
Academic Editors: Enno van der

Velde and Thomas Heston

Received: 14 January 2025

Revised: 31 January 2025

Accepted: 6 February 2025

Published: 10 February 2025

Citation: Aguirre, J.; Cha, W.C.

JAVIS Chat: A Seamless Open-Source

Multi-LLM/VLM Deployment

System to Be Utilized in Single

Computers and Hospital-Wide

Systems with Real-Time User

Feedback. Appl. Sci. 2025, 15, 1796.

https://doi.org/10.3390/

app15041796

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

JAVIS Chat: A Seamless Open-Source Multi-LLM/VLM
Deployment System to Be Utilized in Single Computers and
Hospital-Wide Systems with Real-Time User Feedback
Javier Aguirre 1 and Won Chul Cha 2,3,4,*

1 Smart Health Lab, Department of Digital Health, Samsung Advanced Institute for Health Sciences &
Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea; javiagu13@gmail.com

2 Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST),
Sungkyunkwan University, Seoul 06351, Republic of Korea

3 Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of
Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea

4 Digital Innovation, Samsung Medical Center, Seoul 06351, Republic of Korea
* Correspondence: docchaster@gmail.com; Tel.: +82-234102053

Abstract: The rapid advancement of large language models (LLMs) and vision-language
models (VLMs) holds enormous promise across industries, including healthcare but hos-
pitals face unique barriers, such as stringent privacy regulations, heterogeneous IT in-
frastructures, and limited customization. To address these challenges, we present the
joint AI versatile implementation system chat (JAVIS chat), an open-source framework for
deploying LLMs and VLMs within secure hospital networks. JAVIS features a modular
architecture, real-time feedback mechanisms, customizable components, and scalable con-
tainerized workflows. It integrates Ray for distributed computing and vLLM for optimized
model inference, delivering smooth scaling from single workstations to hospital-wide
systems. JAVIS consistently demonstrates robust scalability and significantly reduces re-
sponse times on legacy servers through Ray-managed multiple-instance models, operating
seamlessly across diverse hardware configurations and enabling real-time departmental
customization. By ensuring compliance with global data protection laws and operating
solely within closed networks, JAVIS safeguards patient data while facilitating AI adop-
tion in clinical workflows. This paradigm shift supports patient care and operational
efficiency by bridging AI potential with clinical utility, with future developments including
speech-to-text integration, further enhancing its versatility.

Keywords: open-source; LLM; hospital on-premises; framework

1. Introduction
1.1. Background

The healthcare industry is rapidly embracing large language models (LLMs) and
vision-language models (VLMs) [1–3], due to their potential to significantly improve patient
care, support medical professionals, and streamline a variety of clinical and administrative
processes. By extracting critical insights from patient records, synthesizing knowledge
from medical literature, and offering context-sensitive decision support, these advanced
AI models can enhance diagnostic accuracy, personalize treatment plans, and ultimately
improve patient outcomes. Recognizing this transformative potential, hospitals and medical
institutions are increasingly looking to integrate LLM and VLM capabilities into their
internal workflows to advance data-driven, patient-centered healthcare.

Appl. Sci. 2025, 15, 1796 https://doi.org/10.3390/app15041796

https://doi.org/10.3390/app15041796
https://doi.org/10.3390/app15041796
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0007-6802-944X
https://orcid.org/0000-0002-2778-2992
https://doi.org/10.3390/app15041796
https://www.mdpi.com/article/10.3390/app15041796?type=check_update&version=1


Appl. Sci. 2025, 15, 1796 2 of 32

1.2. Context and Existing Limitations

Despite the promise of LLMs and VLMs, adopting these technologies within hospital
environments poses unique challenges. Privacy regulations [4] (e.g., HIPAA in the U.S. or
Data 3 Laws in Korea) demand that patient data remain strictly confidential and within
internal, controlled networks. Proprietary solutions, such as closed-source, external LLM
services, are not only costly but often violate these stringent requirements by sending
sensitive data off-premises.

Although recent multimodal AI frameworks like HAIM [5] and MONAI [6] have
gained traction for clinical decision support, they largely focus on traditional machine
learning or specific imaging tasks (e.g., using XGBoost, DenseNet, or BERT-like text en-
coders). These approaches typically rely on smaller or specialized models that may not
require the significant computational resources of modern LLMs and VLMs. Furthermore,
such frameworks generally lack robust, hospital-wide deployment architectures capable of
securely orchestrating multiple concurrent models at scale in an offline environment.

In contrast, current state-of-the-art open-source frameworks designed for LLM de-
ployments, such as OpenLLM, H2O LLM Studio, or RayLLM, still suffer from critical short-
comings in healthcare scenarios. These include inadequate privacy compliance, limited
customization options, difficulty in scaling to hospital-wide deployments, and insufficient
orchestration tools for managing multimodal workflows within an internal network. As a
result, hospitals remain in need of a comprehensive, on-premises solution that can flexibly
integrate large-scale LLM/VLM deployments into existing infrastructure while maintaining
data security, scalability, and adaptability to evolving clinical needs [7,8].

1.3. Novelty and Contributions

To the best of our knowledge, there currently exists no fully integrated, open-source
framework that addresses all of these constraints simultaneously. This paper introduces
JAVIS, a novel, healthcare-focused deployment framework for on-premises LLM and VLM
solutions. Distinguishing itself from existing systems, JAVIS offers the following:

• Privacy Compliance: Unlike OpenLLM or H2O LLM Studio, which rely on external
infrastructures or rigid cloud-based workflows, JAVIS enables fully internal deploy-
ments, maintaining strict privacy compliance.

• Customization and Modularity: JAVIS’s architecture supports real-time feedback
loops inside private offline networks, customizable components, and dynamic work-
flows, overcoming the inflexibility seen in other solutions. This flexibility enables
hospitals to tailor every aspect, from user interfaces to back-end processing pipelines,
to institution-specific requirements.

• Advanced Scalability and Orchestration: Through seamless integration with Ray,
JAVIS orchestrates multiple replicas of LLMs, VLMs, and supplemental modules
(e.g., text-to-speech and multimodal fusion) at scale. This capability extends be-
yond the static scaling of other frameworks, ensuring that hospitals can efficiently
handle increasing workloads, from a single workstation prototype to full hospital-
wide deployment.

• Future-Proof Integration and Maintenance: While RayLLM introduced certain base-
line capabilities, its archival status and lack of a user-friendly interface make it unsuit-
able for long-term healthcare integration. JAVIS builds upon these core ideas with
ongoing support, updated containers, and straightforward maintenance procedures,
ensuring sustainability and simplicity over time.



Appl. Sci. 2025, 15, 1796 3 of 32

• Enhanced Compatibility and Containerization: JAVIS leverages Docker to ensure
uniform execution across diverse environments, including legacy systems. This con-
tainerization mitigates compatibility issues and streamlines deployment across vary-
ing infrastructures.

• Seamless Deployment and Scaling: JAVIS provides effortless transitions from small-
scale development environments to full hospital-wide production setups. Through
modular container configurations, scaling up or down, adding new LLMs, or switching
between development and production modes requires minimal commands and no
intrusive reconfigurations.

• Comprehensive Monitoring and Analytics: JAVIS integrates detailed analytics dash-
boards and Ray performance-monitoring tools, offering real-time insights into user
interactions, resource utilization, and model performance. This enables administrators
to make data-driven decisions for capacity planning, resource allocation, and sys-
tem optimization.

• Robust Privacy and Regulatory Compliance: Operating within a secure, closed
internal network, JAVIS adheres to stringent privacy and data protection laws (e.g.,
Korea’s Data 3 Laws), ensuring safe, lawful handling of sensitive medical data. Its
privacy-by-design approach aligns with healthcare regulations, providing a trusted
foundation for secure LLM/VLM deployments.

2. Methods
2.1. Overview of Key Barriers and JAVIS Objectives

Deploying large language models (LLMs) and visual language models (VLMs) in
hospital environments presents a range of interconnected challenges that complicate their
integration and effective use. A key issue is system compatibility, as hospitals often
operate on diverse hardware and software configurations, ranging from varying operating
systems to different graphics processing unit (GPU) drivers and CUDA versions, making it
difficult to ensure seamless implementation. Adding to this complexity are strict privacy
requirements: safeguarding sensitive patient data mandates that AI systems function
within secure, closed networks, which creates further obstacles for data management
and processing. Moving from experimental prototypes to production-ready applications
introduces yet another hurdle, as deployment across multiple clinical settings demands
careful adaptation and coordination. Scaling these systems at a hospital level is equally
challenging, as managing fluctuating user demands requires robust engineering to maintain
consistent performance. Ensuring reliability and consistency is also critical, as AI tools
must provide uninterrupted clinical support even under varying loads, while real-time
monitoring becomes indispensable for optimizing performance and maintaining trust
among healthcare professionals. Finally, hospitals require highly customizable AI solutions
that align with their specific workflows and regulatory standards, necessitating adaptable
and flexible frameworks. The following sections will explore the methodologies employed
by JAVIS to address these critical challenges, showcasing its ability to deliver practical,
scalable solutions for deploying LLMs in complex hospital environments.

In the following methods section, these challenges are systematically addressed, fo-
cusing on breaking down the barriers to the adoption of large language models (LLMs)
and vision-language models (VLMs) in hospitals. Each obstacle, e.g., compatibility, pri-
vacy, deployment, scaling, reliability, monitoring, and customization, is tackled through
a structured, practical, and scalable approach, enabling the effective use of advanced AI
technologies in demanding healthcare environments.



Appl. Sci. 2025, 15, 1796 4 of 32

2.2. Customization

Customization is imperative in hospital environments where AI systems must align
seamlessly with diverse clinical workflows, regulatory requirements, and specific user
preferences. To address these needs, JAVIS integrates a versatile front-end and back-end
stack that can be easily modified, extended, and deployed to meet the unique demands
of each institution. The following is the underlying JAVIS stack: Vue.js [9], Django [10],
Nginx [11], Celery, and SQLite [12].

• Vue.js (front-end) enables the rapid development of custom user interfaces and
workflows, allowing the system to be tailored to specific hospital department needs.

• Django (back-end) manages server-side logic and application programming inter-
face (API) creation, providing a flexible framework for easy feature expansion and
adaptation to evolving requirements.

• SQLite (database) offers a lightweight, zero-configuration relational database that
accelerates development and can be easily scaled or replaced as needed.

• Nginx (reverse proxy) handles traffic management and load balancing, ensuring
efficient and secure distribution of requests while maintaining system performance.

• Celery (task queue) manages asynchronous background tasks, keeping the system
responsive by processing long-running jobs without impacting the main application.

2.2.1. Deploying the Customization

JAVIS supports two operational modes for continuous customization and deployment:

• JAVIS development mode enables local customization and rapid iteration without
downtime, allowing real-time enhancements based on feedback.

• JAVIS production mode uses a single Docker build to containerize components for
quick, reliable deployment to production servers, ensuring consistency and stability.

Through this comprehensive customization framework, JAVIS empowers hospitals to
tailor AI deployments to their specific needs, enhancing usability, compliance, and over-
all effectiveness.

2.2.2. Continuous Feedback Loop and Deployment Strategy in JAVIS

A continuous feedback loop is integral to the efficient development and deployment of
customization requests within the JAVIS system. This loop ensures that all data within the
internal network remains secure and confined while JAVIS is updated externally to leverage
the latest libraries and tools. Upon completion of updates, a single Docker command
transforms JAVIS into a production-ready state, allowing it to be seamlessly reintroduced
into the internal network. Throughout this process, critical databases, including user
data, analytics, and others, remain intact due to their volume mapping with Docker
Compose, as illustrated in (Figure 1). This procedure ensures that data cannot go out due
to network security, and new updates to the system are allowed to ensure improvement
and customization.



Appl. Sci. 2025, 15, 1796 5 of 32

Figure 1. The workflow ensures a streamlined process for enhancing the JAVIS system through
user feedback, maintaining a secure environment within the hospital network, and leveraging
containerization technology for efficient deployment.

2.3. Scaling and Reliability

Ensuring the scalability and reliability of large language model (LLM) and vision-
language model (VLM) deployments within hospital environments is paramount to ac-
commodate varying user demands and maintain consistent performance. JAVIS achieves
this through a combination of robust technologies and strategic containerization, enabling
seamless scaling from individual workstations to extensive hospital-wide implementations.

2.4. Scaling Technological Foundations

JAVIS leverages a suite of advanced technologies to build a resilient and scalable
infrastructure based on FastAPI [13], vLLM [14], and Ray [15]:

• FastAPI provides a high-performance framework for efficient model serving, enabling
the rapid handling of incoming requests with minimal latency.

• vLLM optimizes LLM and VLM inference by enhancing speed and resource utilization,
ensuring that models operate efficiently, even under heavy loads.

• Ray facilitates distributed computing and scalable orchestration, allowing JAVIS to
manage and distribute workloads across multiple GPUs and nodes effectively.

These technologies collectively ensure that JAVIS can deliver high-performance
LLM/VLM services reliably, regardless of the deployment scale.

2.4.1. Containerization Strategy

To address diverse deployment needs, JAVIS employs a container with two distinct
modality templates: a versatile mode and a scaling mode. Each modality is tailored to spe-
cific operational contexts, providing optimized solutions for different scales of deployment
that are accessed within the same container.

2.4.2. Versatile Mode (Local or Small-Scale Deployments)

Designed for environments with limited user bases, such as individual workstations
or small laboratory servers, the versatile mode offers a lightweight yet powerful solution
using vLLM and FastAPI:



Appl. Sci. 2025, 15, 1796 6 of 32

• Rapid deployment facilitates the swift deployment of single model instances with
minimal configuration, allowing researchers or clinicians to integrate LLMs into their
workflows quickly without extensive technical overhead.

• Easy duplication supports hosting multiple models in parallel by simply copying the
container definition and running additional instances. This feature is ideal for testing,
demonstrations, or specialized use cases within small groups.

• Robust performance ensures consistent performance and low latency on personal
computers or small servers, maintaining reliability for a limited number of users.

2.4.3. Scaling Mode (High-Volume Production)

For larger user bases and production environments, the scaling mode is engineered
to handle high-volume demands with enhanced scalability and reliability using vLLM
and Ray:

• Distributed model serving utilizes Ray to distribute model instances across multi-
ple GPUs and nodes, enabling simultaneous handling of numerous requests. This
distribution ensures high performance and low latency, even as concurrent user
numbers increase.

• Load balancing and horizontal scaling leverages Ray’s cluster orchestration capa-
bilities to facilitate dynamic load balancing and horizontal scaling. As user demand
grows, additional replicas can be spawned automatically to manage the increased
load, maintaining consistent response times and system responsiveness.

• Enhanced reliability incorporates Ray’s dynamic worker allocation and failover mecha-
nisms to bolster deployment reliability. Comprehensive task scheduling ensures efficient
resource utilization and minimizes downtime, even in the event of node failures.

2.5. Scalability and Reliability Test Setup

To evaluate the performance and scalability of JAVIS, we conducted two distinct
experiments: an efficiency test on a standard consumer personal computer (PC) and a
high-volume stress test using a multi-GPU setup. These experiments were designed to
assess JAVIS’s ability to handle varying computational demands and user loads, ensuring
its robustness and reliability in clinical environments.

For all the experiments, the following models and quantizations were used in order to
represent different size deployment, as well as LLM and VLM testing.

Models and Formats

• LLMs: We deployed Llama 3.2 with 1 billion (1b) and 3 billion (3b) parameters, as well
as Llama 3.1 with 8 billion (8b) parameters.

• VLMs: The multimodal models included Qwen2 2b and Qwen2 7b parameters, along
with Llava 1.5 with 13 billion (13b) parameters.

• Quantization formats: LLMs were deployed in a generalized post-training quantiza-
tion (GPTQ) quantized [16] format to facilitate fast inference while maintaining high
accuracy. VLMs utilized the activation-aware weight quantization (AWQ) [17] format,
chosen for its availability and demonstrated ability to retain high accuracy.

2.6. Experimental Setup: High-Volume Stress Testing with a Multi-GPU Setup

The first experiment was designed to demonstrate JAVIS’s capability to handle high
volumes of concurrent users, thereby validating its scalability and reliability in production
environments. This stress test was conducted using a setup with four NVIDIA A6000 GPUs,
each with 50 GB of memory, providing substantial computational resources to support
large-scale deployments.



Appl. Sci. 2025, 15, 1796 7 of 32

2.6.1. Test Procedure

The stress test involved simulating varying numbers of concurrent users querying the
system. For each LLM, we executed 20 clinically relevant prompts, as shown in (Table A2) in
the Appendix A. For each VLM, 10 different images with 2 prompts per image resulting in a
total of 20 prompts per model were tested. The specific prompts used are listed in (Table A3)
in the Appendix A. We tested user loads of 10, 20, 30, 40, 50, 75, 100, 125, and 150 users.
In order to measure the robustness of the container as well as the robustness of JAVIS,
this experiment queried the JAVIS back-end to measure the complete roundtrip response
times. This approach ensured that the test accurately reflected real-world usage scenarios,
including the overhead of back-end processing and model orchestration.

2.6.2. Scalability Assessment

To assess scalability, we compared the performance of hosting a single model
instance (1 replica) against multiple replicas orchestrated by Ray. For models with
7 billion parameters or larger, we could host up to 12 replicas, while smaller models (below
7 billion parameters) supported up to 20 replicas.

2.6.3. Performance Metrics

The key metric was the response time and standard deviation experienced by each
simulated user under different load conditions. By measuring the response times across
various user volumes, we evaluated whether the scaling strategies implemented by JAVIS
could maintain consistent performance as demand increased. Additionally, we randomized
the prompts for each query to simulate realistic usage patterns, ensuring that the system’s
performance was not biased by repetitive or predictable input sequences.

2.7. Experimental Setup: Efficiency Evaluation on a Standard Consumer PC

The second experiment aimed to determine whether JAVIS can operate efficiently on a
typical consumer-grade PC equipped with a standard GPU. We utilized an NVIDIA RTX
3060 with 12 GB of GPU memory for this test. The experiment involved deploying various
large language models (LLMs) and vision-language models (VLMs) and measuring their
average response times across a set of clinically relevant prompts.

Test Procedure

We deployed each model using the versatile mode, which is optimized for local or
small-scale deployments. The same 20 prompts of (Table A2) were sent to LLMs, and the
20 prompts of (Table A3) (10 images and 2 prompts per image) were sent to VLMs. The test
was performed in a non-concurrent manner (iterative), and response time in seconds and
standard deviation were captured in order to assess the efficiency.

2.8. Compatibility Challenges

Hospitals typically operate a diverse array of systems, each with distinct operating
systems, drivers, CUDA versions, and software dependencies. This diversity complicates
the deployment of complex AI models, as inconsistencies between environments can lead
to conflicts, reduced performance, and increased maintenance efforts. Ensuring that large
language models (LLMs) function uniformly across all these varied systems requires a
robust solution that can encapsulate all necessary dependencies and configurations.



Appl. Sci. 2025, 15, 1796 8 of 32

2.9. Docker and Docker Compose as Solutions

To overcome these compatibility challenges, JAVIS utilizes Docker [18] and Docker
Compose. Docker containerizes applications by bundling them with their own operating
systems, CUDA libraries, and all required dependencies. This encapsulation ensures
that each component of JAVIS operates within a controlled and consistent environment
independent of the host system’s configuration.

2.9.1. JAVIS Deployment Stack: Docker Compose

The core components of the JAVIS system, including Nginx, Django, SQLite, Celery,
and Vue.js, are managed using Docker Compose. This tool enables seamless orchestration
and management of the entire stack, ensuring that all services work together within a
consistent environment.

2.9.2. Benefits

• Isolation: Each Docker container runs its own instance of the operating sys-
tem and dependencies, preventing conflicts between different components and
host environments.

• Portability: Docker images can be deployed across any system that supports Docker,
ensuring consistent behavior regardless of underlying hardware or software variations.

• Simplified deployment: Docker Compose orchestrates multiple containers, allowing
the entire JAVIS stack, including Nginx, Django, SQLite, Celery, and Vue.js, to be
deployed with a single configuration file. This streamlines the setup process and
reduces the potential for configuration errors.

2.9.3. Flexible LLM Deployment: Docker Containers

In addition to the core JAVIS stack, LLMs are deployed in a separate, isolated Docker
container. These containers communicate with the JAVIS core via defined APIs, offering
several benefits.

2.9.4. Benefits

• Modularity: LLMs can be deployed independently of JAVIS, allowing hospitals
to integrate them with existing systems and workflows without disrupting the
core infrastructure.

• Scalability: Containerized LLMs can be easily scaled horizontally by deploying addi-
tional instances by utilizing the versatile mode or switching to the scaling container as
needed to handle increased demand.

• Versatility: Whether deployed locally on individual workstations or distributed
across multiple servers, the isolated container ensures consistent performance and
ease of management.

Furthermore, containerized LLMs can function as standalone APIs, providing hospitals
with the flexibility to connect them with pre-existing systems without necessitating full
JAVIS deployment. This adaptability is crucial for integrating AI capabilities into diverse
and already-established healthcare IT ecosystems.

2.9.5. JAVIS Architecture for Compatibility

The development and production modes of JAVIS facilitate customization and stream-
line system deployment, while the LLM/VLM container simplifies LLM deployment.
(Figure 2) illustrates the overall architecture.



Appl. Sci. 2025, 15, 1796 9 of 32

Figure 2. In the upper part, Development JAVIS can be seen. Its front-end in Vue.js and back-
end with Django communicate through an API endpoint to locally hosted LLMs inside the Docker
container. Below, Production JAVIS shows Docker Compose powered by the Nginx container, which
acts as the central routing hub, directing traffic between the front-end and back-end containers.
The front-end container communicates with the back-end container via Nginx to handle dynamic
content and API requests. The back-end container, which manages server-side logic, interacts directly
with the PostgreSQL container for database operations and with the Celery container for executing
asynchronous tasks. Celery may also access PostgreSQL if needed for specific background tasks.

2.10. Experimental Setup: Compatibility Testing

To assess compatibility, a range of configurations representative of real-world condi-
tions were evaluated. The operating systems tested included both older and newer versions
of Linux, specifically versions 18.04 and 24.04, due to the predominant use of Linux in
server environments. Additionally, deployments were carried out on Windows 10.



Appl. Sci. 2025, 15, 1796 10 of 32

In terms of graphics hardware, both data center and consumer-grade GPUs were
examined, including the NVIDIA A6000 with 50 GB of memory, NVIDIA GeForce RTX
3050 with 8 GB, and NVIDIA GeForce RTX 3060 with 12 GB. Various driver versions were
also tested, spanning from the older 535 series to the latest 561 series. Moreover, different
CUDA versions, namely 12.2 and 12.6, were utilized in the evaluations.

For each configuration, the system was deployed, and the installation time was
recorded to ensure compatibility and evaluate the speed of setup.

2.11. Seamless Deployment

JAVIS was designed to facilitate effortless transitions across multiple levels of deploy-
ment, from a personal/small team setup to full hospital/institution-wide integration. This
scalability has been achieved through a carefully orchestrated, containerized workflow
using Docker Compose for JAVIS and Docker for LLM/VLM containers, ensuring that
libraries, dependencies, databases, and core components are consistently configured at
every stage.

Transition of scale levels: Transitioning JAVIS from a development environment to a
production setting is as simple as running a single Docker build command. Furthermore,
JAVIS integrates smoothly with the previously described versatile mode (for small user
bases such as personal computers or small teams) and with the scaling mode (for hospital
or institution-level user loads). Replacing the modality of containers is as simple as
using a different command. For the versatile mode, uvicorn run_llm:app –host 8000
–port 0.0.0.0 is used, and for running the scaling mode, python run_ray_llms_vlms.py
command is employed.

Addition of LLMs: Integrating additional large language models (LLMs) is straight-
forward, as it involves updating the container configuration and launching new containers.
JAVIS automatically routes queries to the newly added models through predefined APIs,
facilitating easy expansion and experimentation.

Upgrading system capabilities: By decoupling the JAVIS core stack from the container,
you can effortlessly upgrade the system’s capabilities to handle large user volumes without
affecting the primary JAVIS services. Moreover, these decoupling capabilities are especially
valuable when the hospital requires a direct API for LLM/VLM deployment for any other
use case, such as a common data warehouse (CDW) connection or powering any other
hospital service. By leveraging a modular, container-based solution, we can initially support
a small group of users for experimentation. Then, with just a simple two-command scaling
process, the container can be expanded to serve a broad user base at the institutional level,
all within the hospital’s internal network.

Rapid Container Modality Switching for Scaling

JAVIS supports two primary container templates to accommodate varying operational
scales:

• A versatile mode, which is ideal for single-machine or small lab setups.
• A scaling mode, which is optimized for large, institution-wide deployments.

Furthermore, JAVIS is split into two versions:

• Development JAVIS, which is ideal for tailoring the system to a given hospital
or institution.

• Production JAVIS, which was built for large, institution-wide deployments.

In summary, each of the four components is designed with a modular approach and
combining them as needed offers a solution to satisfy varying needs, from system tailoring
and serving a small user base to scaling to an institutional level.



Appl. Sci. 2025, 15, 1796 11 of 32

2.12. Monitoring

Effective monitoring is essential to ensure the reliability and performance of JAVIS in
dynamic hospital environments. JAVIS incorporates comprehensive analytics and perfor-
mance monitoring tools to provide valuable insights and facilitate proactive management.

2.12.1. JAVIS Analytics Dashboard

The JAVIS analytics dashboard is an integrated tool designed to track and analyze user
interactions with deployed large language models (LLMs). Key features include the following:

• User interaction tracking, which logs detailed information on user interactions, in-
cluding timestamps, selected models, and query volumes.

• Aggregated metrics, which compile usage metrics on an hourly, daily, weekly,
and monthly basis, allowing administrators to observe trends and patterns over
various timeframes.

• Filtering capabilities, which enable the filtering of metrics by individual users or user
groups, providing granular insights into specific usage behaviors.

• Informative insights, which utilize the collected data to inform capacity planning,
optimize resource allocation, and prioritize feature development based on actual
usage patterns.

These analytics empower administrators to make data-driven decisions, enhancing
the overall efficiency and effectiveness of JAVIS deployment.

2.12.2. Ray Performance Dashboard

For deployments utilizing the scaling mode, JAVIS integrates the Ray performance
dashboard, which offers real-time monitoring of system performance and resource utiliza-
tion. Key functionalities include the following:

• Replica status monitoring, which displays the status of all active replicas, ensuring
that each instance of LLMs is functioning correctly.

• Resource utilization metrics, which provide real-time data on CPU and GPU us-
age, as well as memory consumption, allowing for immediate identification of
potential bottlenecks.

• A cluster health overview, which offers a comprehensive view of the overall health of
the computing cluster, including network performance and node status.

• Model serving loads, which track the load on each model serving instance, facilitating
the balanced distribution of requests and preventing overloading of individual nodes.

The Ray performance dashboard enables administrators to perform prompt inter-
ventions, optimize resource allocation, and make informed scaling decisions to maintain
optimal system performance under varying demand conditions.

2.12.3. Privacy and Regulatory Compliance

The JAVIS system is fully compliant with the Data 3 Laws in South Korea, which
collectively govern data privacy, utilization, and protection. These laws, comprising the
Personal Information Protection Act (PIPA), the Act on Promotion of Information and Communica-
tions Network Utilization and Information Protection (Information and Communications Network
Act), and the Credit Information Use and Protection Act, serve as the Korean equivalent of
the Health Insurance Portability and Accountability Act (HIPAA) in the United States.
Together, they establish comprehensive guidelines for safeguarding sensitive personal and
health-related data, emphasizing principles such as data minimization, secure processing,
and accountability.

To ensure strict compliance with these laws, the JAVIS system operates exclusively
within a secure, closed internal network environment. This architecture minimizes ex-



Appl. Sci. 2025, 15, 1796 12 of 32

posure to external threats and unauthorized access while providing multiple layers of
protection, including encryption, firewalls, intrusion detection systems, and role-based
access control (RBAC).

The system adheres to the following principles of privacy and security:

• Data minimization and protection: Sensitive information is processed and stored
in compliance with the Data 3 Laws at secure, PIPA-compliant domestic facilities.
Encryption and secure access controls ensure data remains protected against breaches
and misuse.

• Pseudonymization and anonymization: all data received through JAVIS is already
anonymized due to the network’s security, allowing the secure utilization of data
for purposes such as statistical analysis, scientific research, and service optimization
without compromising individual privacy.

• Monitoring and accountability: The system maintains comprehensive audit logs
and monitoring mechanisms, enabling real-time detection of unauthorized access
attempts. Regular vulnerability assessments, penetration tests, and compliance audits
are conducted to ensure the system remains robust and secure.

By aligning with the Data 3 Laws, the JAVIS system embodies a privacy-by-design
approach. Its secure infrastructure, advanced safeguards, and adherence to regulatory
standards ensure the safe and lawful processing of sensitive information. This makes
JAVIS a model for secure, regulatory-compliant software systems in the healthcare and
data industries.

3. Results
3.1. Customization

The deployment of JAVIS within hospital environments has demonstrated its capability
to rapidly customize and adapt to the specific needs of various departments. Leveraging the
integrated feedback mechanism, different users submitted customization requests directly
within the system, and the administrator received this feedback and prioritized feature
development accordingly.

JAVIS features are separated into foundational features and requested features, where
the foundational represent the functions built within JAVIS, and the requested are made
possible due to the feedback loop between different departments and the admin. The foun-
dational features are explained first, followed by the requested features made possible
through the feedback loop.

In this case, since the administrator was the main programmer, most of the requests
were able to be deployed within the same day of the request. Figure 3 displays the chat
interface and the feedback panel that enabled the following results.



Appl. Sci. 2025, 15, 1796 13 of 32

(a)

(b)

Figure 3. JAVIS system interfaces: chat and feedback modules. (a) JAVIS chat interface. On the left,
model selection is shown, including top p and top k selection, as well as the download conversation
feature. In the middle, the JAVIS chat with a sample code is displayed in code snippets. (b) JAVIS
admin feedback panel. The right bottom icon is available through JAVIS to send feedback at any time.

3.2. Foundational Features

Here are the main features that are currently supported in JAVIS.

3.2.1. Multi-LLMs

The interface supports talking with different LLMs hosted in the containers; therefore,
as many LLMs as the infrastructure allows can be hosted, and LLM switching is carried
out in the left drawer with a simple click. This will redirect the call to the corresponding
LLM API by passing the corresponding prompt template for that model in the back-end.

3.2.2. Multi-VLMs

JAVIS supports multimodal LLMs or VLMs, allowing the integration of various im-
age types (JPG, PNG, etc.). This enhancement significantly increases the system’s ver-
satility in handling diverse clinical inputs, enabling more comprehensive and accurate
patient interactions.



Appl. Sci. 2025, 15, 1796 14 of 32

3.2.3. Chain of Thought

JAVIS includes a chain of thought feature that allows users to save and reuse their
chains. This functionality enables any LLM to reason in a chain-of-thought manner and
enables clinicians to build upon previous reasoning steps. A user can define a set of
prompts, and they will be chained after each LLM response automatically to provide an
advanced reasoning response. This allows accessibility to recurrent tasks and the ability
to obtain higher accuracy for hard problems in a way that can be saved and reused in
the future.

3.2.4. Rich Text Formatting

The interface automatically formats text, supporting tabs, bolding, code detection,
and overall LLM output formatting, which enhances the clarity and organization of com-
munication in clinical settings, as seen in (Figure 3).

3.2.5. Expandable Input Box and Auto-Scrolling

The input box is designed to expand, enabling users to view multiple lines of text
simultaneously, which is particularly beneficial when reviewing detailed patient descrip-
tions. Additionally, a smooth auto-scrolling function ensures seamless interaction by
automatically adjusting the view as new messages are received.

3.2.6. File Uploads

The interface supports uploading common hospital file types (CSV, XLSX, TXT, DOC,
and DOCX), transforming them into text on the front-end. This capability facilitates the
integration of external data into conversation flows without overburdening the back-
end system.

3.2.7. Contextual Question Answering

Users can select specific messages as context for question answering, improving accu-
racy and reducing the risk of information misinterpretation in sensitive clinical environments.

3.2.8. Temperature and Top-p Modifiers

For laboratory settings, the UI includes options to adjust temperature and top-p param-
eters, allowing experimentation with different response-generation styles and behaviors.

3.2.9. API Documentation

Comprehensive API documentation is readily accessible through the UI, guiding users
on effectively utilizing the JAVIS API for connecting LLMs with other hospital systems and
simplifying integration processes.

3.3. Requested Features

Several key customization requests were successfully implemented, showcasing
JAVIS’s flexibility and rapid development capabilities thanks to the previously described
feedback loop.

3.3.1. EMR Team: Conversation Download

The EMR development team requested the ability to download conversation tran-
scripts as .txt files for upload to their clinical data warehouse (CDW), along with the
functionality to delete specific messages. Feedback was requested inside of JAVIS, lever-
aging Vue.js’s flexible component design. These features were developed, containerized,
updated, and tested within approximately five hours.



Appl. Sci. 2025, 15, 1796 15 of 32

3.3.2. Researchers: Code Formatting

Researchers sought code outputs formatted similarly to ChatGPT, featuring a black
background and copy-friendly snippets to enhance readability and usability. Adjusting
the Vue.js front-end to incorporate this styling and formatting was accomplished in ap-
proximately two hours. The updated interface was quickly deployed across all users, and
researchers benefited from a more comfortable user experience.

3.3.3. Physicians: Copy Button

Emergency room (ER) physicians requested a one-click “Copy” button to extract and
reuse medical records in subsequent prompts. Implementing this user interface element
required roughly thirty minutes of coding and testing. The new feature was efficiently
rolled out to the ER department, allowing physicians to enhance their workflow with
minimal disruption.

These outcomes highlight the efficiency and effectiveness of JAVIS in delivering
customized AI solutions tailored to specific workflows and requirements of hospital en-
vironments. The seamless deployment enabled by a feedback loop ensures that these
enhancements can be rapidly scaled and maintained.

3.4. Scaling and Reliability

This section presents the performance outcomes of deploying JAVIS using two distinct
container configurations: the versatile mode on a consumer-grade GPU and the scaling
mode on a legacy server equipped with four NVIDIA A6000 GPUs. These configurations
were evaluated to assess JAVIS’s adaptability, scalability, and reliability in handling diverse
workloads within hospital environments.

3.4.1. Scaling Mode: Scaling and Reliability at Scale

To evaluate JAVIS’s scalability and reliability under higher user loads, a container uti-
lizing the scaling mode was deployed on a legacy server running Ubuntu 18.04, equipped
with four NVIDIA A6000 GPUs, each possessing 50 GB of memory. Despite the A6000’s
older and comparatively slower architecture relative to contemporary accelerators such
as the A100 or H100, the container delivered robust performance. This outcome under-
scores JAVIS’s ability to efficiently produce results even on smaller and less advanced
server configurations.

3.4.2. Stress Testing

Comprehensive stress tests were conducted to assess JAVIS’s robustness and scalability.
Concurrent user interactions were simulated by dispatching simultaneous queries from in-
creasing numbers of users, i.e., 10, 20, 30, 40, and 50, to evaluate system performance under
scaling load conditions. Additional scenarios involving 75, 100, 125, and 150 concurrent
users were analyzed and are presented in Appendix A (Table A1).

Preliminary results, summarized in (Table 1), demonstrate that JAVIS maintains ef-
ficient response times as user load increases. Notably, multiple-instance (Ray) models
consistently outperform single-instance models across all tested concurrency levels, under-
scoring the effectiveness of scaling mode containers in managing distributed workloads.
This disparity emphasizes the substantial advantages of using multiple replicas to distribute
computational demand and maintain low-latency performance.



Appl. Sci. 2025, 15, 1796 16 of 32

Table 1. Performance comparison of single-instance and replica models. Single instance refers to a
single replica of each Llama model, whereas replica Models consist of 20 replicas for the Llama-1B and
Llama-3B models and 12 replicas for the Llama-8B model. The table presents the mean response time
(±standard deviation) in seconds for each user group (10, 20, 30, 40, and 50 concurrent users). These
results demonstrate the robustness of the scaling mode container, illustrating that as the number of
concurrent users increases, the response time per query becomes more pronounced, particularly for
single-instance models.

Model Name Type 10 Users 20 Users 30 Users 40 Users 50 Users

Single-Instance Models

Qwen2 2b VLM 5.559 ± 2.696 10.435 ± 5.554 15.412 ± 9.321 22.001 ± 12.731 24.624 ± 14.281
Qwen2 7b VLM 5.328 ± 2.281 14.707 ± 6.930 16.487 ± 8.810 22.261 ± 11.897 38.554 ± 21.313
Llava 13b VLM 8.936 ± 4.228 15.412 ± 7.147 21.148 ± 12.046 29.623 ± 17.567 29.830 ± 18.053
Llama 1b LLM 7.295 ± 4.926 12.455 ± 7.518 23.649 ± 11.872 32.659 ± 17.825 46.858 ± 24.627
Llama 3b LLM 14.966 ± 7.089 23.895 ± 11.596 34.184 ± 18.992 50.214 ± 28.914 55.470 ± 31.084
Llama 8b LLM 20.624 ± 11.779 37.698 ± 21.906 56.025 ± 34.384 65.835 ± 33.842 102.509 ± 60.606

Multiple-Instance Models (Ray)

Qwen2 2b VLM 4.667 ± 1.193 3.734 ± 1.297 4.635 ± 1.823 5.919 ± 2.563 6.673 ± 4.006
Qwen2 7b VLM 3.122 ± 1.379 4.478 ± 2.458 6.667 ± 3.532 10.054 ± 6.426 8.461 ± 3.814
Llava 13b VLM 3.342 ± 1.093 5.512 ± 1.950 7.949 ± 4.255 8.024 ± 3.564 10.024 ± 4.667
Llama 1b LLM 5.092 ± 3.495 4.664 ± 3.667 6.172 ± 3.961 9.492 ± 5.306 9.169 ± 7.175
Llama 3b LLM 5.208 ± 3.357 6.093 ± 4.569 9.046 ± 4.595 8.723 ± 5.127 15.909 ± 7.837
Llama 8b LLM 5.889 ± 3.477 12.563 ± 6.528 16.241 ± 7.456 14.167 ± 8.645 16.938 ± 11.953

3.4.3. Analysis of Stress Testing Results

Table 1 highlights the differences between single-instance (above) and multiple-
instance (below) Ray-based model deployments. Single-instance deployments represent
models run directly by VLMs without replication, while multiple-instance deployments
leverage Ray to orchestrate and dynamically scale the number of VLM replicas across all
available GPUs. By utilizing Ray’s ability to create as many replicas as requested (in this
case, up to 20 replicas for models under 7B parameters and up to 12 replicas for models
above 7B), our system efficiently employs all four A6000 GPUs to handle increasing user
loads. As user concurrency grows (from 10 to 20, 30, 40, 50, and beyond), Ray automati-
cally scales the instances accordingly. The comparison in Table 1 consistently shows that
multiple-instance models outperform their single-instance counterparts at every tested
concurrency level. This performance gap widens as the number of concurrent users rises,
demonstrating that distributing the workload across multiple replicas not only improves
latency but also stabilizes response times under heavy load.

To illustrate this further, consider the case of the LLaMA 8B model at different user loads:
10, 30, 50, and 100 concurrent users. Under single-instance deployment, the model experiences
significant latency increases as the user load intensifies. For example, at 10 concurrent users,
a single-instance LLaMA 8B model averages about 20.6 s. At 50 users, it jumps to an average of
102.5 s. In contrast, when employing multiple Ray-managed replicas of the LLaMA 8B model,
the response times are dramatically lower and much more stable across these conditions.
At 10 concurrent users, multiple instances respond in roughly 5.9 s on average; even at
50 concurrent users, they maintain a reasonable 16.9 s. The disparity becomes even clearer
at 100 users, where single-instance LLaMA 8B models exceed 146 s while multiple-instance
models hold steady at around 35.6 s, showcasing Ray’s ability to dynamically adjust resources
and sustain performance as concurrency grows. This disparity is depicted in Figure 4, where
the rate of growth of single-instance models accelerates as the user number grows, and the
rate of multiple instances remains constant, even under heavy loads.



Appl. Sci. 2025, 15, 1796 17 of 32

Figure 4. Single-instance (non-Ray) vs. multiple-instance (Ray) response time results per user. Each
bar inside each bar plot group represents one model in the following order: qwen2 1b, qwen2 7b,
llava 13b, llama 1b, llama 3b, and llama 8b. The same order is preserved for the blue plot represented
by the models leveraged by autoscaling with Ray.

These results underscore JAVIS’s capacity to handle substantial user loads, even on
a relatively modest four-GPU A6000 cluster. In a real-world scenario, it is rare that all
users query the system simultaneously; there is usually “think time”, reading time, or idle
periods between queries. As such, the effective number of users that can be supported
in production scenarios is even higher. For instance, in our lab setup, with a single GPU
card and just two instances, supporting around 40 researchers with acceptable latency
is achievable. Stress tests, which were deliberately designed to push the system with
simultaneous, synchronized queries, indicate that JAVIS can scale reliably. The back-end
infrastructure has been validated to operate consistently under heavy loads, maintaining
communication with the containers without failing or degrading catastrophically.

In summary, these experiments show that with a four-A6000 GPU cluster, even models
at 8B parameters (Llama 8B) can serve up to 50 simultaneous users in approximately 15 s
(multiple instances) versus over 100 s (single instance). For equivalent size VLM (Qwen
7B) at 100 users load, multiple instances can respond in approximately 16 s, while single
instances may take around 68 s. Furthermore, for smaller 1B models (Llama 1B), we can
serve as many as 150 concurrent users with an approximately 20 s response time compared
to almost 90 s with a single instance. These outcomes highlight the robustness, scalability,
and reliability of JAVIS. By leveraging Ray’s scaling capabilities, JAVIS ensures that even
under substantial concurrency, performance remains stable and responsive, allowing for a
significantly enhanced user experience.



Appl. Sci. 2025, 15, 1796 18 of 32

It is important to note that these results were achieved on a relatively modest server
with four A6000 GPUs. Therefore, increasing GPU availability would significantly enhance
the capacity to handle larger user loads. Additionally, the results were based on simulta-
neous queries, meaning the actual user load that can be supported is likely much higher,
as users typically have pauses between messages.

3.4.4. Versatile Mode: Performance on Consumer GPUs

The results of running 20 different prompts and evaluating the seconds and standard
deviation elapsed are shown in (Table 2).

Table 2. Performance metrics for Llama GPTQ models on consumer GPUs.

Model Name Type RTX 3060 (12 GB) A6000 (50 GB)

Llama 1B LLM 3.36 ± 0.95 2.61 ± 0.61
Llama 3B LLM 5.74 ± 1.58 3.90 ± 1.04
Llama 8B LLM 9.21 ± 1.77 5.09 ± 1.14
Qwen2 2B VLM 1.72 ± 1.28 1.30 ± 0.75
Qwen2 7B VLM 4.68 ± 3.95 3.16 ± 1.76
Llama 13B VLM 5.72 ± 4.53 3.50 ± 2.41

The performance metrics presented in Table 1 illustrate JAVIS’s capability to efficiently
handle a range of language and vision-language models on a consumer-grade NVIDIA
GeForce RTX 3060 12 GB GPU. Notably, the response times increase with model size within
the Llama GPTQ series, from an average of 3.36 s for the Llama-1B model to 9.21 s for
the Llama-8B model. This trend highlights the expected scalability challenges as model
complexity grows; however, the performance remains within practical limits for many
hospital-related applications.

Conversely, vision-language models (VLMs) exhibit generally faster response times,
with the Qwen2-2B model achieving an average of 1.72 s. Even larger Qwen2-7B and Llava-
1.5 AWQ models maintain reasonable response times of 4.68 and 2.42 s, respectively, despite
increased variability. These results demonstrate that JAVIS can effectively manage both
smaller and moderately large models on consumer-grade hardware, ensuring versatility
and reliability in diverse hospital environments where high-end computational resources
may not be readily available. The minimum average time is 1.72 s for Qwen 7B, whereas
the maximum time is 9.21 s for Llama 8B. In all cases, the response time is always below
10 s, concluding JAVIS’s adaptability and robustness, making it a viable solution for a wide
range of medical and research applications under typical laboratory constraints.

In addition to the findings, the same experiment was performed in an A6000 50 Gb
GPU with a single-instance model in order to test the performance. The analysis showed
that even using the full capacity of a big card, response times do not vary greatly, reinforcing
that the versatile mode container is efficient for consumer-grade GPUs.

3.5. Compatibility

The compatibility and setup efficiency of the system were evaluated across various
environments, GPU configurations, driver versions, and CUDA versions, as detailed in
Table 3. The primary factor influencing setup time was the pre-installation status of the
NVIDIA Container Toolkit and Docker rather than the specific GPU driver or CUDA
versions used.



Appl. Sci. 2025, 15, 1796 19 of 32

Table 3. System setup and compatibility across different environments.

Environment GPU Configuration GPU Driver CUDA Version Process Time (s) Process Result Additional Requirements

Windows 11 x1 RTX 3060 12 GB 561.09 12.6 37 Successful No changes needed
Ubuntu 18.04 x4 A6000 50 GB 535.54.03 12.2 180 Successful Container Toolkit + Docker
Ubuntu 24.04 x1 RTX 3050 8 GB 535.183.01 12.2 32 Successful No changes needed
Ubuntu 24.04 x1 RTX 3050 8 GB 550.127.05 12.4 112 Successful Container Toolkit

3.5.1. Setup Time Analysis

Setup times varied based on whether the NVIDIA Container Toolkit and Docker
had already been installed. The fastest setup was achieved on Windows 11, complet-
ing the installation in approximately 37 s when containerization tools were pre-installed.
In contrast, the longest setup time of 3 min occurred on Ubuntu 18.04 when the NVIDIA
Container Toolkit and Docker needed to be installed during the deployment process. This
demonstrates that even without pre-installed containerization tools, the full installation
was accomplished swiftly, highlighting the system’s speed and ease of use.

3.5.2. Compatibility and Issues

Across all tested environments and configurations, no compatibility issues were
encountered. Deployments on Windows 11 and Ubuntu 24.04 with pre-installed container-
ization tools required no additional modifications, ensuring smooth and efficient setups.
The Ubuntu 18.04 setup, while necessitating the installation of the Container Toolkit and
Docker, was successfully completed without any compatibility concerns. The presence or
absence of the NVIDIA Container Toolkit and Docker was the sole determinant of the setup
time variations observed, with no adverse effects on system compatibility. The specific
versions of GPU drivers and CUDA did not materially affect the setup times, underscoring
that the primary factor was the presence of necessary containerization tools.

3.5.3. Overall Compatibility

The system demonstrated robust compatibility across all tested environments, GPU
configurations, driver versions, and CUDA versions. The absence of setup issues and
the ability to deploy efficiently in diverse setups, contingent on the installation status of
containerization tools, underscore the system’s versatility and reliability in real-world
scenarios. Ensuring that the NVIDIA Container Toolkit and Docker are pre-installed can
optimize setup efficiency, facilitating quicker and more seamless deployments.

3.6. Seamless Deployment

The results demonstrate JAVIS’ ability to seamlessly adapt to varying operational
requirements through the three recommended modality combinations. Each of them
is allowed to upgrade from their current stage in a prompt manner by running a few
commands in order to change modality, as shown in Appendix A (Figure A1).

• JAVIS Tailoring (Development JAVIS + Versatile Mode): In our case, the initial
tailoring phase was performed on a Windows 10 workstation located in an external
network environment. This setup provided convenient access to the latest libraries and
enabled rapid experimentation with new large language models (LLMs). By coupling
JAVIS development with the versatile mode, updates and tests were easily imple-
mented, ensuring that LLM evaluation and refinements could be conducted with
minimal effort.

• Personal/Team Serving (Development/Production JAVIS + Versatile Mode): Once
tailored, JAVIS was shipped to a small group of users running Ubuntu 18.04. Here,
the production variant was combined with the ersatile mode to allow straightforward



Appl. Sci. 2025, 15, 1796 20 of 32

manual adjustments, such as the adjustment of GPU allocation and switching of
LLMs as needed. Despite multiple users accessing the system, the resource overhead
remained stable. Even a single-instance model using the versatile mode proved
sufficient to support a modest yet efficient team workload.

• Hospital/Institutional Serving (Production JAVIS + Scaling Mode): To meet broader
institutional demands, the same Ubuntu 18.04 configuration was used to allow con-
nection to additional departments. JAVIS remained in production mode, and by
leveraging the container in scaling mode, it was possible to autoscale system resources
dynamically. Granting access to more departments or accommodating higher usage
no longer required complex reconfiguration. Instead, a few simple adjustments, such
as changing containers ensured seamless expansion to meet the institution’s growing
needs without incurring any noticeable performance overhead.

In summary, these results confirm the effectiveness of JAVIS’ modular and flexible de-
ployment approach. With minimal changes, the system is scaled smoothly from an individ-
ual workstation testing environment to serving multiple team members to institution-wide
access, demonstrating its robust adaptability and efficiency in real-world scenarios.

3.7. Monitoring

The JAVIS chat analytics dashboard successfully tracks user activity and system
performance over time. Figure 5 illustrates the aggregated chat usage metrics for JAVIS
on a monthly basis. The blue bar plot highlights the total number of messages sent per
day, showcasing peaks of high activity, particularly around 18 July, with over 90 messages.
In contrast, subsequent days demonstrate reduced usage, punctuated by smaller activity
spikes on 25 July, 1 August, and 7 August.

Figure 5. The figure illustrates JAVIS’ modular deployment capabilities across three levels of opera-
tional requirements. At Level 1 (Tailoring JAVIS), development JAVIS is combined with the versatile
mode to enable initial development and experimentation on individual workstations. Level 2 (Per-
sonal/Team Serving) demonstrates the combination of development/production JAVIS with the
versatile mode, supporting small teams with flexible resource adjustments and efficient manual
tuning. Finally, Level 3 (Hospital/Institutional Serving) combines production JAVIS with the scaling
Mode, allowing dynamic resource scaling to meet institutional demands seamlessly. These three
levels highlight JAVIS’ ability to transition smoothly from individual development environments
to team collaboration and large-scale institutional deployment while maintaining adaptability and
performance efficiency.



Appl. Sci. 2025, 15, 1796 21 of 32

In contrast, the line plot provides insights into each user’s trends, allowing them to
hide or show any specific user for better visibility, thus revealing consistent monitoring or
activity during the same intervals. Weekly, daily, and hourly reports are also available.

Additionally, the Ray performance dashboard ensures real-time performance moni-
toring, such as resource utilization, replica health, and model-serving loads, which aid in
maintaining optimal system performance.

These results demonstrate the system’s ability to capture user interaction patterns
while enabling proactive monitoring of infrastructure health and resource allocation.

3.8. Real-World Applications and the Impact of JAVIS in Hospital Workflows

JAVIS has played a critical role in enhancing physician efficiency, facilitating large-
scale clinical data labeling, and enabling AI-assisted research within secure hospital en-
vironments. The following subsections outline key applications where JAVIS has been
effectively utilized.

3.8.1. Improving Clinical Documentation and Decision Support

Efficient documentation and structuring of patient medical records are essential in
clinical workflows, particularly in emergency room (ER) settings. JAVIS was deployed in
ER discharge processes, where it facilitated the summarization of patient medical records,
reducing the time required for manual documentation. Physicians reported that these
AI-generated discharge summaries improved workflow efficiency, allowing them to focus
more on patient care rather than administrative tasks.

In addition, due to hospital networks operating in isolated environments without
Internet access, physicians reported struggling with medical knowledge retrieval, such
as web searching for specific disease symptoms. JAVIS has been used to retrieve medical
knowledge related to specific diseases and symptoms. While this was not used for diag-
nostic purposes, physicians reported that it was valuable for refreshing previously learned
information, such as disease symptoms or general medical knowledge, i.e., using it as an
internal network browser for non-critical situations.

Furthermore, the hospital’s electronic medical records (EMR) development team
leveraged JAVIS-hosted LLaMA 3.1 to reformat and structure unstructured EMR data,
significantly improving the readability and accessibility of patient records. This enabled
more efficient clinical decision-making, as physicians could more easily extract and interpret
relevant patient information.

These applications demonstrate JAVIS’s capacity to enhance documentation work-
flows, provide structured medical knowledge retrieval, and improve EMR usability, ad-
dressing key operational inefficiencies in clinical settings.

3.8.2. Scalable Clinical Data Labeling for AI Research

Developing AI-driven clinical models requires large-scale annotated datasets; however,
the deployment of fine-tuned models for disease classification, symptom extraction, and test
result identification has historically been constrained by hospital data privacy regulations
and the absence of on-premises infrastructure for LLM hosting. JAVIS addressed this limi-
tation by enabling the deployment of fine-tuned LLMs within the hospital network, facili-
tating the annotation of over 10,000 medical records for structured information extraction.



Appl. Sci. 2025, 15, 1796 22 of 32

This capability has been instrumental in supporting AI research for clinical information
retrieval and natural language processing (NLP) applications, as prior attempts to host
large-scale models within hospital networks had been infeasible due to infrastructure
constraints. JAVIS ensures that researchers can train, fine-tune, and deploy AI models in a
privacy-compliant manner, allowing hospitals to develop AI-driven tools without reliance
on external cloud services.

This use case highlights JAVIS’s role in bridging the gap between AI development
and hospital-based implementation, providing a secure, scalable solution for clinical data
processing and annotation.

3.8.3. AI-Assisted Research and Software Development in Restricted Environments

A significant challenge in hospital-based research environments is the lack of Inter-
net access within internal networks, which prevents researchers from utilizing external
AI-powered tools such as StackOverflow, ChatGPT, or cloud-based LLMs. Before the
deployment of JAVIS, researchers had to manually retrieve AI-generated code snippets
from external computers and transfer them via text files, significantly slowing down the
development process.

With the integration of JAVIS, researchers now have direct access to AI-powered coding
assistance within the hospital network, enabling them to generate, refine, and debug code
in real-time without reliance on external services. This has accelerated research productivity
and streamlined software development workflows. Furthermore, JAVIS has been utilized
in its own iterative improvement process, where LLM-generated code snippets have been
used to facilitate non-critical system updates, demonstrating its practical utility as an
AI-assisted development environment within secure hospital networks.

Additionally, the ability to host multiple models concurrently has enabled research
teams to conduct comparative studies on AI models using sensitive hospital data, an ap-
proach that was previously impossible due to cloud-based restrictions. By providing a
scalable, multi-model deployment infrastructure, JAVIS has facilitated research initiatives
requiring strict data privacy compliance, allowing hospitals to conduct LLM benchmarking
and validation studies without compromising patient confidentiality.

4. Discussion
The healthcare literature extensively explores the potential of large language mod-

els (LLMs) for improving patient care [19], diagnostics [20], and clinical workflows [21],
with much of the focus on research and theoretical applications and proposed integrations
into healthcare settings. However, practical deployment at scale within hospitals remains
underexplored. Although there are numerous studies on LLM deployment, these are
primarily non-healthcare-related and focus on purely technical aspects [22,23], such as
serving infrastructure and containerization [24]. These papers generally concentrate on
open-source software for LLM chat interfaces and do not address the specific challenges
faced by healthcare environments, such as data privacy, integration with legacy systems,
and the need for high reliability.

In contrast, the development and deployment of JAVIS address critical gaps in hospital-
based AI frameworks, demonstrating its potential as a transformative tool for healthcare
environments. While many existing frameworks focus on scalability or specific functionali-
ties, JAVIS uniquely integrates scalability, privacy compliance, and customization into a
holistic system tailored for hospitals. Its ability to operate entirely within closed internal
networks ensures compliance with stringent privacy regulations while delivering robust
AI solutions.



Appl. Sci. 2025, 15, 1796 23 of 32

4.1. Addressing Existing Framework Limitations

Most open-source tools available for LLM deployment are designed for online envi-
ronments, rendering them incompatible with hospital settings where offline operations are
mandatory due to privacy concerns. Additionally, current hospital-deployable systems of-
ten address privacy but lack comprehensive capabilities such as conversation management,
analytics, and seamless deployment across varying scales. Frameworks like RayLLM, while
supporting scaling, have limited functionalities, are outdated, and fail to integrate critical
elements like user-friendly interfaces, database connectivity, and feedback loops. JAVIS
overcomes these limitations with its modular and hospital-centric architecture, offering a
complete solution that is scalable, compliant, and customizable.

Comparative Analysis with Existing Frameworks

As part of our evaluation of JAVIS within hospital environments, we compared its core
features against alternative LLM deployment solutions (see Table A3). These solutions in-
clude RayLLM, OpenLLM, and H2O LLM Studio, each of which exhibits certain limitations
when considered for clinical use. In particular, OpenLLM and H2O LLM Studio rely heavily
on external cloud setups, limiting their feasibility in strictly offline or privacy-sensitive
settings. RayLLM partially addresses these concerns by enabling internal network deploy-
ment but lacks modern container maintenance and user interface support. In contrast,
JAVIS not only maintains complete on-premises control over data and workloads but also
integrates multi-LLM/VLM support and real-time monitoring, ensuring both scalability
and compliance with regulations akin to HIPAA. This holistic approach, summarized in
Table A3, positions JAVIS as the superior choice for healthcare institutions that require
robust, private, and customizable AI solutions.

4.2. Scalability and Hardware Constraints

In addition to technical considerations, practical cost implications are a key concern for
hospitals deploying large language models (LLMs) and vision-language models (VLMs).
Although JAVIS itself remains agnostic regarding specific GPUs or model architectures,
the computational requirements of underlying LLMs can be substantial. For instance,
running a 7–8B model often requires approximately 6–10 GB of GPU memory under 4-bit
quantization, an optimization strategy that helps reduce resource usage. As the number of
active users grows, so does the demand for additional GPU replicas to maintain acceptable
latency, thus influencing both the hardware outlay and operational expenditures (e.g.,
power and cooling).

Scalability tests demonstrated that JAVIS performs reliably even on older hardware
configurations, such as a four-A6000 GPU cluster. In peak-performance trials, it supported
up to 50 simultaneous users for 8B models, 100 users for 7B VLMs, and 150 users for 1B
LLMs with acceptable latency. This highlights the system’s robustness yet also underscores
a broader limitation: larger user bases require proportionally more GPU resources. No-
tably, in practical usage scenarios, real concurrency levels tend to be lower. For instance,
in our pilot environment for a 40-person lab, we utilized only half of a single A6000 card
(effectively 24 GB of GPU memory) and still maintained responsive performance, as not all
users simultaneously query the system at peak load.

Despite these demands, JAVIS’s modular design and orchestration via Ray allow
hospitals to scale resources incrementally. This approach mitigates the capital expenditure
required for immediate large-scale deployment, enabling a more gradual expansion as
adoption increases. Additionally, cost-saving strategies can be employed by leveraging
smaller or specialized models (e.g., 3B parameters) for routine inquiries, substantially
reducing memory and power consumption. We observed that a single 7–8B model instance



Appl. Sci. 2025, 15, 1796 24 of 32

can handle multiple concurrent users; in real-world conditions, user queries are typically
staggered, further lowering the need for constant peak performance.

Looking ahead, ongoing innovations in model distillation and quantization will con-
tinue to reduce the computational overhead associated with LLMs and VLMs. By maintain-
ing a container-based, software-centric architecture, JAVIS can seamlessly integrate these
more efficient models as they emerge. Consequently, hospitals can adopt a cost-effective,
future-proof strategy that aligns with both existing resource constraints and evolving
AI technologies.

4.3. Customization and Modularity

Customization within JAVIS is straightforward, facilitated by its stack of Vue.js for
front-end updates and Django for back-end management. The integrated feedback loop
enables departments to request specific functionalities, which can often be implemented
swiftly. For example, front-end and back-end changes for multimodality support required
approximately one week of development. Such flexibility illustrates JAVIS’s capability
to adapt to diverse departmental needs efficiently, although larger functionalities may
necessitate additional development time. Once deployed, the containerization ensures
seamless transitions from development to production environments, minimizing poten-
tial disruptions.

4.4. Privacy and Security

JAVIS adheres to strict privacy standards by operating entirely within a secure hospital
network, ensuring compliance with laws such as Korea’s Data 3 Laws and similar regula-
tions globally. Its reliance on existing hospital security measures, including encryption and
network isolation, guarantees the safeguarding of sensitive data. This approach has proven
effective in addressing privacy concerns without introducing vulnerabilities, making JAVIS
a reliable solution for data-sensitive environments.

4.5. Future Directions

JAVIS’s architecture is designed to remain future-proof, with minimal dependencies
in its containers to prevent compatibility issues. Its current integration of vLLM and Ray
orchestration ensures ongoing compatibility with emerging inference engines and scalable
AI technologies. Building on these foundations, several initiatives and research directions
are underway to further enhance JAVIS’s role in modern healthcare settings.

4.5.1. Multimodal and Specialized Models

One major focus involves training multimodal models capable of interpreting medical
images such as X-rays or MRIs and integrating these findings with textual data for more
comprehensive clinical decision support. By coordinating multiple specialized models,
e.g., a retriever for information extraction, a summarizer for condensing relevant data,
and a rule-based component for validation, JAVIS can deliver robust and safe results. Early
efforts demonstrate promise; for instance, over 10,000 medical records have already been
labeled using the JAVIS API, showcasing the framework’s potential for large-scale text
labeling and retrieval.

4.5.2. Advanced Orchestration and Agentic Pipelines

Moving forward, JAVIS aims to coordinate agentic pipelines that handle tasks in
sequence: summarization, prediction, data extraction, and structured formatting. By con-
necting specialized LLMs and VLMs for distinct sub-tasks, JAVIS will support complex
workflows tailored to various clinical or research scenarios. Future expansions of these
pipelines include combining LLM-based extraction of key medical terms with rule-based



Appl. Sci. 2025, 15, 1796 25 of 32

systems to mitigate the risk of hallucinations, ensuring higher accuracy and reliability in
hospital environments.

4.5.3. Continuous Adaptation and Resource Optimization

As GPU technologies evolve and LLMs become more energy-efficient, JAVIS will adapt
accordingly, offering a flexible and resource-conscious platform for hospital-scale AI deploy-
ments. The framework’s modular design allows hospitals to incrementally integrate newer
or smaller models without restructuring their entire AI infrastructure. This adaptability is
particularly beneficial for safeguarding long-term investments in hardware and staff training.

4.5.4. Speech-to-Text and Interactive Innovations

Future enhancements also include speech-to-text (STT) capabilities, enabling prac-
titioners to record and process doctor–patient interactions more interactively. Coupled
with chain-of-thought features, STT integration will support the automatic generation of
structured summaries or patient notes, further optimizing clinical workflows.

4.5.5. Envisioning JAVIS as a Hospital AI Powerhouse

Ultimately, we envision JAVIS as the central AI hub in modern hospitals, facilitating
the easy installation and adoption of future AI systems. By supporting new research on
specialized LLMs and VLMs, JAVIS will continue to deliver advanced reasoning, robust
data management, and intuitive interfaces. For instance, the ongoing development of
English–Korean retrieval systems tailored for medical use, where symptoms, diagnoses,
and test results can be accurately extracted, illustrates the platform’s potential to power
next-generation retrieval-augmented generation (RAG) architectures. As these projects
evolve, JAVIS’s user interface and container-based deployment model will remain easily
configurable, ensuring that feedback loops and continuous improvements keep pace with
hospital demands.

By leveraging multimodal capabilities, scalable orchestration, and a forward-compatible
design, JAVIS positions itself as a flexible and indispensable tool for healthcare institutions
seeking to harness the transformative potential of AI in a secure, private, and continually
evolving environment.

4.6. Real-World Insights and Challenges

Deploying JAVIS in a hospital environment revealed significant insights. The strict
approval processes required for enabling IP access initially delayed adoption but under-
scored the necessity of LLMs in strictly offline settings, where internet access is unavailable
or highly restricted. In such environments, LLMs became indispensable resources for
addressing coding issues, solving EMR-related tasks, and providing quick access to crit-
ical knowledge. Physicians, in particular, benefited from the system’s capacity to assist
with clinical queries and memory recall, thereby enhancing productivity and informed
decision-making across multiple departments.

Despite the clear value offered by offline LLMs, user adaptation and staff training
also emerged as key considerations during JAVIS’s pilot deployments. Early prototypes
presented usability challenges, including a chat interface that did not auto-scroll to new
messages, a non-expandable input field, and a lack of clarity around API integration. These
design limitations initially hindered seamless integration into day-to-day workflows and
required additional support from IT teams. However, real-time feedback mechanisms
led to continuous improvements: modern interfaces, intuitive drag-and-drop file upload,
and clearer documentation for API usage. Consequently, new users now report minimal
onboarding time, thanks to an interface that closely resembles common chat platforms.



Appl. Sci. 2025, 15, 1796 26 of 32

Formal training programs or lengthy onboarding manuals have proved largely un-
necessary, reducing both the time and costs typically associated with user support. Most
inquiries today focus on file format compatibility and specialized features rather than
navigating the system itself. Nonetheless, IT support and concise documentation remain
essential for advanced functionalities, such as custom integrations or specialized data
parsing, which some researchers and clinicians require. By maintaining a user-centric
design philosophy and accessible support resources, JAVIS ensures long-term adoption
and sustained engagement across diverse hospital departments.

4.7. Conclusions

JAVIS represents a paradigm shift in hospital-based AI deployment by bridging the
gap between scalability, privacy, and customization. Its ability to operate offline while
delivering state-of-the-art AI functionalities positions it as a critical tool for modern health-
care institutions. Although challenges such as hardware limitations and time-intensive
feature additions remain, JAVIS’s robust architecture and future-oriented design ensure its
adaptability and sustainability as AI technologies continue to advance.

5. Conclusions
Summary

This paper introduces JAVIS, a robust and scalable deployment framework specifically
designed to address the unique challenges of integrating large language models (LLMs)
and vision-language models (VLMs) into healthcare environments. By ensuring complete
privacy compliance and delivering reliable customization and scalability capabilities, JAVIS
bridges significant gaps in existing solutions. Its modular architecture and seamless deploy-
ment process enable it to adapt to varying operational scales, from individual workstations
to hospital-wide systems, while maintaining high performance and reliability.

JAVIS has demonstrated its utility in enhancing hospital workflows through real-time
user feedback and enabling analytics-driven optimization. With a future-oriented design,
it is poised to integrate emerging AI advancements, including speech-to-text capabilities,
ensuring its continued relevance and impact. By providing an open-source, hospital-centric
solution, JAVIS sets a new benchmark for deploying advanced AI in the healthcare sector,
ultimately contributing to improved patient outcomes and operational efficiency.

Author Contributions: Conceptualization, J.A. and W.C.C.; methodology, J.A. and W.C.C.; soft-
ware, J.A.; validation, J.A. and W.C.C.; formal analysis, J.A.; investigation, J.A.; resources, W.C.C.;
writing—original draft preparation, J.A.; writing—review and editing, J.A.; visualization, J.A.; super-
vision, W.C.C.; project administration, W.C.C.; funding acquisition, W.C.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by a grant of the Korea Health Technology R&D Project
through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health
& Welfare, Republic of Korea (grant number : HI22C0452).

Data Availability Statement: The data used in this research was included in the Appendix A in
Tables A2 and A3.

Acknowledgments: This study was possible due to the grant of Korea Health Technology R&D
Project through the Korea Health Industry Development Institute (KHIDI).

Conflicts of Interest: The authors declare no conflicts of interest.



Appl. Sci. 2025, 15, 1796 27 of 32

Abbreviations

JAVIS Joint AI Versatile Implementation System
LLM Large Language Model
VLM Vision-Language Model
GPTQ Generalized Post-Training Quantization
AWQ Activation-aware Weight Quantization
HIPAA Health Insurance Portability and Accountability Act
CDW Common Data Warehouse
GPU Graphics Processing Unit
PC Personal Computer
AI Artificial Intelligence
API Application Programming Interface

Appendix A

Table A1. Performance comparison: single-instance vs. replica models.

Model Name Type 75 Users 100 Users 125 Users 150 Users

Single-Instance Models

qwen2-2b-1-replica VLM 35.6471 ± 21.5337 48.3445 ± 27.6978 65.3267 ± 35.5868 89.1086 ± 48.6269
qwen2-7b-1-replica VLM 57.4285 ± 30.0506 72.2567 ± 42.4952 82.1418 ± 46.4424 109.6259 ± 59.9394
llava-13b-1-replica VLM 52.1012 ± 29.8732 68.8172 ± 38.2909 90.2259 ± 50.8535 106.5157 ± 60.0830
llama-1b-1-replica LLM 62.6997 ± 35.7966 67.5163 ± 42.8536 97.8888 ± 55.8919 121.9497 ± 73.0799
llama-3b-1-replica LLM 86.7498 ± 50.5465 102.4427 ± 55.4608 130.1832 ± 73.8914 153.1903 ± 85.6271
llama-8b-1-replica LLM 119.6549 ± 66.4862 146.5137 ± 82.7816 188.2520 ± 115.2399 237.6892 ± 131.8673

Multiple-Instance Models (Ray)

qwen2-2b-20-replica VLM 9.5376 ± 4.9529 12.7513 ± 6.4241 15.4664 ± 6.9279 19.9774 ± 10.2574
qwen2-7b-12-replica VLM 14.2411 ± 6.8963 17.4584 ± 10.2561 18.2418 ± 9.7270 22.9139 ± 12.3596
llava-13b-12-replica VLM 12.9215 ± 5.9919 16.4164 ± 8.3392 23.0050 ± 12.2063 26.2898 ± 13.1351
llama-1b-20-replica LLM 12.3633 ± 7.5692 19.8064 ± 10.1389 20.3427 ± 10.7773 26.2847 ± 13.4261
llama-3b-20-replica LLM 22.6402 ± 10.9646 27.8081 ± 14.8628 36.1693 ± 16.2197 42.9934 ± 22.5223
llama-8b-12-replica LLM 31.2869 ± 18.0103 35.6251 ± 19.3717 47.2479 ± 26.6813 55.7640 ± 31.7094



Appl. Sci. 2025, 15, 1796 28 of 32

Table A2. Prompts used for evaluating consumer-grade GPUs.

ID Prompt
1 What are the symptoms of diabetes?
2 Explain the difference between type 1 and type 2 diabetes.
3 What are the side effects of ibuprofen?
4 How does a vaccine work to protect against viruses?

5

A 45-year-old male patient presents with persistent fatigue, unexplained weight
loss over the past three months, and occasional night sweats. He reports having
a low-grade fever for the past two weeks. Upon physical examination, palpable
lymph nodes were found in the cervical and axillary regions. Blood tests revealed
mild anemia and an elevated ESR. What are the possible differential diagnoses,
and what further investigations should be performed?

6 Explain the anatomy of the human heart.

7

A 35-year-old female presents to the emergency department with severe, sharp
right lower abdominal pain that started suddenly 12 h ago. She also reports nausea
and vomiting but denies diarrhea. She has no history of chronic conditions, but her
last menstrual period was two weeks ago. Physical examination reveals tenderness
in the right lower quadrant and positive rebound tenderness. Vital signs show a
mild fever of 38°C. Based on this presentation, what is the most likely diagnosis,
and what diagnostic tests should be ordered to confirm it?

8 Describe the process of organ transplantation.

9

A 60-year-old male with a history of poorly controlled type 2 diabetes presents
with a non-healing ulcer on the sole of his foot. The ulcer has been present for three
weeks and has started emitting a foul-smelling discharge. The patient also reports
intermittent fever and swelling around the affected area. Physical examination
reveals erythema and warmth around the ulcer, along with signs of cellulitis. What
is the likely diagnosis, and what steps should be taken for immediate management
and long-term care?

10 How does chemotherapy treat cancer?
11 List the primary functions of the liver.

12

A 22-year-old college student reports to the clinic with a 5-day history of fever,
severe headache, and a stiff neck. The patient also complains of sensitivity to
light and has vomited twice. No recent travel or history of infectious disease
is noted, but he mentions being in close contact with a roommate who had flu-
like symptoms a week ago. Physical examination reveals positive Kernig and
Brudzinski signs. What is the suspected condition, and how should this case be
managed urgently?

13 What is the difference between an MRI and a CT scan?
14 How is asthma diagnosed and treated?
15 Discuss the causes and treatments for chronic pain.

16

A 50-year-old woman comes in with complaints of chest tightness and shortness of
breath that worsens on exertion and improves with rest. She has been experiencing
this for the past three months. She has a history of hypertension and takes medica-
tion irregularly. Physical examination reveals a systolic murmur heard best at the
apex and radiating to the axilla. An ECG shows left ventricular hypertrophy. What
is the likely diagnosis, and what diagnostic tests and treatment options should be
considered?

17 Describe the stages of wound healing.
18 What is the role of insulin in the body?
19 How do antibiotics work to fight infections?
20 What are the common causes of anemia?



Appl. Sci. 2025, 15, 1796 29 of 32

Table A3. Images and their corresponding prompts used for testing reponse times in consumer GPUs.

Image Prompts

1. Identify any abnormalities in this chest X-ray, such
as pneumonia, tuberculosis, or lung cancer.

2. Diagnose and describe the next steps for a patient
with the following X-ray.

1. Locate and classify any brain tumors in this
MRI scan.

2. Outline the regions of the tumor in this MRI scan.

1. Determine the stage of the kidney stone visible in
this CT scan.

2. What do you see in the CT Scan?

1. Differentiate between melanoma, eczema, and pso-
riasis in this image.

2. Does this skin condition suggest?

1. Detect signs of diabetic retinopathy or macular de-
generation in this retinal image.

2. Classify abnormalities in this retinal image, such as
retinal detachment or vascular occlusion.

1. Locate cavities, impacted teeth, or signs of periodon-
tal disease in this dental X-ray.

2. Analyze this dental X-ray for signs of tooth decay
or bone loss.

1. Analyze this low-quality ultrasound image and pro-
vide a diagnosis.

2. Identify abnormalities in this fetal ultrasound im-
age.



Appl. Sci. 2025, 15, 1796 30 of 32

Table A3. Cont.

Image Prompts

1. How many pairs of scissors are there in the image?
2. Classify the surgical instruments visible in this image and

their use.

1. Identify fractures and classify their types in this trauma
X-ray.

2. In which part of the body has the trauma happened?
Please go into detail.

1. Classify this X-ray of a dog for signs of hip dysplasia.
2. Identify fractures or abnormalities in this veterinary

X-ray.

Table A4. Comparative analysis of JAVIS vs. alternative LLM deployment solutions. JAVIS is
the only solution that successfully integrates on-premises, privacy-compliant AI deployment with
multi-LLM/VLM support, real-time monitoring, and scalable orchestration via Ray Serve and VLM.
Unlike OpenLLM and H2O LLM Studio, which rely on external cloud setups and lack hospital-wide
scalability, JAVIS ensures full data privacy while providing a flexible and customizable architecture
tailored to healthcare needs. Compared to RayLLM, JAVIS not only maintains the reliability of Ray
Serve and VLM but also modernizes container maintenance for long-term support while introducing
a user-friendly UI for streamlined hospital integration. JAVIS is the superior choice for deploying AI
within healthcare institutions, overcoming the privacy, scalability, and maintenance barriers faced by
competing solutions.

Feature JAVIS (Fully Compliant) RayLLM OpenLLM H2O LLM Studio
Target
Audience Healthcare-focused Internal network deployment General-purpose developers Developers/Researchers

Privacy and
Compliance

✓ (Critical Feature)
Closed-network,
HIPAA-like security

✓ (Critical Feature)
Closed-network, HIPAA-like
security

✗ (Critical Limitation)
Requires external cloud
setups

✗ (Critical Limitation)
Requires external cloud
setups

Long-Term
Support

✓ (Critical Feature) Actively
Supported

✗ (Critical Limitation)
Archived (May 2024)

✓ (Critical Feature) Actively
Supported

✓ (Critical Feature) Actively
Supported

Deployment
Flexibility

✓ Scales from PCs to
hospitals (Entire Software
Stack)

✓ Scales from PCs to
hospitals (Just Inference
Engine)

✗ Only Available as Cloud
Server Endpoint

✗ Only Available as Cloud
Server Endpoint

Scaling ✓ Multi-replica/Multi-model ✓ Multi-replica/Multi-model ✓ Online Only
Multi-replica/Multi-model ✗ Lacks Scaling Support

LLM/VLM
Support ✓ Multi-LLM/VLM ✓ Multi-LLM/VLM ✗ Open-source LLMs only ✗ Limited to single LLM

deploy

Monitoring ✓ Advanced analytics + Ray
dashboard

≈ Just replica and status
monitoring

≈ Just replica and status
monitoring

≈ Just static experiment
metrics

Tailoring and
Customiza-
tion

✓ Fully customizable for
hospital tailoring

✗ No UI (just inference
engine)

✗ Limited to pre-defined
GUIs

✗ Limited to pre-defined
GUIs

UI
Availability ✓ Fully customizable UI ✗ No UI (CLI-based only) ✓ Basic Chat UI ✓ Basic Chat UI (pre-defined)



Appl. Sci. 2025, 15, 1796 31 of 32

(a)

(b)

Figure A1. JAVIS monitoring tools. The upper image displays the JAVIS analytics regarding user
usage. The lower image represents a Ray dashboard representing the cluster and replica status of
each LLM and VLM. (a) JAVIS chat analytics of usage per user monthly. The blue bar plot describes
the total messages per day accumulated between users. The line plot describes, in this case, the
amount of usage by the administrator per day. (b) Ray analytics displaying the current loaded GPU
and current usage.

References
1. Nazi, Z.A.; Peng, W. Large Language Models in Healthcare and Medical Domain: A Review. Informatics 2024, 11, 57. [CrossRef]
2. Eloundou, T.; Manning, S.; Mishkin, P.; Rock, D. GPTs are GPTs: Labor market impact potential of LLMs. Science 2024,

384, 1306–1308. [CrossRef] [PubMed]
3. Cheong, I.; Xia, K.; Feng, K.K.; Chen, Q.Z.; Zhang, A.X. (A) I Am Not a Lawyer, But. . . : Engaging Legal Experts towards

Responsible LLM Policies for Legal Advice. In Proceedings of the 2024 ACM Conference on Fairness, Accountability, and
Transparency, Rio de Janeiro Brazil, 3–6 June 2024; pp. 2454–2469.

4. Adeniyi, A.O.; Arowoogun, J.O.; Okolo, C.A.; Chidi, R.; Babawarun, O. Ethical considerations in healthcare IT: A review of data
privacy and patient consent issues. World J. Adv. Res. Rev. 2024, 21, 1660–1668. [CrossRef]

5. Soenksen, L.R.; Ma, Y.; Zeng, C.; Boussioux, L.; Villalobos Carballo, K.; Na, L.; Wiberg, H.M.; Li, M.L.; Fuentes, I.; Bertsimas, D.
Integrated multimodal artificial intelligence framework for healthcare applications. NPJ Digit. Med. 2022, 5, 149. [CrossRef]
[PubMed]

http://doi.org/10.3390/informatics11030057
http://dx.doi.org/10.1126/science.adj0998
http://www.ncbi.nlm.nih.gov/pubmed/38900883
http://dx.doi.org/10.30574/wjarr.2024.21.2.0593
http://dx.doi.org/10.1038/s41746-022-00689-4
http://www.ncbi.nlm.nih.gov/pubmed/36127417


Appl. Sci. 2025, 15, 1796 32 of 32

6. Cardoso, M.J.; Li, W.; Brown, R.; Ma, N.; Kerfoot, E.; Wang, Y.; Murrey, B.; Myronenko, A.; Zhao, C.; Yang, D.; et al. Monai:
An open-source framework for deep learning in healthcare. arXiv 2022, arXiv:2211.02701.

7. Karabacak, M.; Margetis, K. Embracing large language models for medical applications: Opportunities and challenges.
Cureus 2023, 15, e39305. [CrossRef] [PubMed]

8. Yang, R.; Tan, T.F.; Lu, W.; Thirunavukarasu, A.J.; Ting, D.S.W.; Liu, N. Large language models in health care: Development,
applications, and challenges. Health Care Sci. 2023, 2, 255–263. [CrossRef] [PubMed]

9. bin Uzayr, S.; Cloud, N.; Ambler, T.; bin Uzayr, S.; Cloud, N.; Ambler, T. Vue. js. In JavaScript Frameworks for Modern Web
Development: The Essential Frameworks, Libraries, and Tools to Learn Right Now; Apress: New York, NY, USA, 2019; pp. 523–539.

10. Forcier, J.; Bissex, P.; Chun, W.J. Python Web Development with Django; Addison-Wesley Professional: Hoboken, NJ, USA, 2008.
11. DeJonghe, D. Nginx Cookbook; O’Reilly Media: Sebastopol, CA, USA, 2020.
12. Owens, M.; Allen, G. SQLite; Apress LP New York: New York, NY, USA, 2010.
13. Lubanovic, B. FastAPI; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2023.
14. Kwon, W.; Li, Z.; Zhuang, S.; Sheng, Y.; Zheng, L.; Yu, C.H.; Gonzalez, J.E.; Zhang, H.; Stoica, I. Efficient Memory Management

for Large Language Model Serving with PagedAttention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, Koblenz, Germany, 23–26 October 2023.

15. Karau, H.; Lublinsky, B. Scaling Python with Ray; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2022.
16. Frantar, E.; Ashkboos, S.; Hoefler, T.; Alistarh, D. Gptq: Accurate post-training quantization for generative pre-trained transform-

ers. arXiv 2022, arXiv:2210.17323.
17. Lin, J.; Tang, J.; Tang, H.; Yang, S.; Chen, W.M.; Wang, W.C.; Xiao, G.; Dang, X.; Gan, C.; Han, S. AWQ: Activation-aware Weight

Quantization for On-Device LLM Compression and Acceleration. Proc. Mach. Learn. Syst. 2024, 6, 87–100. [CrossRef]
18. Miell, I.; Sayers, A. Docker in Practice; Simon and Schuster, Manning: Shelter Island, NY, USA, 2019.
19. Busch, F.; Hoffmann, L.; Rueger, C.; van Dijk, E.H.; Kader, R.; Ortiz-Prado, E.; Makowski, M.R.; Saba, L.; Hadamitzky, M.; Kather,

J.N.; et al. Systematic Review of Large Language Models for Patient Care: Current Applications and Challenges. medRxiv 2024.
[CrossRef] [PubMed]

20. Hager, P.; Jungmann, F.; Holland, R.; Bhagat, K.; Hubrecht, I.; Knauer, M.; Vielhauer, J.; Makowski, M.; Braren, R.; Kaissis, G.; et al.
Evaluation and mitigation of the limitations of large language models in clinical decision-making. Nat. Med. 2024, 30, 2613–2622.
[CrossRef] [PubMed]

21. Rao, A.; Pang, M.; Kim, J.; Kamineni, M.; Lie, W.; Prasad, A.K.; Landman, A.; Dreyer, K.; Succi, M.D. Assessing the utility of
ChatGPT throughout the entire clinical workflow: Development and usability study. J. Med. Internet Res. 2023, 25, e48659.
[CrossRef] [PubMed]

22. Ye, Z.; Ying, R. An AI-aware Orchestration Framework for Cloud-based LLM Workloads. In Proceedings of the 2024 IEEE 10th
International Conference on Edge Computing and Scalable Cloud (EdgeCom), Shanghai, China, 28–30 June 2024; pp. 22–24.
[CrossRef]

23. Colombi, L.; Gilli, A.; Dahdal, S.; Boleac, I.; Tortonesi, M.; Stefanelli, C.; Vignoli, M. A Machine Learning Operations Platform for
Streamlined Model Serving in Industry 5.0. In Proceedings of the NOMS 2024—2024 IEEE Network Operations and Management
Symposium, Seoul, Republic of Korea, 6–10 May 2024; pp. 1–6. [CrossRef]

24. Turnbull, J. The Docker Book: Containerization Is the New Virtualization; James Turnbull, Lulu: Raleigh, NC, USA, 2014.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.7759/cureus.39305
http://www.ncbi.nlm.nih.gov/pubmed/37378099
http://dx.doi.org/10.1002/hcs2.61
http://www.ncbi.nlm.nih.gov/pubmed/38939520
http://dx.doi.org/10.1145/3714983.3714987
http://dx.doi.org/10.1038/s43856-024-00717-2
http://www.ncbi.nlm.nih.gov/pubmed/39838160
http://dx.doi.org/10.1038/s41591-024-03097-1
http://www.ncbi.nlm.nih.gov/pubmed/38965432
http://dx.doi.org/10.2196/48659
http://www.ncbi.nlm.nih.gov/pubmed/37606976
http://dx.doi.org/10.1109/EdgeCom62867.2024.00011
http://dx.doi.org/10.1109/NOMS59830.2024.10575103

	Introduction
	Background
	Context and Existing Limitations
	Novelty and Contributions

	Methods
	Overview of Key Barriers and JAVIS Objectives
	Customization
	Deploying the Customization
	Continuous Feedback Loop and Deployment Strategy in JAVIS

	Scaling and Reliability
	Scaling Technological Foundations
	Containerization Strategy
	Versatile Mode (Local or Small-Scale Deployments)
	Scaling Mode (High-Volume Production)

	Scalability and Reliability Test Setup
	Experimental Setup: High-Volume Stress Testing with a Multi-GPU Setup
	Test Procedure
	Scalability Assessment
	Performance Metrics

	Experimental Setup: Efficiency Evaluation on a Standard Consumer PC
	Compatibility Challenges
	Docker and Docker Compose as Solutions
	JAVIS Deployment Stack: Docker Compose
	Benefits
	Flexible LLM Deployment: Docker Containers
	Benefits
	JAVIS Architecture for Compatibility

	Experimental Setup: Compatibility Testing
	Seamless Deployment
	Monitoring
	JAVIS Analytics Dashboard
	Ray Performance Dashboard
	Privacy and Regulatory Compliance


	Results
	Customization
	Foundational Features
	Multi-LLMs
	Multi-VLMs
	Chain of Thought
	Rich Text Formatting
	Expandable Input Box and Auto-Scrolling
	File Uploads
	Contextual Question Answering
	Temperature and Top-p Modifiers
	API Documentation

	Requested Features
	EMR Team: Conversation Download
	Researchers: Code Formatting
	Physicians: Copy Button

	Scaling and Reliability
	Scaling Mode: Scaling and Reliability at Scale
	Stress Testing
	Analysis of Stress Testing Results
	Versatile Mode: Performance on Consumer GPUs

	Compatibility
	Setup Time Analysis
	Compatibility and Issues
	Overall Compatibility

	Seamless Deployment
	Monitoring
	Real-World Applications and the Impact of JAVIS in Hospital Workflows
	Improving Clinical Documentation and Decision Support
	Scalable Clinical Data Labeling for AI Research
	AI-Assisted Research and Software Development in Restricted Environments


	Discussion
	Addressing Existing Framework Limitations
	Scalability and Hardware Constraints
	Customization and Modularity
	Privacy and Security
	Future Directions
	Multimodal and Specialized Models
	Advanced Orchestration and Agentic Pipelines
	Continuous Adaptation and Resource Optimization
	Speech-to-Text and Interactive Innovations
	Envisioning JAVIS as a Hospital AI Powerhouse

	Real-World Insights and Challenges
	Conclusions

	Conclusions
	Appendix A
	References

