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Abstract: In software development, debugging is the most tedious and time-consuming
phase. Therefore, various automated fault localization techniques have been proposed
to assist debugging. Among existing fault localization techniques, Spectrum-Based Fault
Localization (SBFL) is one of the most extensively researched methods. Traditional SBFL
techniques rely solely on the coverage of program execution for fault localization, which
means they neglect the interactions between program entities and fault propagation paths
during the execution of the program, resulting in a tie problem that reduces the accuracy
of fault localization. To solve the above problem, this paper proposes SA-SBFL, a fault
localization method based on the SALSA (Random Method for Link Structure Analysis)
algorithm. First, a link graph of program entities is constructed, which includes interactions
between program entities and fault propagation paths. Then, the suspicion values obtained
from traditional SBFL methods are used as the initial weights of the link graph. Finally, the
random walk model is employed to simulate the propagation of faults among program
entities, analyze the importance of program entities in the fault propagation process,
and obtain a ranking list of suspicious program entities. The experiments in this paper
demonstrate that the SA-SBFL method significantly outperforms general SBFL methods.
For instance, in the Defects4] dataset, the SA-SBFL technique outperforms traditional SBFL
in terms of fault localization accuracy, with a 47% improvement in the Top-1 metric and a
10% increase in the Top-5 metric, and it also showed an average improvement of 19% in the
EXAM metric.

Keywords: fault localization; program spectrum; link propagation; SALSA algorithm

1. Introduction

In today’s rapidly developing software industry, software debugging is a key link in
ensuring software quality and reliability [1]. With the increasing complexity and expansion
of software systems, the debugging process is becoming increasingly challenging. Software
debugging not only helps developers identify and fix errors or defects in the program, but
it is also essential for preventing potential system failures, improving user satisfaction, and
reducing maintenance costs [2].

Effective software debugging strategies typically include fault localization, which is
a core part of the debugging process. In practical software engineering applications, the
efficiency and accuracy of fault localization significantly impacts the development cycle and
costs. Rapid and accurate fault localization can substantially reduce the time developers
spend on debugging, thereby accelerating software release schedules. Additionally, by
minimizing system failures caused by errors, software stability and user satisfaction can
be enhanced. Traditional fault localization methods often rely on developers” experience,
intuition, and manual code reviews, which are not only time-consuming and labor-intensive
but also prone to human error [3]. For instance, in large-scale software projects, even
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minor errors can lead to system crashes or performance degradation, and traditional
fault localization methods may take hours or even days to identify the root cause of the
problem. To overcome these limitations, researchers have begun to explore automated and
semi-automated fault localization techniques.

Among these emerging technologies, software fault localization techniques based on
spectrum have attracted widespread attention due to their unique advantages. Traditional
spectrum-based software fault localization techniques determine the code areas that may
contain defects by analyzing the coverage of the tested program after execution. Specifically,
they utilize the execution information of the tested program (such as covered statements,
branches, or paths) and the corresponding test results (success or failure), and assess the
risk level of each statement through statistical methods [4]. The core idea of this method is
that if a test case fails, the statements it covers are more likely to contain defects. However,
Spectrum-Based Fault Localization (SBFL) suffers from the tie problem, where multiple
statements within the same basic block may have the same suspicion value, making it
impossible to locate the specific faulty statement in the program precisely. This situation
severely affects the developers’ debugging efficiency because it leads to a vague indication
rather than a clear fault point. To address this issue, researchers have proposed various
improvement methods, including methods based on metric combination [5], improving
program matrices [6], considering fault propagation context [7], considering local depen-
dency relationships [8], and utilizing program slicing [9,10] to solve this problem. With
the development of various technologies and tools, combining traditional software fault
localization techniques and different methodologies is a mainstream direction of current
research. Some researchers combine the trajectory of program execution with graph theory
to study its network structure for precise localization.

Based on the concepts of graph theory, various network analysis algorithms have
been invented to analyze the structure of network links and assess the importance of
nodes. In recent years, software fault localization techniques based on various network
analysis algorithms have achieved certain effects. These methods use abstract syntax trees
(AST) [11], Control Flow Graphs (CFG) [12], and Program Dependency Graphs (PDG) [13]
as intermediate data representations, abstracting code structure into graph structures.
However, when facing large-scale programs, directly constructing a graph from the source
code can result in a very large graph, which can severely affect the efficiency of network
structure analysis.

In response to this, this paper proposes a software fault localization method based on
the SALSA algorithm (SA-SBFL), which aims to address the tie problem that exists in tradi-
tional SBFL techniques. Additionally, we consider the control dependency relationships
between statements during the execution of the tested program, enabling more precise
fault statement localization. Specifically, first, we need to construct the Root Set Control
Dependency Graph (RSCDG) based on the execution trajectory of the tested program.
This graph is a part of the entire control dependency graph and includes the process of
fault propagation. Then, we employ the Stochastic Approach for Link-Structure Analysis
(SALSA) algorithm, leveraging the algorithm to analyze the importance of nodes and rank
them, thereby achieving accurate localization. The main contributions of this paper are
as follows:

(1) Inresponse to the situation where previous researchers directly abstracted source
code into graph structures, which often included a lot of unimportant information,
this paper proposes the Root Set Control Dependency Graph (RSCDG). The RSCDG
is a part of the control dependency graph, which not only reduces the computational
burden on the computer but also contains key information related to the propagation
of software faults.
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(2) This paper proposes SA-SBFL, a method based on the principles of the SALSA algo-
rithm, which analyzes the statement link relationships in software fault propagation
to achieve accurate fault localization. Additionally, SA-SBFL can effectively address
the tie problem present in traditional SBFL techniques.

(3) This paper conducted experiments on SA-SBFL using five benchmark projects from
Defects4] and evaluated the experimental results with two metrics: Top-N (N =1, 3, 5)
and Expected Additional Mistakes. The experimental results demonstrate that, com-
pared to traditional SBFL techniques, SA-SBFL has better performance.

The remaining research work of this paper is arranged as follows. Section 2 provides
a review of related research on fault localization and introduces the technologies used in
this paper; Section 3 details the specific framework of SA-SBFL; Section 4 introduces the
experimental dataset and evaluation metrics used in this paper; Section 5 discusses the
main research questions and the experimental results; Sections 6 and 7 offer a summary
and provide an outlook on future research work.

2. Related Work
2.1. Spectrum-Based Software Fault Localization

Spectrum-Based Fault Localization (SBFL) is a typical method in dynamic analysis.
The input for SBFL consists of code coverage information from all test cases, and the output
is a list of code elements sorted in descending order of their suspicious values calculated
by specific formulas. The “spectrum” in SBFL refers to the collection of code coverage
information during the execution of the tested program, which is composed of information
about the parts of the program that are executed during the test case execution. This
information can include statements, basic blocks, branches, or functions.

To more intuitively reflect the information about the location of defective program enti-
ties within the spectrum, Jones et al. proposed a statistical formula known as Tarantula [14].
They speculated that statements covered by failed test cases have a higher degree of suspi-
cion than those covered by successful test cases. Since the introduction of the Tarantula
formula, researchers have proposed a variety of suspect value calculation methods. These
include the Jaccard formula based on cluster analysis [15], the Ochiai formula inspired by
biology [16], the Ochiai 2 formula that considers the impact of unexecuted or passed test
cases [17], the Op2 formula, which performs optimally in single fault localization [17], and
the Dstar formula [18], which has been proven to have the best comprehensive ranking
performance. Nevertheless, no single statistical formula can perfectly adapt to the needs of
all test programs [19].

Many current software fault localization methods have been researched and developed
based on traditional Spectrum-Based Fault Localization (SBFL) techniques. For instance,
Zhao et al. [8] considered the variability among test cases. On the basis of the original
spectrum information, they utilized the PageRank algorithm to account for the contribution
of different test cases and recalculated the spectrum. Subsequently, they applied traditional
SBFL techniques on the recalculated spectrum to achieve more effective fault localization.
De Souza et al. [20] improved the effectiveness of SBFL technology in fault localization
by introducing context information and filtering strategies. He et al. considered the
interactions between software entities and the propagation of influences to construct a
Fault Influence Network (FIN) based on the complex network theory, calculating node
weights to improve the accuracy of fault localization [21]. Thanks to the efforts of many
researchers, Spectrum-Based Software Fault Localization (SBFL) has achieved numerous
results. However, as software programs become increasingly complex and larger in scale,
relying solely on spectra and statistical formulas is insufficient to pinpoint the location of
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faults accurately. Building on this, this paper takes into account the interaction between
program statements and the propagation paths of faults during the execution process.

2.2. Software Fault Localization Based on Network Analysis Algorithm

Network analysis algorithms assess the importance and relevance of nodes in a net-
work by analyzing the structure of links and relationships between nodes. Therefore,
software fault localization methods based on network analysis algorithms can mine crit-
ical information from the network structure of source code or program execution paths,
thereby completing the fault localization task. X Fan et al. [22] proposed a fault localization
technique based on the TrustRank algorithm (TRFL). TRFL combines the internal data
dependency relationships of the program to construct a node-weighted program execu-
tion network, and uses the TrustRank algorithm to analyze network centrality, thereby
re-ranking program entities based on their degree of suspicion. Yan Y et al. [23] proposed a
fault localization method based on the PageRank algorithm and mutation analysis (PRMA).
This method first applies the PageRank algorithm to calculate the fault scores of statements,
then uses these fault scores to weight the suspicion values of statements to address the tie
issue in mutation-based fault localization. Finally, statements are ranked based on their
weighted suspicion values. Zhang et al. [24] utilized the PageRank algorithm to recalculate
the spectral information, taking into account the contributions of different tests, and then
applied traditional SBFL techniques on the recalculated spectral information for more
effective fault localization. Considering the advantages of network analysis algorithms, we
have also employed network analysis algorithms to accomplish the task of fault localization
in our research.

2.3. Program Dependency Graph

The Program Dependency Graph (PDG) is a graph structure used to represent the
dependencies between various statements in a program. It is an extension of the Control
Flow Graph (CFG), encompassing not only the execution path information of the program
but also the dependencies of data flow and control flow. It has been widely applied in
software testing and program slicing.

Podgurski A et al. [25] summarized the necessity of weak and strong syntactic depen-
dencies for certain inter-statement relationships and pointed out that these dependencies
can be efficiently computed to guide activities such as test data selection and code inspec-
tion. Harrold M J et al. [26] proposed a fault classification and fault injection method based
on the Program Dependence Graph (PDG). This method further characterizes faults by
analyzing the differences between the PDGs of the original and faulty programs, categoriz-
ing faults into structural and statement-level faults. By performing transformations on the
PDG, it generates different types of faults. The Control Dependency Graph (CDG), as a part
of the Program Dependency Graph (PDG), specifically represents the control dependency
relationships between program statements. This paper takes the CDG as the research object
to accomplish the task of fault localization.

3. Proposed Approach

This paper proposes a software fault localization method based on the SALSA algo-
rithm (SA-SBFL). The full name of the SALSA is Stochastic Approach for Link-Structure
Analysis, which is a network analysis algorithm that combines the features of PageRank
and HITS algorithms. The specific implementation process of SA-SBFL is derived from
the implementation flow of the SALSA algorithm. The computational flow of the SALSA
algorithm is divided into two phases: the first is the stage of determining the computation
set, and the second is the link relationship propagation phase. Correspondingly, SA-SBFL is
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also divided into two phases: the first is the data preprocessing phase, the goal of which is
to obtain the computation object set; the second phase is the suspicious statement ranking
phase, where link relationship propagation is conducted based on the data obtained from
the first phase, ultimately leading to the ranking of suspicious statements.

The overall framework is shown in Figure 1, mainly consisting of two stages. (1) Data
Preprocessing Stage: First, obtain the project source code from the Defects4j dataset, execute
the corresponding test suite, and acquire the program spectrum. Based on the suspicion
value calculation formula, determine the suspicion value for each statement. Then, identify
the root set (RS) according to the program spectrum, which includes statements strongly
related to the fault. Construct the control dependency graph and derive the Root Set Control
Dependency Graph (RSCDG) based on the root set. The RSCDG contains the propagation
path of the fault and simultaneously narrows down the localization scope. (2) Suspicious
Statement Ranking Stage: The suspicion values of statements obtained in the first phase
serve as the initial weights of nodes in the RSCDG. The weight of each node is propagated
based on the link relationships within the RSCDG, and ultimately, the suspicion values of
the statements are output and ranked.
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Figure 1. Method framework diagram.

3.1. Data Pre-Processing
3.1.1. Program Spectrum

In the experimental process of this paper, for each faulty version of the program
in the Defects4] dataset, the first step is to execute the test suite corresponding to the
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faulty version to obtain the program’s execution trajectory and generate the spectrum.
Program spectrum, also known as code coverage, is a very important concept in the field
of software defect localization. It can be defined as the set of program entities that are
covered during the execution of tests. Spectrum Based Fault Localization (SBFL) technology
utilizes information about program entities executed by test cases to indicate which entities
are more likely to be defective. The spectrum, often used to describe the behavior of a
program, is a projection of the program’s execution trajectory, revealing the active parts
of the program during execution and showing the extent to which test cases cover the
code. Each element in the spectrum, such as statements or branches, can be marked as
executed or not executed, and this information is crucial for identifying testing blind spots
and potential defect areas. In this paper, the spectrum used is a statement spectrum. The
matrix form of the spectrum is shown in Table 1.

Table 1. Spectrum in matrix form.

el e2 e3 ed e5 e6 e7 Result
T1 1 1 1 0 0 1 0 1
T2 1 1 0 1 0 0 1 1
T3 0 0 1 1 0 0 1 0
T4 1 1 1 1 1 1 1 1
T5 0 0 1 0 1 0 1 0
T6 1 1 0 0 1 1 0 1

The rows in the table represent each test case; columns 2 to 8 represent the code lines,
with 0 indicating not executed and 1 indicating executed; the last column indicates the
result of the test case execution, with 0 indicating failure and 1 indicating success.

3.1.2. Obtain Statement Suspicion Values Based on Statistical Formulas

After obtaining the spectrum of the faulty version of the program, the next step is
to calculate the suspicion values of program statements using statistical formulas. SBFL
employs statistical formulas to compute the suspicion scores for each code entity, which
may include formulas such as Tarantula and Ochiai. When calculating suspicion values, it
is necessary to select the appropriate statistical formula based on specific circumstances.
Different statistical formulas consider various factors when calculating suspicion values, so
the right formula must be chosen based on different scenarios. Table 2 lists some commonly
used formulas. The four parameters used in the formulas need to be calculated based on
the spectrum matrix, and Table 3 demonstrates the meaning of each parameter.

Table 2. Common statistical formulas for SBFL.

Name Formula
2
Dstar N
Ne}I\]Janf
accard I —
] Nef Jrl?I\Inf +Nep
f
Tarantula NertNpr
Nef + Nep
Nef+anN Nep+Nnp
OChiai ef
\/(Nef+an) ) (Nef+Nep )
Ochiai2 Nef-Nep
\/(Nef'Nep)'(an‘NnP)‘(Nef‘an)'(an'Nep)
__ Nep
OP2 Nef Nep+Nnp+1
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Table 3. Four parameters in statistical formulas.
Element Description
Nef Number of failed tests to execute the program element
Nep Number of passed tests for executed program elements
Nnf Number of failed tests for non-executed program elements
Nnp Number of passed tests for non-executed program elements

f;\'&x - ol

Control Dependence Graph

3.1.3. Obtain the Root Set

In the SALSA algorithm, the root set refers to the initial collection of web pages that
are highly relevant to the user’s query request. These web pages are considered highly
trustworthy and are usually carefully selected based on certain criteria or prior knowledge.
The selection of the root set directly affects the trust propagation and node evaluation
results across the entire network. Therefore, when choosing the root set, various factors
need to be carefully considered to ensure that the selected web pages have sufficient
representativeness and credibility. In this paper, the concept of a root set is used, which
refers to a collection of statements that are highly related to the fault. Considering that
a program statement is more suspicious if it is executed more frequently in failed tests
and less frequently in passing tests, this paper analyzes the spectrum to count all program
statements in failed test cases and eliminates those that are executed frequently in passing
test cases. Ultimately, a set of program statements with high suspiciousness is obtained,
known as the root set (RS). Taking the spectrum from Table 1 as an example, RS1 is obtained,
which includes €3, e4, e5, and e7.

3.1.4. Obtain the Root Set Control Dependency Graph

The Control Dependency Graph (CDG), as a part of the Program Dependency Graph
(PDG), displays the control flow dependency relationships between various statements in a
program. In the CDG, nodes represent statements within the program, and edges represent
control dependencies, indicating whether the execution of one statement will affect the
execution of another statement. This paper introduces the concept of the Root Set Control
Dependency Graph (RSCDG), which is a part of the Control Dependency Graph (CDG).
The nodes in the RSCDG represent statements that are highly related to the fault, and the
edges indicate the propagation of the fault between nodes. The RSCDG corresponds to the
expanded web collection in the SALSA algorithm, where the web pages in the expanded
web collection are those that have direct linking relationships with the web pages within
the root set. Therefore, in this paper, based on the root set obtained from Section 3.1.3, the
structures within the CDG that have direct dependency relationships with the statements
in the root set are separated to form the RSCDG. Figure 2 illustrates the process of obtaining
the RSCDG.

Root Set Control

Root Set Dependence Graph

Figure 2. The acquisition process of RSCDG.



Appl. Sci. 2025, 15, 2079

8 of 18

3.2. Sort Suspicious Statements

In this paper, the random walk model is used in this stage to evaluate the importance
of nodes in the network structure of the RSCDG. The suspicion values of statements serve
as node weights that are propagated along the links between nodes, ultimately resulting in
a ranking of suspicious statements.

In the SALSA algorithm, random walk theory and Markov chains are combined to
analyze the web page link structure by constructing a bipartite undirected graph, calculating
the scores of each node, including Hub scores and Authority scores. This method involves
analyzing two distinct Markov chains: the hub chain and the authority chain. In the hub
chain, the random walk starts at a hub node, moves to an authority node via an outgoing
link, and then returns to another hub node via an incoming link. The hub chain primarily
focuses on the out-degree of nodes, that is, how many other nodes a particular node points
to. The authority chain is the reverse of the hub chain. The authority chain starts at an
authority node, moves to a hub node via an incoming link, and then returns to another
authority node via another outgoing link. The authority chain primarily focuses on the
in-degree of nodes, that is, how many other nodes point to that particular page. A webpage
may score high in the hub chain, indicating that it is an important source of information.
At the same time, it may also score high in the authority chain, indicating that it is an
important receiver of information.

In this paper, the RSCDG is constructed as an undirected bipartite graph, i.e.,
RSCDG = (Vh, Va, E). Node set Vh: Contains all nodes with an out-degree greater than
0, which are nodes that point to other nodes. Node set Va: Contains all nodes with an
in-degree greater than 0, which are nodes that are pointed to by other nodes. Edge set E:
Contains all the linking relationships from one node to another.

In the bipartite graph we derived, we will perform two types of random walks. First,
a random walk on the hub chain: starting from a node in Vh, moving to a node on the
authority side via an edge, and then returning to a node on the hub side via another edge.
Second, a random walk on the authority chain: starting from a node in Va, moving to a
node on the hub side via an edge, and then returning to a node on the authority side via
another edge. The hub chain simulates a random walk on the hub side, where each state in
the chain corresponds to a node in Vh, and transitions between states correspond to walks
from one hub node to another through an intermediary authority node. The authority chain
simulates a random walk on the authority side, where each state in the chain corresponds
to a node in Va, and transitions between states correspond to walks from one authority
node to another through an intermediary hub node.

To implement a random walk on a Markov chain, we need to define a transition
probability matrix. Since we are conducting random walks on two Markov chains, we
need to create two random matrices: the hub matrix H and the authority matrix A. The
acquisition of matrices H and A is as follows.

Firstly, based on the linking structure of the RSCDG, we obtain the adjacency matrix W
corresponding to the directed graph RSCDG. If node i points to node j, then the value of Wj;
is 1; otherwise, it is 0. Then, based on the adjacency matrix W, we obtain the row-normalized
matrix W* and the column-normalized matrix W¢.

The row-normalized matrix W" is obtained by dividing each non-zero element in W
by the sum of the elements in that row. This operation normalizes the sum of each row to
1, representing the probability distribution of links emanating from node i, as shown in
Equation (1). Note that if } | Wy =0, then (Wr)ij =0.

(G Pp—." )
b YR Wik
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The column-normalized matrix W¢ is derived by dividing each non-zero element
in matrix W by the sum of the elements in its corresponding column. This operation
normalizes the sum of each column to 1, representing the probability distribution of node j
being linked to, as shown in Equation (2). Note that if }3¢_; Wy = 0, then (W®);; = 0.

(W) = i @

Based on the row-normalized matrix W™ and the column-normalized matrix W*¢
obtained above, we can derive the hub matrix H and the authority matrix A. The hub
matrix H is composed of the non-zero rows and columns of W'WT,. This matrix represents
the transition probabilities from hub nodes to other hub nodes. The authority matrix
is composed of the non-zero rows and columns of WI.W". This matrix represents the
transition probabilities from authority nodes to other authority nodes. Where W' is the
transpose of W€. As shown in Equations (3) and (4).

H=W'WT, 3)

A=WT.Wr (4)

The SALSA algorithm updates node weights through a random walk, a process that
can be seen as an iterative vector update process. At the beginning of the algorithm, the
initial weight of each node is taken from the suspicion values obtained in Section 3.1.2,
treating the suspicion values of statements as the initial weights of the corresponding nodes.
In each iteration, the vector containing node weights is updated according to the transition
probability matrix. This process can be viewed as a matrix-vector multiplication. In this
paper, we define two vectors, h and a, which represent the initial weights of the hub nodes
and authority nodes, respectively.

The weight update formula for authority nodes is given by Equation (5). Here, a®¥ is
the current iteration’s score vector for the authority nodes, H is the hub matrix, and atD ig
the score vector for the authority nodes in the next iteration.

alttl) — 4. (5)

The weight update formula for hub nodes is given by Equation (6). Here, h®) is the
score vector for the hub nodes in the current iteration, A is the authority matrix, and h(t+1)
is the score vector for the hub nodes in the next iteration.

KD — [ A (6)

By the aforementioned method, the weights of the nodes are continuously updated
until convergence. The final weight vectors will stabilize at a state that includes two scores
for each node, reflecting the relative importance of each node as a hub or authority in
the fault propagation process. In this paper, it is assumed that the faulty statements are
more likely to be the source of fault propagation information. Therefore, the hub scores
of nodes are chosen as the suspicion degree of statements, and the hub nodes are ranked.
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Ultimately, a sorted list of suspicious statements is obtained. As shown in Algorithm 1.

Algorithm 1 Link Analysis Algorithm

Input:
Adjacency matrix: W
Initial Hub weights: w_hubs
Initial Authority weights: w_authorities
Maximum number of iterations: max_iter
Output:
The final weight of Hub: hubs_scores
The final weight of Authority: authorities_score
1: W' <- normal_row(W)
2: W€ <- normal_col(W)
3: H<- WWT,
4: A <- WT Wr
5: fori=1 to max_iter do
6: hubs_new <- w_hubs.A
7 authorities_new <- w_authorities.H
8 if hubs_new-w_hubs<tol and authorities_new-w_authorities<tol then
9: break;
10:  end if
11:  w_hubs <- hubs_new
12:  w_authorities <- authorities_new
13: end for
14: hubs_scores <- hubs_new
15: authorities_score <- authorities_new
16: return hubs_scores, authorities_score

4. Experimental Settings
4.1. Experimental Subjects

In the experiments of this paper, the proposed method was evaluated for effectiveness
on Defects4j. Defects4j is a mature real fault dataset used for testing experiments and
has been widely applied in software testing research. It contains six Java open-source
projects, including JFreefigure, Google Closure Compiler, Apache Commons Lang, Apache
Commons Math, Joda-Time, and Mockito. All buggy versions of the benchmark programs
can be downloaded from the Defects4j repository. For each bug, Defects4] provides the
buggy program, the minimally changed fixed program, the failing tests, and the modified
source files. Note that this experiment used 348 real bugs selected from Defects4j, excluding
the Mockito project, as well as nine other bugs, because the program errors were not located
in methods or constructors, and some buggy projects could not obtain execution tracking
through the tracer. Table 4 displays specific information about the Defects4] dataset used.
The first column shows the topic IDs that will be used in the remaining text; the second
column shows the full names of the projects; the third column shows the number of defects
for each project; the forth column shows the latest version’s LoC (Lines of Code) for each
project in Defects4]; the fifth column shows the number of test cases each project has.
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Table 4. Defects4j dataset.

ID Program #Faults LoC #Tests
Chart JFreefigure 25 96 k 2205
Closure Closure Compile 133 90 k 7927
Lang Apache commons-lang 65 22k 2245
Math Apache commons-math 98 81k 3546
Time Joda-Time 27 28 k 4130

4.2. Evaluation Metrics
e Top-N

Top-N is an important metric for evaluating the performance of fault localization
techniques, with the core being to check whether the actual fault location is accurately
included in the top N code locations recommended by the fault localization technique.
Specifically, within the Top-N metric framework, these techniques first recommend the
Top-N code locations that are most likely to contain faults as candidate areas. Then, the
effectiveness of the fault localization technique is assessed by verifying whether faults
exist within these candidate areas. In short, it involves calculating how many of the
Top-N recommended locations are indeed the actual locations of the faults. Clearly, the
larger the value of Top-N, the better the performance of the technique, as it reflects that
more accurate fault locations have been successfully identified and included in the Top-N
recommended positions.

e EXAM (Expected Additional Mistakes)

EXAM is another commonly used metric for evaluating the performance of fault
localization techniques. It is primarily used to measure the percentage of elements that
need to be inspected before the actual fault location is found. Specifically, EXAM calculates
how many additional elements need to be inspected to find the actual fault location if
the fault is not discovered in the Top-N recommended code locations. The formula is
as follows:

Yi i (1= N)-P()

EXAM =
M E[-N

)

N is the number of the top N recommended code locations, and E is the set of all
possible elements, i.e., the root set. P(i) represents the probability that the i-th element is
the fault location; in this paper, P(i) =i/ | E|.

5. Results and Analyses

The software fault localization based on the SALSA algorithm proposed in this paper
first constructs a Root Set Control Dependency Graph (RSCDG) that contains information on
fault propagation. Then, it employs a random walk strategy to analyze the link structure of
the RSCDG and scores each node, identifying important nodes related to fault propagation.
Each node ultimately has two scores: a hub score and an authority score, which represent
the importance and centrality of the faulty statement in the fault propagation process. This
paper prioritizes the use of the hub score for the final ranking.

To explore the software localization effects of SA-SBFL, this paper conducted experi-
ments on five projects in Defects4], using six statistical formulas to calculate the suspicion
values of statements as the initial weights of nodes in the RSCDG. The experiments were
evaluated from multiple metrics, including Top-1, Top-2, Top-5, and EXAM. To compre-
hensively verify the effectiveness and practicality of the experiment, this paper evaluates
three aspects.

RQ1: How accurate is SA-SBFL in fault localization?
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RQ2: Which score is more advantageous in fault localization, the final hub score or the
authority score of the node?

RQ3: What are the differences in fault location accuracy when using suspicious values
obtained from different statistical formulas such as node weights?

5.1. RQ1: How Accurate Is SA-SBFL in Fault Localization?

Figure 3 demonstrates the fault localization effectiveness of SA-SBFL, traditional SBFL,
and TRFL on Top-N (N =1, 3, 5) across five projects, showing the total number of faults
found by each method. It is evident from the figure that SA-SBFL significantly outperforms
both traditional SBFL and TRFL in terms of fault localization accuracy, regardless of whether
the faulty statements are ranked first, within the top three, or the top five. SA-SBFL exhibits
greater precision and reliability in all these cases. The specific localization effects of the
three fault localization techniques across the five projects are presented in Table 5. For
instance, in the Closure project, SA-SBFL can localize 87 faults on Top-5, which is 48 more
than SBFL and 28 more than TRFL. It should also be noted that the statistical formula used
by the three methods in the table is Dstar.

Table 5. The fault location results of different technologies in each project.

Project Technique Top-1 Top-3 Top-5 EXAM
SBFL 5 16 19 0.041
Chart TRFL 12 23 25 0.030
SA-SBFL 13 21 25 0.031
SBFL 14 38 39 0.044
Closure TRFL 22 44 59 0.030
SA-SBFL 32 65 87 0.025
SBFL 23 45 55 0.044
Lang TRFL 31 52 59 0.040
SA-SBFL 30 54 59 0.040
SBFL 20 56 69 0.102
Math TRFL 31 63 79 0.074
SA-SBFL 32 65 85 0.072
SBFL 6 11 12 0.039
Time TRFL 7 12 12 0.033
SA-SBFL 7 13 14 0.032

Next, let us discuss the performance of SA-SBFL across projects of different complexi-
ties. First, according to the Loc and #Tests for each project in Table 4, projects are categorized
into low, medium, and high complexity. Closure is considered high complexity, Chart and
Math are medium complexity, and Lang and Time are low complexity. From Figure 4, it
can be observed that in projects of all complexity levels, SA-SBFL has the lowest EXAM
values, while SBFL has the highest EXAM values. Particularly in high-complexity projects,
SA-SBFL’s EXAM value is 0.025, which is the lowest among all the techniques. In summary,
SA-SBFL demonstrates the highest fault localization accuracy across projects of varying
complexities, with its advantage being particularly evident in high-complexity projects.
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Figure 3. Performance comparison of different technologies on Top-N (N =1, 3, 5).
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Figure 4. Performance comparison of different technologies on EXAM in projects of different complexity.

5.2. RQ2: Which Score Is More Advantageous in Fault Localization, the Final Hub Score or the
Authority Score of the Node?

In SA-SBFL, each node ultimately has two scores: the hub score and the authority
score. Both of these scores can serve as a basis for fault localization. A high hub score
for a node indicates its role in connecting and navigating the link structure, while a high
authority score indicates its importance as a source of high-quality information. Therefore,
different types of faults are suitable for SA-SBFL to use different scores for fault localization.

Figure 5 illustrates the performance of fault localization using SA-SBFL with both
hub scores and authority scores on Top-N (N =1, 3, 5). The chart shows that on the Top-1
metric, the authority scores on average localized 95 faults across all statistical formulas,
while the hub scores-based SA-SBFL localized an average of 97 faults. This indicates that on
Top-1, the hub scores perform slightly better than the authority scores. On the Top-3 metric,
the authority scores-based SA-SBFL on average localized 185 faults across all statistical
formulas, while the hub scores-based SA-SBFL localized an average of 180 faults. This
indicates that on Top-3, the authority scores perform slightly better than the hub scores.
On the Top-5 metric, the authority scores-based SA-SBFL on average localized 215 faults
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across all statistical formulas, while the hub scores-based SA-SBFL localized an average
of 219 faults. This indicates that on Top-5, the hub scores perform slightly better than the
authority scores. In summary, we can see that the performance of the authority scores and
hub scores is very close.

s ) StQ em— |3cCcard == Tarantula == Ochigj === Qchiai2
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e — 224
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96 216 219

93 of —180
90 245 219
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Number Of Faults

Top-1 Top-3 Top-5
Figure 5. Comparison of fault location results using hub score and authority score.

Table 6 presents the experimental results of SA-SBFL using different scores under six
statistical formulas. Hub scores and authority scores each have their advantages under
different statistical formulas, and their performance on the Top-1, Top-3, and Top-5 metrics
is very close. Although the hub scores slightly outperform the authority scores on Top-1
and Top-5, the authority scores slightly outperform the hub scores in terms of the EXAM
value. In summary, in Defects4], SA-SBFL shows similar fault localization effects when
using both authority scores and hub scores. If the type of fault is known, choosing between
authority scores or hub scores based on specific circumstances can allow SA-SBFL to locate
more faults. Alternatively, combining both scores could further improve the precision of
fault localization.

Table 6. SA-SBFL (Authority) and SA-SBFL (Hub) fault localization results.

Top-1 Top-3 Top-5 EXAM
Project Formula SA-SBF SA-SBF SA-SBF SA-SBF SA-SBF SA-SBF SA-SBF SA-SBF
A) (H) A) (H) A) (H) A) (H)
Dstar 100 103 190 186 215 219 0.040 0.041
Jaccard 99 100 185 180 216 219 0.041 0.043
Defectsdi Tarantula 97 99 185 180 219 225 0.040 0.041
) Ochiai 93 96 188 187 220 224 0.041 0.043
Ochiai2 92 96 186 180 215 220 0.039 0.041
Op2 90 92 180 171 207 211 0.049 0.051

5.3. RQ3: What Are the Differences in Fault Location Accuracy When Using Suspicious Values
Obtained from Different Statistical Formulas as Node Weights?

In SA-SBFL, suspicion values calculated through statistical formulas are used as the
initial weights of nodes in the RSCDG. However, different statistical formulas weigh
the execution of statements in failed and successful test cases, and how they utilize this
information to calculate suspicion levels, thus different formulas may perform differently
under different types of errors and different distributions of test cases. Similarly, the choice
of different statistical formulas will also affect the localization effectiveness of SA-SBFL.
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Table 7 presents the fault localization effects of SA-SBFL and SBFL using six different
statistical formulas.

Table 7. Fault localization results of SA-SBFL and SBFL using different statistical formulas.

Top-1 Top-3 Top-5 EXAM

Project Technique
SBFL SA-SBFL SBFL  SA-SBFL  SBFL  SA-SBFL  SBFL  SA-SBFL  Improvement
Dstar 5 13 16 19 19 25 0.042 0.035 26.19%
Jaccard 6 13 17 19 20 24 0.038 0.032 15.79%
Tarantula 7 14 20 21 22 25 0.037 0.033 10.81%
Chart 5 hiai 6 1 17 20 19 25 0.039 0.036 7.69%
Ochiai2 6 12 17 19 21 23 0.028 0.025 10.71%
Op2 5 8 14 19 16 22 0.061 0.057 6.56%
Dstar 23 28 45 54 55 56 0.044 0.035 20.45%
Jaccard 22 29 45 53 56 56 0.043 0.035 18.60%
Lang Tarantula 21 30 45 52 57 58 0.042 0.032 23.81%
Ochiai 2 29 44 55 56 56 0.043 0.034 20.93%
Ochiai2 21 30 45 54 55 56 0.042 0.035 16.67%
Op2 23 31 45 51 56 57 0.046 0.037 19.57%
Dstar 22 32 56 59 69 81 0.102 0.076 25.49%
Math  Jaccard 22 32 57 60 69 79 0.109 0.087 20.18%
Tarantula 22 31 57 60 69 79 0.102 0.086 15.69%
Ochiai 2 32 58 63 70 81 0.102 0.092 9.80%
Math  Ochiai2 22 32 56 61 69 79 0.104 0.087 16.35%
Op2 21 27 52 58 61 78 0.110 0.085 22.73%
Dstar 6 10 11 12 12 14 0.039 0.029 25.64%
Jaccard 5 9 9 12 18 17 0.033 0.030 9.09%
_ Tarantula 5 9 11 14 16 17 0.032 0.030 6.25%
Time Ochiai 6 9 11 14 18 18 0.031 0.028 9.68%
Ochiai2 5 8 11 13 16 17 0.037 0.032 13.51%
Op2 8 11 12 11 14 14 0.041 0.037 9.76%
Dstar 14 20 38 42 39 87 0.044 0.030 31.82%
Jaccard 13 17 27 36 37 80 0.046 0.031 32.61%
Tarantula 12 15 26 33 36 79 0.031 0.025 19.35%
Closure o ja 14 15 29 35 39 81 0.037 0.026 29.73%
Ochiai2 13 14 27 33 37 77 0.036 0.026 27.78%
Op2 17 15 33 32 42 85 0.053 0.039 26.42%

Figure 6 illustrates the performance of SA-SBFL and traditional SBFL using different

statistical formulas in terms of the number of faults localized on Top-N (N =1, 2, 3) and their

performance on the EXAM metric. The chart shows that the Dstar and Tarantula statistical

formulas both exhibit lower EXAM values and higher Top-5 values across multiple projects.

In particular, Dstar demonstrates consistent performance in the Chart, Lang, and Time

projects, while Tarantula stands out in the Lang and Closure projects. Other statistical

formulas performed averagely in the experiments. Therefore, this paper concludes that the

Dstar and Tarantula statistical formulas are more suitable for application in SA-SBFL.
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Figure 6. The influence of different statistical formulas on SA-SBFL on Top-1 (a), Top-3 (b), Top-5 (c),
and EXAM (d).

6. Limitation and Future Work

In the current research on software defect localization, the methodology proposed
in this paper has shifted from single-spectrum analysis to a more complex analysis of the
linking relationships between program entities, but it still has some obvious limitations.
Firstly, the mining of internal program information is not limited to the linking relationships
between program entities; it also includes the interactions between program entities in the
program execution network. Secondly, this study is constrained by the analysis tools and
can only be conducted when the test subject is written in the Java language. This restricts
the widespread application of software defect localization techniques. Additionally, the
SALSA algorithm used in this paper selects the entire set of program entities executed in
failed test cases as the root set, which can lead to a problem where in some cases, the root
set is particularly large, resulting in reduced efficiency of defect localization.

In response to these limitations, future research directions could include the following:
First, developing defect localization tools that support multiple programming languages.
Given the diversity of programming languages, developing a defect localization tool that
can adapt to various programming language environments will have broad application
prospects. Secondly, exploring more network analysis algorithms that can fully utilize the
effective information within the program is possible. Lastly, the selection method for the
root set can be optimized to obtain a high-quality root set. Overall, with the increase in
software fault localization research and the publication of a large number of related papers,
it is expected that more researchers will focus on identifying fault localization issues and
providing specific solutions in the future.

7. Conclusions

Fault localization is a critical and complex task in software debugging, especially in
manual debugging processes. It not only poses challenges to researchers but also consumes
a significant amount of resources. Spectrum-Based Fault Localization (SBFL) technology
is a widely discussed method aimed at assisting in the discovery of software defects by
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analyzing the execution coverage of programs. However, this method does not fully
account for the interactions between program entities and data flow, making it difficult to
directly translate its analysis results into precise defect locations.

This paper proposes a novel software fault localization method called SA-SBFL, which
not only leverages traditional spectrum-based fault localization techniques but also incor-
porates the SALSA algorithm. By analyzing the linking relationships between program
statements and using random walk to identify important program statements within the
entire linking network, potential defective program statements are pinpointed. Through
this method, a ranking list of the suspiciousness of program statements is ultimately ob-
tained to assist researchers in locating fault positions. To validate the effectiveness of this
method, this paper examines five open-source benchmark programs from the Defects4]
dataset and compares them with six statistical formulas. The experimental results show
that compared to traditional SBFL methods, the method proposed in this paper significantly
outperforms traditional SBFL methods, narrowing the code detection scope and thereby
enhancing software defect localization performance.
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