . ,
∂ f
∂c

(21)

The polynomial that approximates the function is:

y = c1W2
1 + c2W2

2 + c3W2
3 + c4W1W2 + c5W1W3 + c6W2W3 + c7W1 + c8W2 + c9W3 + c10

(22)
For the future model, the equation is a function of three variables:

Y = f (w1, w2, w3 ) (23)

For simplicity of notation and simulation, the given function is written in vector form,
with input parameters in vector form. This allows the result vector to be obtained for any
input matrix for each individual case from the table.

Furthermore, in matrix form, the given non-linear function is:

Y = WT · A · W + B · W + C (24)

where: Y is the vector of output values, W is the vector of input values, A is the matrix of
constants from c1 to c6, B is the vector of constants from c7 to c9, and C is the constant c10.

The full form of the non-linear function is:

Y =

w1

w2

w3


T

·

c1 c4 c5

0 c2 c6

0 0 c3

 ·

w1

w2

w3

+
[
c7 c8 c9

]
·

w1

w2

w3

+ c10 (25)
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For each combination of W1, W2, and W3 from Table 5, a different vector Y. This
equation is subtracted from the measured values, then squared, and the result is assigned
to a variable, continuing the process until all 27 cases are covered.

5.2. AI Model Selection

As traditional tools like Six Sigma and statistical process control reach their limitations,
AI-based methods are becoming essential for enabling sustainable and efficient manufactur-
ing practices [67,68]. Artificial Intelligence methods, such as machine learning algorithms
(e.g., Random Forest, support vector machines), artificial neural networks (ANNs), deep
learning models, and natural language processing (NLP), can be effectively utilized in Six
Sigma (6σ) projects for optimization, predictive analysis, and process automation [69]. The
Random Forest model is suitable for predictive control in non-linear production processes
due to its ability to accurately incorporate control process knowledge, providing more
reliable future state predictions and enhancing overall control performance [70].

The Random Forest formed by decision trees is a mainstream bagging algorithm that
performs better than single algorithms. The Random Forest model’s function depends
on using classification and regression trees (CARTs) for establishing base estimators [71].
Random Forest is one of the most popular machine learning algorithms used for solving
regression and classification problems. It is based on the idea of aggregating multiple
decisions through an ensemble of decision trees, where each tree contributes to the final
prediction. This approach not only improves the model’s accuracy but also reduces vari-
ability and overfitting, which often occur with simpler models like individual decision
trees [72,73].

The Random Forest model was chosen for its interpretability, ability to handle large
datasets, robustness, feature importance assessment, and reduction in overfitting due to
its use of the ‘bagging’ (bootstrap aggregating) technique. It is well-suited for this non-
linear model because it can efficiently identify and model complex non-linear relationships
between the input variables (W1, W2, W3) and the output variable Y, while also mitigating
overfitting, which further enhances the model’s accuracy in predicting outcomes. Random
Forest relies on the structure of decision trees, which use various mathematical techniques
to make decisions. Each tree is trained on different subsets of data, and the final prediction
is obtained by averaging the predictions of all trees (in the case of regression) or by majority
voting (in the case of classification). This approach improves prediction accuracy and
reduces the risk of overfitting.

Random Forest is an ensemble method composed of multiple decision trees. Each
tree makes its own estimate (prediction), and the final prediction of the Random Forest
model is the average of all individual tree estimates (for regression) or the majority of votes
(for classification). For each model trained, a random sample of data are taken from the
original dataset through a process called ‘bootstrap sampling’. At each node of the tree,
instead of considering all features for the split, Random Forest randomly selects only a
subset of features. This technique helps reduce correlation among the trees and makes
the model more robust. Once the Random Forest model is trained, predictions for new
data are made by aggregating the averages of the individual trees. Given that Random
Forest uses a set of multiple trees (N) to calculate the final prediction as the average of all
individual predictions (fi(x)) obtained from each tree in the forest, it can be mathematically
expressed as:

ŷ =
1
N ∑N

i=1 fi(x) (26)

where: ŷ is the final prediction of the model, N is the number of trees in the forest, and fi(x)
is the prediction of the i-th tree for input x.
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The flowchart (Figure 5) illustrates the process of the Random Forest algorithm for
regression, including bootstrap sampling to create multiple training subsets, building
decision trees for each subset, and aggregating their predictions to derive a final output.
This method aims to enhance prediction accuracy and reduce the variance of the model.
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5.3. Model and Interpretation of Results

For the creation of the optimization model, the Python programming language was
used due to its flexibility and extensive support for machine learning and data analy-
sis, along with the application of appropriate libraries and algorithms to enable precise
modelling and process optimization (Figure A1).

The following libraries were used:

• Pandas (import pandas as pd) for loading data from a CSV file (pd.read_csv) and
managing data using the DataFrame structure. A DataFrame represents a tabular data
format that allows for easy access and analysis (Figure 6).
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• Scikit-Learn (sklearn) for building, training and evaluating model, specifically
train_test_split was used to split the dataset into a training set and a testing set
(80% of the data is used for training the model and the remaining 20% is used for
testing), which allows for an objective assessment of the model’s performance on
previously unseen data (Figure 7).
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Additionally, RandomForestRegressor was used to create and train a Random Forest
model with 100 estimators using the training dataset (Figure 8). This approach helps to capture
complex patterns in the data and provides reliable predictions for the outcome variable.
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Finally, Mean_squared_error (MSE) was also used to evaluate the model’s quality.
MSE measures the average squared difference between the actual values and the predicted
values. A lower MSE indicates more accurate predictions by the model (Figure 9).
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After running the Python code for training the Random Forest regression model, the
obtained Mean Squared Error (MSE) was 0.000063. The Mean Squared Error (MSE) is a
metric that estimates the average squared error between the actual values and the values
predicted by the model. Specifically, the obtained value of 0.000063 indicates that the
predicted values are very close to the actual values, with a minimal difference, which
suggests a high accuracy of the model. This is an extremely low MSE value, implying
that the model has learned the pattern in the data well and can accurately predict the
output values, meaning the errors between actual and predicted values are insignificant.
The predicted sigma level of 3.6947 indicates the expected process quality for the new
combination of input parameters. Specifically, a sigma level of 3.6947 suggests that the
process is of very good quality but still has room for improvement to reach a higher sigma
level (for example, a 6σ level, which represents near-flawless production with a very
low defect rate). Based on this predicted value, it can be concluded that, with the new
combination of input parameters, the production process is expected to maintain stable
quality, but it does not yet reach the highest Six Sigma standard. The Random Forest model
uses the available data and, based on learned patterns, predicts the output sigma level (Y)
for a new combination of input values (W1, W2, W3). The results indicate relatively good
stability, but with its limitations compared to higher sigma levels.

Additionally, a data visualization was created using available Python libraries to
further analyse the model’s accuracy and to display the correlation between the actual and
predicted values (Figure A2). The following libraries were used for this purpose:

The following libraries were used:

• Pandas (import pandas as pd) for loading the CSV file and manipulating tabular data
(Figure 10).
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• NumPy (import numpy as np) for working with numerical data and performing
mathematical operations (Figure 11).
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• matplotlib (import matplotlib.pyplot as plt) for visualizing the data and displaying the
prediction results relative to the actual values. matplotlib allows for plotting graphs
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and visually representing the results, which helps in understanding the model’s
performance (Figure 12).

Appl. Sci. 2025, 15, x FOR PEER REVIEW 24 of 32 
 

 

Figure 11. NumPy for numerical data operations and supporting mathematical calculations. 

• matplotlib (import matplotlib.pyplot as plt) for visualizing the data and displaying 
the prediction results relative to the actual values. matplotlib allows for plotting 
graphs and visually representing the results, which helps in understanding the 
model’s performance (Figure 12). 

 

Figure 12. Using matplotlib to visualize predictions vs. actual values for model accuracy. 

• scikit-learn–RandomForestRegressor (from sklearn.ensemble import Random-
ForestRegressor) for training the model based on the given input data (Figure 13). 

 

Figure 13. Random Forest Regressor to predict output values. 

• scikit-learn–mean_squared_error (from sklearn.metrics import mean_squared_er-
ror) for evaluating the model’s performance by measuring the Mean Squared Error 
(MSE) (Figure 14). 

 

Figure 14. Calculating MSE to evaluate model performance. 

The effectiveness of the developed model is illustrated by the correlation between the 
predicted and actual values of the output variable. 

Figure 15 illustrates the comparison between actual values and predicted values us-
ing the Random Forest model, trained to predict the output variable Y based on the input 
variables W1, W2, and W3. On the x-axis, the actual values of the output variable are repre-
sented, while the y-axis shows the predicted values. The blue data points correspond to 
individual predictions made by the model, and the red dashed line represents the ideal 
scenario where the predicted values match the actual values exactly. Each data point re-
flects one observation, with its horizontal position representing the actual measured value 
of Y and its vertical position representing the predicted value of Y from the model. If the 
model were perfectly accurate, all data points would lie on the red dashed line, indicating 
a perfect correlation between the actual and predicted values. The proximity of most blue 
points to the red dashed line indicates that the model achieves high predictive accuracy 
with minimal deviation. This suggests that the Random Forest model performs well in 
predicting the output variable Y. Although there are some points that do not fall exactly 
on the ideal line, these deviations are relatively small, indicating low prediction errors. 

In summary, the graph demonstrated that the Random Forest model provides relia-
ble predictions of the output variable Y, with a relatively low Mean Squared Error (MSE). 
The model successfully approximates the relationship between the input variables and 

Figure 12. Using matplotlib to visualize predictions vs. actual values for model accuracy.

• scikit-learn–RandomForestRegressor (from sklearn.ensemble import RandomFore-
stRegressor) for training the model based on the given input data (Figure 13).
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• scikit-learn–mean_squared_error (from sklearn.metrics import mean_squared_error)
for evaluating the model’s performance by measuring the Mean Squared Error (MSE)
(Figure 14).
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The effectiveness of the developed model is illustrated by the correlation between the
predicted and actual values of the output variable.

Figure 15 illustrates the comparison between actual values and predicted values using
the Random Forest model, trained to predict the output variable Y based on the input
variables W1, W2, and W3. On the x-axis, the actual values of the output variable are
represented, while the y-axis shows the predicted values. The blue data points correspond
to individual predictions made by the model, and the red dashed line represents the ideal
scenario where the predicted values match the actual values exactly. Each data point reflects
one observation, with its horizontal position representing the actual measured value of
Y and its vertical position representing the predicted value of Y from the model. If the
model were perfectly accurate, all data points would lie on the red dashed line, indicating
a perfect correlation between the actual and predicted values. The proximity of most blue
points to the red dashed line indicates that the model achieves high predictive accuracy
with minimal deviation. This suggests that the Random Forest model performs well in
predicting the output variable Y. Although there are some points that do not fall exactly on
the ideal line, these deviations are relatively small, indicating low prediction errors.

In summary, the graph demonstrated that the Random Forest model provides reliable
predictions of the output variable Y, with a relatively low Mean Squared Error (MSE).
The model successfully approximates the relationship between the input variables and
the output variable, making it suitable for practical applications where accurate predic-
tions of sigma levels are required. This is critical for optimizing and controlling processes.
Additionally, the model can be further refined by incorporating additional input param-
eters, potentially enhancing its ability to predict sigma levels under specific production
process conditions.
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6. Conclusions
The conclusion of this study synthesizes the use of the Six Sigma methodology, artificial

intelligence (AI), and the analysis of Critical Product Characteristics (CPCs) and Critical to
Quality (CTQs) points in optimizing the offset printing process. Process analysis enabled
the identification of key points of variability, the definition of the product’s functional
requirements, and the precise establishment of lower and upper tolerance limits for each
characteristic. The application of the Random Forest model within the AI framework
allowed for effective process optimization, accounting for multiple input variables such as
ink temperature, viscosity, and alcohol content in the dampening solution, to achieve the
highest possible stability and quality of the finished products.

The results demonstrate that the synergy of AI techniques and the Six Sigma approach
can significantly reduce variability in the printing process while decreasing the number
of non-conforming products. The developed optimization model showed a high ability
to predict the sigma level and maintain the process within specified tolerance limits, as
confirmed by the low Mean Squared Error (MSE) values. Furthermore, the model can serve
as a basis for further research that could extend the application of this methodology to
other sectors of the graphic industry or adapt parameters for additional production lines.

This research emphasizes the importance of advanced analytical methods for process
improvement in the printing industry, with a particular focus on maintaining product qual-
ity and consistency under conditions with varying input parameters. Future research could
focus on integrating deeper layers of machine intelligence into the control of production
processes to achieve even greater levels of optimization and efficiency.

Author Contributions: Conceptualization, D.B.; methodology, D.B., P.M., D.J. and T.G.; software, D.B.
and T.G.; validation, D.B., P.M., D.J. and T.G.; formal analysis, D.B., P.M., D.J. and T.G.; investigation,
D.B. and P.M.; resources, D.B., P.M. and D.J.; writing—original draft preparation, D.B. and P.M.;
writing—review and editing, P.M. and D.J.; visualization, T.G.; supervision, D.B.; project adminis-
tration, D.B.; funding acquisition, P.M. and D.J. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.



Appl. Sci. 2025, 15, 2266 26 of 33

Acknowledgments: The authors would like to thank the company Radin Print d.o.o. for their
technical support.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table A1. Calculation of the Sigma Level of the 27 Partial Process.

1 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

52 20

0 0 0 0 0 0 0 0 2 2

17 0.016346 16,346 3.680ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20

3 5 2 1 1 1 0 0 0 0

2 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

52 20

0 0 0 0 0 0 0 0 1 2

ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 17 0.016346 16,346 3.680

3 5 2 1 1 1 1 0 0 0

3 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 4 2

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 17 0.016346 16,346 3.680

2 4 2 1 1 0 0 1 0 0

4 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 3 3

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 16 0.015384 15,384 3.685

1 5 1 1 1 0 0 0 1 0

5 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 2 1

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 16 0.015384 15384 3.685

2 4 2 1 1 1 1 0 0 0

6 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 1 2

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 14 0.013461 13,461 3.695

3 4 1 1 0 0 1 0 1 0

7 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 1 3

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 15 0.014423 14,423 3.690

2 3 2 1 1 1 0 0 1 0
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Table A1. Cont.

8 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 2 2

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 14 0.013461 13,461 3.695

2 3 1 1 1 1 1 0 0 0

9 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 1 2

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 13 0.012500 12,500 3.700

1 3 1 1 1 1 1 0 1 0

10 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 2 1

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 12 0.011538 11,538 3.705

1 4 1 0 1 0 1 1 0 0

11 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 1 1

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 14 0.013461 13,461 3.695

2 3 1 2 1 0 1 0 0 1

12 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 1 1

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 13 0.012500 12,500 3.700

1 4 1 1 1 1 1 0 1 0

13 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 1 1

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 12 0.011538 11,538 3.705

1 4 1 1 1 0 1 1 0 0

14 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 1 1

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 11 0.010576 10,576 3.710

1 3 1 1 1 1 0 0 1 0

15 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 2 1

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 14 0.013461 13,461 3.695

1 4 2 1 0 1 1 0 1 0
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Table A1. Cont.

16 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 1 2

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 13 0.012500 12,500 3.700

1 3 1 0 1 1 1 1 1 0

17 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 1 1

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 14 0.013461 13461 3.695

1 5 2 1 1 0 1 0 1 0

18 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 2 2

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 14 0.013461 13,461 3.695

1 4 1 1 1 1 1 0 0 0

19 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 2 2

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 15 0.014423 14,423 3.690

2 5 1 1 0 1 0 1 0 0

20 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 2 1

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 14 0.013461 13,461 3.695

1 4 1 1 1 1 1 0 1 0

21 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 1 2

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 14 0.013461 13,461 3.690

1 3 2 1 1 1 1 1 0 0

22 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 2 1

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 16 0.015384 15,384 3.685

2 4 1 1 1 1 1 1 1 0

23 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 2 2

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 16 0.015384 15,384 3.685

2 5 1 1 0 1 1 1 0 0
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Table A1. Cont.

24 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 2 3

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 17 0.016346 16,346 3.680

2 3 2 1 1 1 1 1 0 0

25 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 1 2

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 17 0.016346 16,346 3.680

2 5 1 1 1 1 1 1 1 0

26 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 2 1

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 16 0.015384 15,384 3.685

1 4 2 1 1 1 1 1 1 0

27 G z ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10 Σε ε/u N
(PPM) kσ

0 0 0 0 0 0 0 0 1 1

52 20 ε11 ε12 ε13 ε14 ε15 ε16 ε17 ε18 ε19 ε20 17 0.016346 16,346 3.680

3 5 1 2 1 1 1 0 1 0
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