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Abstract: (1) With the development of artificial intelligence, people expect to use modern
information technology to solve the critical problems encountered in agriculture. How
to identify sunflower diseases as early and quickly as possible and take corresponding
measures has become a key issue for increasing crop production and farmers’ income.
Sunflowers, as an important oil crop, are vulnerable to infections by various diseases, such
as downy mildew, leaf scar, gray mold, etc. (2) In order to select a better lightweight model
that can be embedded into mobile devices or embedded devices for sunflower disease
detection, we compared five lightweight deep learning models in this study, including
SqueezeNet, ShuffleNetV2, MnasNet-A1, MobileNetV3-Small, and EfficientNetV2-Small.
The dataset used to train and test the models included 1892 images. These images were
divided into four categories, namely, downy mildew, gray mold, leaf scar, and fresh leaves.
(3) By evaluating the accuracy, precision, recall, and F1 score of each model, we found
that EfficeintNetV2-Small exhibited the highest performance with an accuracy of 90.19%.
Whereas the other models, SqueezeNet, ShuffleNetV2, MnasNet-A1, and MobileNetV3-
Small, achieved accuracies of 84.08%, 79.31%, 88.59%, and 84.08%, respectively. To address
the problem of poor generalization ability of models caused by small datasets, we adopted
the transfer learning technique. After doing that, the recognition accuracies of the five
models, SqueezeNet, ShuffleNetV2, MnasNet-A1, MobileNetV3-Small, and EfficeintNetV2-
Small, reached 96.02%, 95.23%, 94.96%, 96.92%, and 99.20%, respectively. The accuracies
of these five models were improved by 14.2%, 20%, 7.2%, 15.2%, and 10%. Based on the
comparative results, we found EfficeintNetV2-Small was an optimal choice for sunflower
disease identification due to its high detection accuracy.

Keywords: artificial intelligence; image classification; lightweight deep learning model;
sunflower disease identification; transfer learning

1. Introduction
With the continuous advancement of artificial intelligence technology, deep learning

algorithms, such as Convolutional Neural Networks (CNN), have made significant progress
in the field of image recognition. Many CNN models have emerged, such as AlexNet [1],
VGGNet [2], ResNet [3], SENet [4], DenseNet [5], and so on. Meanwhile, the continuous
development of information technology has been propelling the progress of precision
agriculture, furnishing robust technical backing for the identification of crop diseases.
Accurately identifying diseases and taking corresponding measures can greatly reduce the
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yield reduction caused by crop diseases, thus increasing farmers’ incomes. Furthermore, it
can also reduce the use of pesticides and achieve green and sustainable development [6].

Sunflower, as a widely known oilseed crop plant, holds significant economic value
and social significance globally [7]. Statistical data show that the global production of
sunflower seeds in 2023/2024 was approximately 55 million metric tons [8]. In 2022/2023
the global production of sunflower seeds was approximately 53.4 million metric tons. In
2021/2022, it was approximately 46.3 million metric tons.

From the trend of changes in global sunflower production in the world, it can be
seen that it is showing an upward trend. This puts forward higher requirements for the
accurate identification of plant diseases [9]. The diseases that affect the yield and quality
of sunflowers mainly include downy mildew [10], gray mold [11], sclerotinia disease [12],
leaf scar disease [13], and sunflower rust disease [14,15]. Therefore, early and accurate
identification of sunflower disease types followed by precise control measures can greatly
reduce the impact of these diseases.

The traditional approach to identify crop diseases primarily depends on farmers’
long-term and meticulous observations, combined with their accumulated experience.
This traditional method relies excessively on expert experience, so the accuracy of the
diagnosis cannot be guaranteed. In precision agriculture, deep learning and Internet of
Things (IoT) technologies continue to deeply integrate with agriculture [16]. In the pursuit
of agricultural efficiency and productivity, people anticipate harnessing state-of-the-art
information technologies to preemptively and precisely identify crop diseases in a timely
manner. Concurrently, farmers harbor the expectation of effortlessly and autonomously
diagnosing crop ailments. They envision achieving this by simply capturing images of the
affected areas of their crops using their mobile devices or other embedded systems, which
would revolutionize the way they manage and protect their agricultural yields. In the field
of crop identification, images of leaves, stems, and other parts of crops are used to identify
the types of diseases and the severity. Some studies on crop disease research are shown
in Table 1.

Table 1. Studies on crop disease identification using deep learning method.

Author Target Models Work Details Results

Hua Yang, et al.,
2024 [17]

Rice leaf
disease

DHLC-
DETR

Proposed a dense higher-level
composition feature pyramid
network (DHLC-FPN) and
integrated it into the detection
transformer (DETR) algorithm.

The proposed model
achieved an average
accuracy of 97.44% on the
IDADP rice disease
identification.

Francis et al.,
2019 [18] Tomato CNN model

The proposed model comprises four
convolutional layers, followed by
equivalent pooling layers. The
model also uses a sigmoid
activation function and two dense
layers that are fully coupled.

The system’s output
demonstrates an
impressively high
accuracy rate of 87%.

Yi Zhong and
MengJun Tong,
2023 [19]

Sunflower
leaf disease TeenyNet

Designed a module to extract
multi-frequency multi-scale features
and proposed lightweight
dual-fusion attention and
multi-branching structure to
identify sunflower disease.

TeenyNet obtains the
highest accuracy of 98.94%.
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Table 1. Cont.

Author Target Models Work Details Results

Kanaparthi,
et al., 2023 [20] Chili Squeeze-Net

The study explored the Squeeze-Net
architecture and the impact of the
different CNN optimizers and other
training parameters on the
identification accuracy.

The research results
indicate that the
Squeeze-Net CNN
architecture can achieve a
100% accuracy rate in
classifying chili peppers
when using the ADAM and
RMSPROP optimizers.

Islam, M. M.
et al., 2023 [21] Crop disease ResNet-50

Developing a smart web
application using ResNet50
to identify crop disease.

Research shows that the
accuracy of the ResNet-50
model is 98.98%.

Li Ma, et al.,
2023 [22]

Maize leaf
disease Yolov5n Adding CA attention module and

STR to YOLOv5n.

The average recognition
accuracy of the algorithm
model can reach 95.2%.

Sandeep Kumar,
et al., 2022 [23]

Cotton
disease CNN Developing iOS app to make the

disease predication.
The model accuracy is
around 90%.

Si Chen, et al.,
2021 [24]

Sunflower
leaf disease YoloV4

Obtain three effective feature layers
of MobileNet, and replace the
feature layer of YoloV4 backbone.

The improved model has a
certain improvement in
evaluation of precision,
recall, and F1.

A. Sirohi and A.
Malik, 2021 [25]

Sunflower
diseases

A hybrid
model

Use the stacking ensemble learning
technique and combine two models,
which are VGG16 and MobileNet.

The proposed model
gave 89.2% accuracy
on their dataset.

Jaweria Kainat,
et al., 2021 [26]

Cucumber
leaf disease Fine KNN Using the feature extraction of HOG,

LBP, and color features. The best accuracy is 94.60%.

Y. Zhong and M.
Zhao, 2020 [27]

Apple leaf
disease

DenseNet-
121

Three methods of regression,
multi-label classification, and focus
loss function were proposed.

The accuracy of the three
methods is 93.51%, 93.31%,
and 93.71%.

Prabira Kumar
Sethy, et al.,
2020 [28]

Rice leaf
disease

11 CNN
models

11 CNN models in transfer learning
approach and in deep feature plus
(SVM) were applied to rice disease
classification.

The deep feature of
ResNet50 plus SVM
performs better with an F1
score of 98.38% in rice
disease identification.

From Table 1, it can be seen that many researchers have applied deep learning methods
to the disease identification of some crops or fruits, such as cotton, maize, rice, chili, tomato,
cucumber, apple, sunflower, etc. In addition to the studies listed in Table 1, in terms
of sunflower disease identification, Promila Ghosh et al. [29] proposed a hybrid model
using transfer learning (TL) and CNN to detect sunflower diseases. The study utilized
467 images, including images of gray mold, downy mildew, leaf scar, and healthy leaves.
The experiments demonstrated that the proposed hybrid model achieved the best results
in terms of precision, recall, F1 score, and accuracy. T.A. Sathi et al. [30] developed a deep
learning approach called SunNet for detecting sunflower diseases. The study investigated
various disease classification techniques on 1428 sunflower leaf images and found that the
best-performing classifier overall was a ResNet50 classifier, which achieved an average
accuracy of 97.88%. Yunis Gulzar et al. [31] compared the performance of five models in the
identification of sunflower diseases, such as AlexNet, VGG16, InceptionV3, MobileNetV3,
and EfficientNetB3, and finally found that EfficientNetB3 had the highest accuracy of 97.9%.
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Guowei Dai et al. [32] proposed a DFN-PSAN method based on YOLOv5, which achieved
an accuracy of 94.47% on the sunflower dataset.

The image information of the dataset used in the previously mentioned studies is
shown in Table 2.

Table 2. The details of images used in some references.

References Image Bands Image Size Number of Images

[17] 3 3000 × 2000 2400
[18] 3 64 × 64 3663
[19] 3 224 × 224 1668
[20] 3 128 × 128 160
[21] 3 224 × 224 10,000
[22] 3 640 × 640 4353
[23] 3 256 × 256 825
[24] 3 416 × 416 2030
[25] 3 224 × 224 Not mentioned
[26] 3 640 × 480 1262
[27] 3 128 × 128 2462
[28] 3 300 × 300 5932
[29] 3 150 × 150 467
[30] 3 224 × 224 1428
[31] 3 512 × 512 1892
[32] 3 256 × 256 3784

From the analysis of the aforementioned literature, it can be observed that most imple-
mentations of deep learning for crop disease recognition are currently confined to the labo-
ratory research phase. Some models always have a large number of parameters and require
high hardware requirements, making them unsuitable for application on mobile devices
to achieve real-time field image collection and recognition. In order to deploy deep learn-
ing models on mobile terminals, researchers have been making models more lightweight
in aspects such as reducing model depth, decreasing model parameters, and lowering
the hardware requirements of models. These kinds of model are called lightweight deep
learning models. Many lightweight models are proposed, such as SqueezeNet [33], Shuf-
fleNetV1 [34], ShuffleNetV2 [35], MnasNet-A1 [36], MobileNetV1 [37], MobileNetV2 [38],
MobileNetV3 [39], EfficientNetV1 [40], EfficientNetV2 [41], etc. These lightweight models
make it possible to run neural network models in mobile terminals or embedded devices.

Researchers have indeed conducted relatively few studies on the field of identification
of sunflower diseases, and even fewer have been put into practical application. In order
to select an efficient lightweight model that can be employed in a mobile system, we com-
pared the performance of five lightweight models, which were SqueezeNet, ShuffleNetV2,
MnasNet-A1, MobileNetV3-Small, and EfficientNetV2-Small, using the same image dataset.
These five models were representative ones in the development process of lightweight
neural networks. This study can provide an application basis for the identification of
agricultural crop diseases.

Our main contributions in this study include the following:

• We pointed out the limitations of traditional crop disease identification methods
and summarized the applications of deep learning models in various crop diseases
identified in recent years.

• We conducted an in-depth discussion on the architectures and characteristics of five
currently mainstream lightweight models, which were SqueezeNet, ShuffleNetV2,
MnasNet-A1, MobileNetV3-Small, and EfficientNetV2-Small.
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• We applied these five models to the sunflower disease identification and conducted
a comparative analysis in terms of recognition accuracy, recall, precision, and F1
score. We found that the EfficientNetV2-Small model had excellent performance on
recognizing sunflower disease.

• In order to overcome the shortage of small dataset, we improved the identification
accuracy of sunflower disease by using pre-trained parameters on ImageNet, and the
optimal model parameters were obtained, which could be applied in mobile devices
or embedded equipment in future work.

2. Materials and Methods
In order to train deep learning models, we collected the sunflower disease images as

a dataset and split the dataset into a training set and a testing set in a ratio of 8:2. Before
training the models, we performed normalization on the images to enhance model perfor-
mance. After training models and obtaining the optimal weight parameters of the models,
we proceeded with model testing. The models were evaluated using precision, recall,
accuracy, and F1 score. The definitions of these metrics will be presented in Section 2.3. The
methodology used in this paper is illustrated in Figure 1.
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Figure 1. The process used in this study.

2.1. Image Dataset

In this study, we utilized a public sunflower image dataset [13], which contained
467 original images and 1868 augmented images. These images included four categories,
such as gray mold, downy mildew, leaf scar, and fresh leaves. In this dataset, augmentation
was achieved through rotation, scaling, and shearing. The augmented 1868 images were
used for model training and testing. The distributions of all images are shown in Table 3.

Table 3. The distribution of dataset images.

Name of Classes Number of Original Images Number of Augmented Images

Downy mildew 72 398
Gray mold 120 470
Leaf scar 141 509

Fresh leaves 134 491

Total 467 1868

Downy mildew disease can cause chlorotic spots on the leaves of sunflower, with a
white velvety mold layer on the underside of the leaves. Then the leaves turn brown and
scorched. The infected plants become stunted, and the flower heads become deformed.

Gray mold disease mainly affects the flower heads of sunflowers. In the early stages
of infection, the flower heads exhibit water-soaked decay. When the humidity is high, gray
mold layers grow, leading to the rotting of the flower heads and failure to bear seed.
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Leaf scar disease is characterized by the appearance of circular or nearly circular
scar-like lesions on the leaves. The edges of these lesions are typically dark brown, while
the centers are grayish-white, and there may also be the presence of a gray mold layer.
Although this disease does not directly cause the death of sunflowers, it reduces the
photosynthesis capability of the leaves, thereby affecting the yield. Four types of image
samples are displayed in Figure 2.
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2.2. Lightweight Deep Learning Models

As deep learning progresses, the parameter size and computational complexity of
models continue to increase, which makes it difficult to run these models on mobile devices
or embedded systems. Consequently, some researchers have begun to focus on reducing
the number of model parameters and computational load, while maintaining model per-
formance. The design intention of lightweight models was to address the deployment
challenges faced by large models in resource-constrained equipment.

In this comparative study, we selected five lightweight deep learning models, in-
cluding SqueezeNet [33], ShuffleNetV2 [35], MnasNet-A1 [36], MobileNetV3-Small [39],
and EfficientNetV2-Small [41]. These models were trained on the same image dataset to
compare their performances.

2.2.1. SqueezeNet

In 2016, SqueezeNet [33] was proposed by researchers of UC Berkeley and Stanford
University. The structure of this model is shown in Figure 3.
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Figure 3. The structures of SqueezeNet and Fire Module [33]: (a) SqueezeNet structure. Conv, convolution
layer; Fire, fire module; Maxpool, maximum polling layer; (b) Fire Module, Squeeze: squeeze layer,
S1 × 1: the number of 1 × 1 convolution filters in squeeze layer, ReLU: activation function is ReLU,
Expand: expand layer, E1 × 1: the number of 1 × 1 convolution filters in expand layer, E3 × 3: the
number of 3 × 3 convolution filters in expand layer.
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From Figure 3a, we find that main innovation of SqueezeNet lies in the introduction of
the Fire Module [33], which consists of a Squeeze layer and an Expand layer. In Figure 3b,
the squeeze layer uses 1 × 1 convolution kernels to reduce the depth of the feature maps,
while the expand layer uses 1 × 1 and 3 × 3 convolution kernels to increase the depth of
the feature maps. This kind of design effectively reduces the number of model parameters
while maintaining high accuracy. According to the research results, this model achieves the
same level of accuracy as AlexNet [1] on ImageNet, but with 50 times fewer parameters.

2.2.2. ShuffleNet

ShuffleNetV1 [34] is a CNN architecture with extremely high computational efficiency.
It is specifically designed for mobile devices with very limited computing power, and
its architecture is shown in Figure 4. This model employs two new operations, namely
Pointwise Group Convolution and Channel Shuffle, which greatly reduce the computational
cost while maintaining accuracy. On ARM-based mobile devices, ShuffleNetV1 achieves
approximately 13 times the actual acceleration compared to AlexNet [1] while maintaining
comparable accuracy.
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Compared with ShuffleNetV1, ShuffleNetV2 [35] further optimized the channel shuffle
operation. To reduce the memory access cost (MAC), ShuffleNetV2 abandoned the grouped
convolutions used in ShuffleNetV1, especially the 1 × 1 grouped convolutions. Meanwhile,
ShuffleNetV2 introduced the channel split operation, which divided the input channels into
two branches. One branch performed an identity mapping to keep the number of input
and output channels unchanged, while the other branch executed multi-layer convolutions
to ensure that the number of input and output channels remained equal. The architecture
of ShuffleNetV2 [35] and channel split operation are shown in Figure 5.
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2.2.3. MnasNet

MnasNet [36] is also a lightweight CNN architecture designed for mobile and edge
devices, which was proposed by the Google team. There are two relatively important
innovations in the MnasNet network. The first one is the application of a multi-objective
function, which takes into account both the accuracy of the model and the speed of model
fitting. The second one is neural architecture search (NAS), which aims to find a network
structure that balances inference time and accuracy through NAS. The architecture of
MnasNet-A1 [36] is shown in Figure 6.
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The network mainly consists of seven blocks. Among them, “SepConv” represents
depth-wise separable convolution. “MBConv6” represents the inverted residual structure
with an expansion factor of 6. “SE” represents the block using an attention mechanism,
and (3 × 3) or (5 × 5) represents performing convolution using convolution kernels with a
kernel size of 3 × 3 or 5 × 5. The “×” in front of each block indicates the number of times
that this block needs to be repeated.

2.2.4. MobileNet

MobileNetV1 [37] was proposed by the Google team. It mainly uses depth-wise
separable convolutions to replace standard convolution models, thereby reducing the
number of parameters. MobileNetV2 [38] introduced the inverted residual structure with
a linear bottleneck on the basis of MobileNetV1. In 2019, the Google team proposed
the MobileNetV3 [39] architecture again. It adopted neural architecture search (NAS) to
obtain the optimal parameters and modified the bottleneck structure by introducing the
Hard-Swish function and the SE module, thus improving the accuracy of the model. The
architecture of MobileNetV3-Small [39] is shown in Figure 7.
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2.2.5. EfficientNet

In 2020, Google launched the EfficientNet [40] model. This structure simultaneously
changes the width (that is, increases the number of convolution kernels), the depth of the
network (that is, uses more layer structures), and the resolution of the input image, hoping
to find a balanced network width, depth, and resolution to improve the performance of the
network. From EfficientNetB0 to EfficientNetB7, the top-1 accuracy on ImageNet can reach
76.3%, 78.8%, 79.8%, 81.1%, 82.6%, 83.3%, 84.0%, and 84.3%.

EfficientNetV2 [41] was proposed by Google Research and the Brain Team. In this
model, a new operator called Fused-MBConv was used, then NAS (neural architecture
search) and scaling were combined to optimize the training speed, model accuracy, and
parameter size. The EfficientNetV2 model is much faster in training than EfficientNetV1
and is 6.8 times smaller in size, achieving a top-1 accuracy of up to 87.3% on ImageNet.
The architecture of EfficientNetV2-Small [41] is shown in Figure 8.
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The five lightweight deep learning models analyzed above have far fewer parameters
than traditional deep learning models, yet they have achieved high accuracy on ImageNet,
as shown in Table 4.

Table 4. The performance of five lightweight deep learning models on ImageNet: # of Params,
number of trainable parameters; Top-1 Acc, the top-1 accuracy on the ImageNet validation set.

Model Name # of Params (M) Top-1 Acc (%)

SqueezeNet [33] 4.76 57.5
ShuffleNetV2 (1x) [35] 8.69 69.4

MnasNet-A1 [36] 3.9 75.2
MobileNetV3-Small [39] 2.9 67.4

EfficientNetV2-Small [41] 22 83.9

2.3. Experiments Settings and Performance Evaluation Methods

In this study, our main objective was to find an optimized model among these
lightweight models that could classify and identify sunflower disease images effectively.
When comparing various models, it was necessary to use the same hyper-parameters,
software platform, and evaluation methods. Therefore, we chose to run the program
on the GPU server V100S with the CUDA 12.1. The version of the Python environment
was 3.10. The python Torch version was 2.1, and the Torch Vision version was 0.16. The
hyper-parameters of models were set according to Table 5.

Table 5. Hyper-parameter setting of models.

Parameters Epochs Learning Rate Batch Size

Value 100 0.001 8
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To measure the performance of the model in classifying sunflower disease images,
we selected accuracy, precision, recall, and F1 score as metrics. During the model testing,
we could obtain the results of the classification. In a binary classification task, if the true
label of a sample was positive and the model also predicted it as positive, then this sample
belonged to a true positive (TP). If the true label of a sample was negative and the model
also predicted it as negative, then this sample belonged to a true negative (TN). If the true
label of a sample was positive but the model incorrectly predicted it as negative, then this
sample belonged to a false negative (FN). If the true label of a sample was negative but
the model incorrectly predicted it as positive, then this sample belonged to a false positive
(FP). In a multi-class classification task, the concepts of TP, TN, FN, and FP were similar
to those in a binary classification problem, but they needed to be calculated separately for
each class.

In our task, there were four classes in the dataset, so after model testing, each sample
received a recognition result. These results could be entered in a table to form a confusion
matrix as shown in Table 6.

Table 6. The definition of confusion matrix.

True Label

Downy Mildew Fresh Leaf Gray Mold Leaf Scars

Predicted label

Downy mildew C11 C21 C31 C41
Fresh leaf C12 C22 C32 C42

Gray mold C13 C23 C33 C43
Leaf scars C14 C24 C34 C44

In Table 6, each element Cij represents the number of samples whose true label is class
i but are predicted as class j. From the confusion matrix, the values of TPi, TNi, FNi, and
FPi for class i could be extracted as shown in Equations (1)–(4).

TPi = Cii (1)

TNi = ∑j ̸=i Cij (2)

FPi = ∑j ̸=i Cji (3)

FNi =
(
∑4

i=1 ∑4
j=1 Cij

)
− TPi−TNi − FPi (4)

The model accuracy refers to the ratio of the number of samples that are accurately
identified to the total number of samples, and the formula is shown as Equation (5). For
each class, precision, also known as the precision rate, represents the proportion of samples
that are actually positive among those predicted as positive, and the formula is shown as
Equation (6). Recall, also known as the recall rate, represents the proportion of samples
that are predicted as positive among those that are actually positive, and the formula is
shown as Equation (7). The F1 score is the harmonic mean of precision and recall, and
the calculation method is shown as Equation (8). The i in Equations (6)–(8) represents the
ith class.

Accuracy =
∑4

i=1 TPi

∑4
i=1 (TP i + FPi + TNi + FNi)

(5)

Precisioni =
TPi

TPi + FPi
(6)

Recalli =
TPi

TPi + FNi
(7)
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F1 − scorei = 2 × Recalli × Precisioni

Recalli + Precisioni
(8)

3. Results
In this section, we will present the performance evaluation results of five mod-

els, which were SqueezeNet, ShuffleNetV2, MnasNet-A1, MobileNetV3-Small, and
EfficientNetV2-Small, in the classification and recognition of sunflower disease images.
During model training, we tracked the convergence of the models and drew convergence
graphs from four aspects: training accuracy, validation accuracy, training loss, and valida-
tion loss. In the experiment, we set some parameters for training the model according to
Table 5. The training process data are shown in Figure 9.
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Figure 9. The convergence process of five models. The number of images in overall dataset was 1868.
We split this dataset into training set and testing data with a ratio of 8:2. Then the training set was
used to train models. The ratio of training images and validation images was 8:2, too: (a) SqueezeNet,
(b) ShuffleNetV2, (c) MnasNet-A1, (d) MobileNetV3-Small, and (e) EfficientNetV2-Small.

In Figure 9, we present the changes of the training accuracy, validation accuracy,
training loss, and validation loss of these five models. It can be seen that the training results
of these five models were different.

Figure 9a shows that on the sunflower dataset, the SqueezeNet model had a relatively
slow convergence speed. During epoch 20 to 80, the training and validation accuracy
changed very little and did not exceed 70%. After 100 epochs, the training and validation
accuracies of the SqueezeNet model did not exceed 90%. Figure 9b shows that on the
sunflower dataset, the training accuracy of the ShuffleNetV2 model was much higher than
the validation accuracy. The training loss of ShuffleNetV2 was less than the validation
loss. After 100 epochs, the training and validation accuracies of the model exceeded 90%,
but there was a certain gap between the training accuracy and the validation accuracy.
Figure 9c,d show that on the sunflower dataset, there was a relatively large gap between
the training accuracy and the validation accuracy of MnasNet-A1 and MobileNetV3-Small
models. The training accuracy is nearly 99%, but the validation accuracy failed to reach
90%, and both losses were quite large. Models experienced overfitting. Figure 9e shows a
good performance for EfficientNetV2-Small. The training accuracy was nearly 99%, and the
validation accuracy was nearly 90%. The gap between the training accuracy and validation
accuracy was lower than that of ShuffleNetV2, MnasNet-A1, and MibileNetV3-Small. Both
the training and validation losses of EfficientNetV3-Small were less than 0.1.
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To further verify the performances of these five models, we used the weight parameters
corresponding to the highest training accuracy during the model training to conduct tests
on the test set and obtained the confusion matrix, as shown in Figure 10.
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Based on the confusion matrixes of each model, the identification accuracies of the
five models, namely, SqueezeNet, ShuffleNetV2, MnasNet-A1, MobileNetV3-Small, and



Appl. Sci. 2025, 15, 2104 15 of 21

EfficientNetV2-Small, on the test set could be calculated as 84.08%, 79.31%, 88.59%, 84.08%,
and 90.19%, respectively. The accuracy, precision, recall, and F1 score of each category of
images are presented in Table 7.

Table 7. The precision, recall, F1 score, and accuracy of each class of five models.

Models Class Precision Recall F1 Score Accuracy (%)

SqueezeNet

Downy mildew 0.715 0.723 0.719 72.34
Fresh leaf 0.957 0.874 0.914 87.38

Gray mold 0.940 0.987 0.963 98.73
Leaf scars 0.771 0.802 0.786 80.20

ShuffleNetV2

Downy mildew 0.734 0.617 0.67 60.70
Fresh leaf 0.882 0.942 0.911 94.17

Gray mold 0.925 0.937 0.931 93.67
Leaf scars 0.714 0.693 0.703 69.31

MnasNet-A1

Downy mildew 0.785 0.777 0.781 77.66
Fresh leaf 0.910 0.981 0.944 98.06

Gray mold 1.0 0.987 0.993 98.73
Leaf scars 0.863 0.812 0.837 81.19

MobileNetV3-Small

Downy mildew 0.736 0.681 0.707 68.09
Fresh leaf 0.867 0.951 0.907 95.15

Gray mold 0.929 1.0 0.963 100
Leaf scars 0.826 0.752 0.787 75.25

EfficientNetV2-Small

Downy mildew 0.874 0.809 0.840 80.85
Fresh leaf 0.962 0.971 0.966 97.09

Gray mold 0.950 0.962 0.956 96.20
Leaf scars 0.854 0.871 0.862 87.13

In our sunflower disease image classification research, the dataset was relatively small,
with only 1892 images. Transfer learning [31] becomes crucial in this context. Transfer
learning is based on the principle that knowledge learned in one domain can be transferred
to another related domain. By leveraging pre-trained models on large-scale datasets like
ImageNet, we could take advantage of the general patterns and features they learned. These
pre-trained models were exposed to a vast number of images, enabling them to capture
diverse visual concepts such as edges, textures, and object shapes. For our small-scale
sunflower dataset, transfer learning allowed the model to quickly adapt to the specific char-
acteristics of sunflower diseases, which significantly improved the model’s generalization
ability. Without transfer learning, training a model from scratch on our limited data would
likely lead to overfitting and poor performance. To adapt to the four-class classification of
sunflower disease images, we performed the following steps for model adjustment:

• First, instantiate the model.
• Modify the parameters of the classification layer of the instantiated model to match

the four-class sunflower disease image classification task.
• Read the pre-trained weights provided by PyTorch official for the models on ImageNet,

and also read the existing model weights.
• Screen out the parameters whose keys and shapes match between the pre-trained

model and the new classification layer setup. These are the parameters that will be
updated to better suit our specific task.

• Screen out the parameters whose keys and shapes match between the pre-trained
model and the new classification layer setup.

• Update the model weights using the selected parameters.
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• Load the updated model weights back into the model. Then, conduct the model
training process with our sunflower disease image dataset.

The overall performance of five models in test dataset before and after incorporating
transfer learning is given in Table 8. The average precision, recall, F1 score, and accuracy in
Table 8 are the arithmetic mean of the precision, recall, F1 score, and accuracy obtained for
each class of images in the test set.

Table 8. The average precision, recall, F1 score, and accuracy of four classes of image identification in
the test dataset (including 377 images) of five models before and after transfer learning.

Models Average
Precision

Average
Recall

Average
F1-Score

Average
Accuracy (%)

Before transfer
learning

SqueezeNet 0.846 0.847 0.846 84.08
ShuffleNetV2 0.793 0.797 0.795 79.31
MnasNet-A1 0.890 0.889 0.889 88.59

MobileNetV3-Small 0.840 0.846 0.841 84.08
EfficientNetV2-Small 0.904 0.903 0.903 90.19

After transfer
learning

SqueezeNet 0.962 0.961 0.961 96.02
ShuffleNetV2 0.955 0.954 0.954 95.23
MnasNet-A1 0.953 0.951 0.952 94.96

MobileNetV3-Small 0.969 0.970 0.969 96.82
EfficientNetV2-Small 0.992 0.992 0.992 99.20

According to the results given in Table 8, after incorporating transfer learning,
EfficientNetV2-Small achieved the highest test accuracy of 99.20% among the five models.
MnasNet-A1 achieved the lowest classification accuracy of 94.96%. Compared with the
accuracy before incorporating transfer learning, the accuracies of these five models were
improved by 14.2%, 20%, 7.2%, 15.2%, and 10%.

4. Discussion
In this study, we delved into the characteristics and architectures of five lightweight

models and compared their performance in terms of accuracies, precisions, recalls, and F1
scores on the sunflower disease image dataset. The evaluated models included SqueezeNet,
ShuffleNetV2, MnasNet-A1, MobileNetV3-Small, and EfficientNetV2-Small. Initially, these
models achieved sunflower disease identification accuracies of 84.08%, 79.31%, 88.59%,
84.08%, and 90.19%, respectively, before incorporating transfer learning. To address the
challenge of a relatively small dataset and enhance the accuracy of each model, we em-
ployed pre-training models and the transfer learning method. Consequently, the accuracies
of these models improved by 14.2%, 20%, 7.2%, 15.2%, and 10%, reaching 96.02%, 95.23%,
94.96%, 96.82%, and 99.20%. Upon comparing the performances of the five models, we
found that EfficientNetV2-Small outperformed the other four models in terms of precision,
recall, F1 score, and accuracy.

Yi Zhong and MengJun Tong [19] designed a module to extract multi-frequency
multi-scale features and proposed lightweight dual-fusion attention and multi-branching
structure to identify sunflower disease. This method named TeenyNet obtained the highest
accuracy of 98.94%. SunNet [30] is a deep learning approach for detecting sunflower dis-
eases. The study investigated various disease classification techniques on 1428 sunflower
leaf images and found that the best-performing classifier overall was a ResNet50 classifier,
which achieved an average accuracy of 97.88%. Yunis Gulzar et al. [31] compared the
performance of five models in the identification of sunflower diseases, such as AlexNet,
VGG16, InceptionV3, MobileNetV3, and EfficientNetB3, and finally found that Efficient-
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NetB3 had the highest accuracy of 97.9%. The lightweight model DFN-PSAN [32] achieved
an accuracy of 94.47% on the sunflower dataset. The dataset sizes used in these methods
are shown in Table 9.

Table 9. The dataset used in TeenyNet [19], VGG19+CNN [29], SunNet [30], EfficientNetB3 [31],
DFN-PSAN [32], and ours.

Method # of Total Images The Ratio of Training Set
to Test Set

TeenyNet [19] 1668 90:10
VGG19+CNN [29] 467 80:20

SunNet [30] 1428 90:10
EfficientNetB3 [31] 1892 85:15

DFN-PSAN [32] 1892 90:10
EfficientNetV2-Small (ours) 1892 80:20

Compared with TeenyNet [19], VGG19+CNN [29], SunNet [30], EfficientNetB3 [31],
and DFN-PSAN [32], which are also used for detecting sunflower disease, EfficientNetV2-
Small (in our study) also achieved the best accuracy. The comparison graph is shown
in Figure 11.
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From Figure 11, we found the accuracy of EfficientNetV2-Small reached the highest
accuracy of 99.2% in these models.

There were several reasons why EfficientNetV2-Small achieved a relatively high
recognition accuracy. First, EfficientNetV2-Small employed the method of compound
scaling. By uniformly adjusting the model’s depth, width, and image resolution, it achieved
the optimal balance between performance and efficiency. This scaling method allowed
the model to leverage the benefits of increased capacity while maintaining computational
efficiency, which was crucial for lightweight models designed for real-time applications.

Second, EfficientNetV2-Small incorporated variants of MobileNetV3-Small and Fused-
MBConv. This block replaced the depth-wise separable convolution with standard con-
volution operations, thereby reducing the computational costs. This design enhanced
the model’s ability to capture complex features while maintaining a low computational
footprint, making it suitable for deployment on devices with limited resources.

Third, EfficientNetV2-Small benefited from an efficient architecture discovered
through neural architecture search (NAS). During this search process, the optimal net-
work configurations, such as the size of the convolution kernel and the expansion ratio,
were automatically determined to achieve specific performance goals. This data-driven
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approach ensured that the model was optimized for the given task, leading to improved
performance metrics.

Last, the utilization of transfer learning showed significant potential for precision
agriculture. By leveraging a pre-trained model on the ImageNet dataset, we obtained a
robust method of feature extraction and applied it to the recognition of sunflower disease
images. This approach not only mitigated the challenge of limited labeled data but also
enhanced the model’s ability to generalize to new, unseen data.

5. Conclusions
This study demonstrated the effectiveness of lightweight models in the classification

and recognition of sunflower disease images, with EfficientNetV2-Small emerging as the
superior model. The combination of compound scaling, optimized convolutional blocks,
architecture search, and transfer learning enabled EfficientNetV2-Small to achieve high
precision, recall, F1 score, and accuracy, making it a promising candidate for real-world
applications in precision agriculture.

The image dataset used in this study was relatively small in scale, covering only four
types of sunflower diseases, and the number of images for each type was limited. Such
limitations of the dataset may lead to the following problems:

• Risk of overfitting: Due to the limited amount of data, the model may overfit the
training data during the training process, resulting in poor performance on new,
unseen data. This, to some extent, restricts the generalization ability of the model.

• Lack of diversity: The insufficient diversity of the dataset may fail to cover all possible
disease scenarios and environmental conditions, thereby affecting the robustness of
the model in practical applications.

• Insufficient representativeness: With a small number of images in the dataset, it
may not fully represent the characteristics of sunflower diseases in different regions,
seasons, and growth stages, leading to biases in the model’s practical application.

Moving forward, we plan to expand our research based on the findings of this study.
One important direction is to expand the dataset by collecting additional images of sun-
flower diseases. The dataset used in this study was relatively small and not locally captured
in China. To ensure the applicability of our research results in local areas, it is essential to
gather more diverse and locally relevant image data. This will not only improve the robust-
ness of our models but also enhance their ability to generalize to different environmental
conditions. Another approach is to explore feature extraction methods to identify subtle
differences in easily confused disease images. The confusion matrix we obtained showed
that downy mildew and leaf scar were two diseases that were easily confused. Therefore, it
is necessary to further explore the subtle features of the images to improve the accuracy of
the model.

Another avenue for future work is to develop applications and deploy them on mobile
terminals or other embedded terminals, so as to achieve real-time image collection and
recognition in the fields. This will enable farmers to perform real-time disease identification
in the field by using these mobile terminals, facilitating timely intervention and manage-
ment. We believe that through these continued efforts, the accuracy of sunflower disease
identification can be further improved, ultimately contributing to reduce the impact of
diseases on crop yields and increase economic benefits for farmers.

This research also had limitations. During model training, the used images were
sourced from abroad rather than collected in local areas. Therefore, the disease traits and
characteristics may differ from those of sunflower diseases in local area. This could lead to
inaccuracies in our model when classifying local sunflower diseases.
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Consequently, in order to promote the use of this model locally, it is necessary to collect
a large number of images of various local sunflower diseases, fine-tune the model, and
conduct in-depth training to obtain a lightweight deep-learning model that conforms to the
characteristics of local sunflower diseases. This is also the direction of our future work.
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