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Abstract: Accurate traffic sign recognition is one of the core technologies of intelligent
driving systems, which face multiple challenges such as insufficient light and shadow
interference at night. In this paper, we improve the YOLOv5 model for small, fuzzy, and
partially occluded traffic sign targets at night and propose a high-precision nighttime traffic
sign recognition method, “NTS-YOLO”. The method firstly preprocessed the traffic sign
dataset by adopting an unsupervised nighttime image enhancement method to improve the
image quality under low-light conditions; secondly, it introduced the Convolutional Block
Attention Module (CBAM) attentional mechanism, which focuses on the shape of the traffic
sign by weighting the channel and spatial features inside the model and color to improve
the perception under complex background and uneven illumination conditions; and finally,
the Optimal Transport Assignment (OTA) loss function was adopted to optimize the
accuracy of predicting the bounding box and thus improve the performance of the model
by comparing the difference between two probability distributions, i.e., minimizing the
difference. In order to evaluate the effectiveness of the method, 154 samples of typical traffic
signs containing small targets and fuzzy and partially occluded traffic signs with different
lighting conditions at nighttime were collected, and the data samples were subjected to
the CBAM, OTA, and a combination of the two methods, respectively, and comparative
experiments were conducted with the traditional YOLOv5 algorithm. The experimental
results showed that “NTS-YOLO” achieved a significant performance improvement in
nighttime traffic sign recognition, with a mean average accuracy improvement of 0.95% for
the target detection of traffic signs and 0.17% for instance segmentation.

Keywords: YOLO; deep learning; traffic road signs; detection; recognition

1. Introduction
With the rapid progress of autonomous driving technology and the increasing maturity

of smart connected vehicles, safe and efficient night driving is increasingly dependent on
the support of artificial intelligence. However, complex and unstable lighting conditions
at night have a huge impact on the visibility and recognition rate of traffic signs. Under
the combined effect of streetlights, headlights, and other light sources, it becomes more
difficult to recognize traffic signs with small, fuzzy, and occluded targets, especially for
automated driving systems that are highly dependent on visual sensors. Therefore, for
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automatic driving systems, how to accurately recognize various traffic signs in nighttime
environments is undoubtedly a key issue that needs to be continuously studied and solved
in this paper.

Currently, the automatic detection and recognition of traffic signs is a key application in
the field of computer vision and image processing, which involves the automated detection
and interpretation of traffic signs in road images and video streams. This technology is
capable of recognizing various types of traffic signs, such as speed limits, prohibition
signs, and directional signs, thus providing important real-time information and warnings
for driving. As a core component of self-driving car research, this technology area has
been extensively studied, but in traditional research, the detection of traffic signs mainly
relies on color segmentation [1–6] and shape detection [7–10] methods, and the traditional
methods for the recognition of traffic signs are mainly template matching [11–13] and
manual feature extraction [14–18]. However, these traditional methods have limitations in
detection and recognition accuracy, sensitivity to changes in illumination and the viewing
angle, and the ability to handle complex scenes. In recent years, the rapid development
of deep learning technology has revolutionized traffic sign detection and recognition, and
significant research results and progress have been achieved in the application of traffic
sign detection and recognition by virtue of its efficient capability in image recognition
and processing.

In traffic sign detection, Girshick et al. [19] proposed a candidate region-based target
detection algorithm, RCNN, which utilizes a deep convolutional neural network to achieve
target detection and semantic segmentation but suffers from the problem of repetitive
feature extraction and storage and has low computational efficiency; subsequently, He
et al. [20] proposed a spatial pyramid pooling network (SPP-Net) to improve the processing
speed and quality of CNN feature extraction by computing the entire input convolutional
feature mapping of the image and extracting features from different candidate regions
on the feature map, while using a spatial pyramid pooling layer to eliminate the fixed
size constraints of the network, thus improving the processing speed and the quality of
CNN feature extraction. However, the training of SPP-Net is multi-stage rather than an
end-to-end approach; the proposal of Fast RCNN [21] achieves end-to-end detection trained
on shared convolutional features, and its VGG16 network is nine times faster than RCNN
and three times faster compared to SPP-Net. Faster RCNN achieves a higher mAP by
introducing the RPN [22] and FPN, which further improves the detection accuracy for
small targets. In order to obtain a detection bounding box with a more accurate location,
Jiang et al. proposed the IoU-Net network [23], which uses the network to train the IoU
branch and extracts the localization confidence of each bounding box, which improves
the accuracy of localization. But the IoU-Net network does not have a strong correlation
with the commonly used loss, and it cannot accurately differentiate the alignment of the
two objects. For this reason, Rezatofighi et al. [24] proposed to use the GIoU loss function
as the loss of the bounding box regression branch, which can improve the accuracy by 2%
to 14%. Aiming at the detection of multi-scale targets and solving the real-time problem
of detection, Wang J. [25] proposed an improved feature pyramid model using adaptive
attention modules (AAMs) and feature enhancement modules (FEMs) to reduce the loss of
information and enhance the characterization of the feature pyramid, which improved the
detection performance for multi-scale targets in the YOLOv5 network under the premise
of ensuring real-time detection. For the detection of small traffic sign targets, Yongliang
Zhang [26] et al. designed multi-scale feature extraction, cascade feature fusion, and
attention mechanism modules based on the YOLOv4 algorithm to address the complexity
of traffic scene images and variations in traffic sign sizes, thereby enhancing the algorithm’s
localization and classification capabilities. Lanmei Wang [27] et al. proposed the CDFF
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and CDFF-s traffic sign detection models, which achieve accurate small target detection
without sacrificing the detection accuracy of medium and large objects. Jianming Zhang [28]
et al. proposed a new neck-based multilayer interactive residual feature fusion network
(MIRFFN), which effectively combines the spatial information of low-level feature maps
with the semantic information of high-level feature maps and refines features by fusing
different layers of the feature maps. However, for nighttime traffic sign detection in the
face of small, fuzzy, and overlapping parts of the target, the existing model may still have
inaccurate recognition and localization, and further research is required on more effective
feature extraction and target localization methods.

In terms of automatic recognition, the studies of Fang [29], Ciresan [30], and Qian [31]
demonstrated the efficient recognition and robustness of CNN-based methods on the GT-
SRB dataset. Despite the high accuracy of these three networks, the activation functions
they used were computationally inefficient and required a large number of multiplications
on the hardware. In the study by Aghdam et al. [32], in order to reduce the amount of
computation, the ReLU activation function and optimized network structure were used to
divide the intermediate convolutional pooling layer into two groups, which reduced the
number of parameters and improved the traffic sign recognition accuracy and real-time
performance so that the recognition rate reached 99.51%. Xie et al. [33] used a cascaded con-
volutional neural network for traffic sign recognition. The proposed recognition algorithm
divides the TSR into two phases: in the first phase, the network is trained according to the
class labels of the signs, and the second phase trains the network on the shape and text of
each class of signs. Although the recognition accuracy of this class of algorithms is high,
the required running time is long and does not meet the real-time requirements of practical
systems. Accordingly, Yi Shi [34] proposed a nighttime target recognition method based
on infrared thermal imaging and the YOLOv3 target recognition framework, but its target
recognition framework is not ideal for target recognition with overlapping, occlusion, and
other interfering factors. To address the above problems, Qu S et al. [35] introduced the
coordinate attention (CA) mechanism in the backbone network, used prediction headers to
extract fine-grained features, and improved the accuracy of bbox regression by improving
the localization loss function CIoU using Alpha-IoU. Wang Q et al. [36] used a dynamic
label assignment strategy, Simple Optimal Transmission Assignment (SimOTA), in the label
assignment process and, for the target size problem, proposed a feature fusion network,
H-PFANet, to improve the recognition rate of overlapping and occlusion phenomena.
Liu H et al. [37] introduced an optimization algorithm called ETSR-YOLO, which firstly
improved the PANet of YOLOv5s by generating an additional high-resolution feature
layer to enhance the multi-scale feature fusion and improve the recognition of small-sized
objects; secondly, two improved C3 modules were introduced to suppress the background
noise interference and enhance the feature extraction of the network; and finally, in the
postprocessing stage, a Wise-IoU (WIoU) function was introduced to improve the learning
ability and robustness of the algorithm. Yan Hai et al. [38] proposed a dedicated deep
learning model that enhances the recognition of blurred traffic signs by using multi-scale
convolutional stacking in the input layer. They analyzed the recognition performance of
indication signs, prohibition signs, speed limit signs, and warning signs under different
levels of occlusion based on the Chinese Traffic Sign Database. However, existing detection
methods face issues such as slow result acquisition and low accuracy. To address these
issues, G. Song [39] proposed an improved network based on lightweight convolutional
neural networks, which improved the training speed of the network and completed traffic
sign recognition faster and more accurately. Wenju Li et al. [40] proposed a traffic sign
recognition algorithm that combines a CNN and an extreme learning machine (ELM).
This method utilizes ResNet50 to extract image features, uses a region proposal network
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(RPN) to generate proposals, and then classifies them using ELM, followed by regression
prediction through a fully connected layer. Lin Shan et al. [41] proposed a traffic sign
detection method based on a lightweight multi-scale feature fusion network. Shuen Zhao
et al. [42] proposed a lightweight convolutional neural network recognition method for
multi-interference scenarios. This approach enhances images through Gamma correction
and histogram equalization, merges MobileNet-V2 and DeepLab-V3+ for segmentation,
and finally uses Lw-CNN for the adaptive recognition of traffic signs and markings. How-
ever, the above research mainly focused on daytime scenes and research is lacking on
nighttime scenes.

In summary, there is a relative lack of research on nighttime traffic sign detection
and recognition, mainly focusing on daytime conditions. However, the complex and
unstable lighting conditions at night result in features that are relied upon for daytime
vehicle detection to be ineffective in nighttime environments, especially in long-distance,
fuzzy, and partially occluded situations where the traffic sign recognition accuracy is not
high. Therefore, this study improved traffic sign recognition methods, especially their
performance in nighttime environments. By optimizing and adjusting advanced algorithms
such as YOLO, combined with the in-depth analysis and processing of local nighttime
traffic data, the system’s recognition accuracy and robustness under low-light conditions
were improved, thus ensuring safe driving in nighttime environments and providing more
reliable technical support for self-driving cars.

2. Methods
In this paper, we propose a nighttime traffic sign recognition method, “NTS-YOLO”,

which consists of three main parts, as shown in Figure 1. First, this paper adopted the
unsupervised nighttime image enhancement technique proposed by Yeying Jin et al. [43].
It integrates the decomposition network and the light effect suppression network in a
single unified framework, which enhances the brightness and contrast of the image and
effectively improves the quality of the image under low-light conditions. Second, this
paper introduced the Convolutional Block Attention Module (CBAM) attention mechanism
on the basis of the YOLOv5 network structure, which is able to adaptively weight the
channel and spatial features inside the model: the channel attention (CA) generates the
global maximum and average features for each channel using global maximum pooling
and average pooling operations, and then generates the global maximum and average
features, and then learns the attention weights for each channel through a shared MLP
network, thus emphasizing channels that contribute to the task and suppressing irrelevant
channels; spatial attention (SA) generates a spatial feature map through maximum and
average pooling, and then learns the attention weights for the spatial dimension through a
convolutional layer, allowing the model to focus more on the pixel regions in the image that
affect the classification decision. Finally, in this paper, the Optimal Transport Assignment
(OTA) loss function was used to optimize the performance of the model in the target
detection task, which first calculates the cost matrix between the two sets, which contains
the costs between all the predicted and real frames, usually based on the distances between
them in terms of the IoU values. Then, the optimal transmission algorithm was used to
find the best matching solution that minimized the total cost. In this way, the accuracy
of the predicted bounding boxes could be effectively optimized so that the model could
predict the location of the target and the bounding boxes more accurately, thus improving
the robustness and stability of the model in the target detection task.
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Figure 1. NTS-YOLO process diagram. The NTS-YOLO process diagram integrates unsupervised
image preprocessing, the Convolutional Block Attention Module (CBAM), and Online Template Adap-
tation (OTA) to enhance the object detection performance beyond that of the standard YOLO model.

2.1. Image Preprocessing

Due to the influence of the light intensity strength, direction angle, and other factors
at night, the visibility of traffic signs was significantly reduced, resulting in image feature
details being difficult to identify, the signal-to-noise ratio being reduced, and the image
as a whole being darker. Therefore, it was necessary to carry out the data enhancement
preprocessing of the image to eliminate the factors that affected the image quality so that
the captured image could be more efficiently extracted from the effective information.
At present, image enhancement algorithms are commonly used to adjust the brightness,
contrast, saturation, hue, etc., of an image to increase its clarity, reduce noise, etc. Common
methods include histogram equalization, the Gamma transform, the Laplace transform,
the Retinex algorithm, and image enhancement based on deep learning. Through these
preprocessing steps, the recognition accuracy and reliability of traffic signs in the night
environment can be effectively improved.

Existing nighttime visibility enhancement methods mainly focus on increasing the
intensity of low-light regions; therefore, when these methods are applied to nighttime
images containing light effects, they inevitably amplify the light effects and even further
impair the visibility of the images. In this paper, we adopted the unsupervised nighttime
image enhancement method proposed by Yeying Jin et al. [43], which integrates a decom-
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position network and a light effect suppression network in a single unified framework
with the goal of suppressing the light effect while increasing the intensity of the dark
regions. Specifically, the image decomposition network divides the input image into a
base layer and a detail layer. The base layer is designed to process the brightness and
global information of the image, while the detail layer captures fine textures and local
features. Building on this decomposition, the light effect suppression network leverages an
attention mechanism to dynamically adjust high-light regions, effectively mitigating the
adverse effects of glare and overexposure on detail extraction. This integrated approach not
only enhances the visual quality of nighttime images but also significantly improves the
visibility and discriminability of target regions. The structure diagram is shown in Figure 2.
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Figure 2. The unsupervised nighttime image enhancement method structure diagram. First, the
input image is decomposed into three components: region information, R, light effects, L, and the
general scene, G. Then, a generative model and attention mechanism are used to process the light
effects and scene features separately. Finally, through global average pooling (GAP) and the weighted
multiplication of feature maps, an enhanced image is generated that suppresses the light effects while
preserving scene details.

To better adapt the enhancement method to a specific nighttime traffic sign dataset,
this study conducted an optimization of its key hyperparameters to achieve a balance
between brightness enhancement, contrast adjustment, and light effect suppression, as
detailed in Table 1.

Table 1. Hyperparameter optimization and settings.

Hyperparameter Initial Optimized Optimization Objective

Brightness
Adjustment Range [0.5, 1.5] [0.8, 1.2] Enhance brightness in dark areas while

suppressing distortion in bright regions.
Contrast

Adjustment Range [0.7, 1.3] [0.9, 1.1] Strengthen edge features of target while
avoiding excessively high background contrast.

Light Effect
Suppression Weight 0.5 0.6 Balance the suppression of strong light effects

with the enhancement of dark areas.

The experimental results demonstrated that the optimized hyperparameters led to
significant improvements in model performance. As shown in Figure 3, the adjustments
to the brightness and contrast ranges enhanced the target regions while reducing the
interference of glare and noise on the detection results. Furthermore, the optimization
of the light effect suppression weight not only effectively suppressed interference from
high-light regions but also improved the separability of features in dark areas.
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were processed with data augmentation to improve the image quality.

2.2. Adding CBAM Attention Mechanism

Nighttime traffic sign recognition faces many challenges in practice, especially due to
problems such as low light and ambient noise, which result in blurred images and difficulty
in recognizing the edges and details of traffic signs. To remedy this problem, this study
introduced the Convolutional Block Attention Module (CBAM) attention mechanism to
enhance the model’s ability to recognize and represent key features, which in turn improves
the recognition accuracy and stability under low-light conditions. The CBAM focuses on
important feature channels and key spatial regions in the image through the dimensions of
channel attention (CA) and spatial attention (SA), as illustrated in Figure 4. The channel
attention (CA) and spatial attention (SA) of the CBAM are shown in Equations (1) and (2).

CA(F) = σ(MLP(GAP(F)) + MLP(GMP(F))) (1)

SA(F) = σ
(

f 7×7([GAP(F); GMP(F)])
)

(2)

where F in CA(F) is the input feature map, σ is the sigmoid activation function, and MLP
denotes the multilayer perceptron; GAP and GMP stand for global average pooling and
global maximum pooling, respectively, which are used to compute the global statistical
properties of each channel. The f 7×7 in SA(F) denotes the convolution operation with a
7 × 7 convolution kernel, and [; ] denotes the stacking of feature maps.

Before the introduction of the CBAM, the output of the SPPF convolutional layer was
the feature map F that was processed from the original input image after convolution,
batch normalization, and the application of the ReLU activation function, as shown in
Equation (3).

F = ReLU(BN(Conv(Input))) (3)

After adding the CBAM, the output feature map F of the SPPF convolutional layer
is further processed by the CBAM, and the network structure is shown in Figure 5. The
CBAM first computes the attention weights of each channel through the CA part and then
computes the spatial attention weights through the SA part. Finally, these two weights are
multiplied with the original feature map F to obtain the final output feature map, as shown
in Equation (4).

F’ = F × CA(F)× SA(F) (4)
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detection performance.



Appl. Sci. 2025, 15, 1578 9 of 20

The introduction of the CBAM allows the model to focus more effectively on key
channel features and to identify and emphasize important spatial regions in the image.
In complex environments at night, identifying traffic signs, small targets, and possible
occlusion situations, traditional feature extraction methods are often affected by uneven
lighting and background noise. With the CBAM attention mechanism, the model is able to
focus not only on important channel features but also on key spatial regions in the image
when processing the feature map. This integration strategy improves the model’s sensitivity
to details and enhances its robustness under low-light conditions, which brings a significant
performance improvement to the nighttime traffic sign recognition task and provides an
effective solution to address the challenges of uneven lighting and background noise.

2.3. Optimization Loss Function

In standard loss functions (e.g., cross-entropy loss and mean square error loss), the
optimization process of the model may be affected by incorrect label assignments, espe-
cially when the target sizes are small or overlapping. In order to improve the accuracy
and efficiency of YOLOv5 in nighttime traffic sign recognition, this paper introduced an
innovative loss function, the Optimal Transport Assignment (OTA) loss, as illustrated
in Figure 6. Specifically, the OTA loss function is defined by the difference between the
predicted bounding box and the real bounding box set as the optimal transport cost, which
is computed by the following equation:

LOTA = ∑i,j Ti,j · Ci,j (5)

where Ti,j is the amount of transmission between the predicted bounding box i and the real
bounding box j, and Ci,j is the corresponding cost, usually measured by the distance or
difference between the two.
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Figure 6. OTA loss function structure diagram. The figure shows the process of object detection
across multiple ground truth layers (GT0, GT1, GT2) and the background (BG) representation. The
input image is first divided into grids, with each grid corresponding to different ground truth values.
These grids contain values that represent the presence of different objects in the scene, as indicated
by the colored boxes for each ground truth and background category. The loss function operates by
matching the ground truth layers with the background and object regions, optimizing the predictions
across the different layers to suppress irrelevant areas and enhance the detection performance.
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In this paper, we improved the accuracy of object detection by integrating the optimal
transmission analysis (OTA) loss function into the YOLOv5 model. The OTA loss function
was specifically designed to quantify the difference between the predicted bounding box
and the real bounding box, and its computation is based on the amount of transmissions
between the predicted bounding box and the real bounding box, Ti,j, and the cost Ci,j.

Furthermore, we introduced the OTA loss as a part of the training of the model, which
not only took the alignment accuracy between predicted and real boxes, but also combined
it with the traditional category loss, confidence loss, and bounding box loss in order to form
a comprehensive loss function for the model. If the traditional YOLOv5 loss consists of the
category loss (L class), the confidence loss (L con f

)
, and the bounding box loss (L bbox), then

the improved total loss function (L total) can be expressed as

Ltotal = λclassLclass + λcon f Lcon f + λbboxLbbox + λOTALOTA (6)

Here, λclass, λcon f , λbbox, and λOTA are the weighting factors used to balance the
different loss components.

2.3.1. Weighted Coefficient Optimization Method

To achieve a balance between the classification accuracy, bounding box confidence,
target localization precision, and computational complexity, this study employed a grid
search-based optimization method to determine the weighting coefficients. First, the
weight of a specific loss component was adjusted individually while keeping the weights
of the other components fixed, and its independent impact on the model performance was
observed. Next, based on single-factor optimization, the optimal weight values for each
loss component were combined, and their performance under the total loss function was
verified. Specifically, the classification loss (λclass) weight was varied within the range of
[0.1, 0.6] with a step size of 0.1, the confidence loss weight (λcon f ) within [0.1, 0.5] with a
step size of 0.1, the bounding box loss weight (λbbox) within [0.2, 0.4] with a step size of 0.1,
and the OTA loss (λOTA) weight within [0.1, 0.3] with a step size of 0.1.

2.3.2. Model Improvement Basis and Optimal Configuration

The weight optimization experiments in this study were based on the YOLOv5 model
enhanced with the CBAM attention mechanism. The specific experimental results are
shown in Table 2.

Table 2. CBAM weighted coefficient configuration table.

Weighted Coefficient Configuration mAP-0.5 (%) mAP-0.5:0.95 (%) Speed (it/s)

α = 0.4, β = 0.3, γ = 0.3, δ = 0.2 93.27 73.60 2.57
α = 0.3, β = 0.3, γ = 0.3, δ = 0.2 93.10 72.88 2.58
α = 0.4, β = 0.2, γ = 0.3, δ = 0.2 93.12 72.84 2.58

The experimental results demonstrated that when the classification loss weight (λclass)
was set to 0.4, the model’s ability to recognize small target classes was significantly en-
hanced, especially improving the classification accuracy in complex nighttime scenarios.
Setting the confidence loss weight (λcon f ) to 0.3 effectively increased the confidence of
detection boxes, optimizing both precision and recall. Similarly, setting the bounding box
loss weight (λbbox) to 0.3 improved the localization accuracy of bounding boxes. When
the OTA loss weight (λOTA) was set to 0.2, the model achieved optimal performance in
small target detection and robustness in complex scenes, while avoiding the efficiency loss
caused by excessive computational complexity.
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As a result, the optimal weight configuration was α = 0.4, β = 0.2, γ = 0.3, δ = 0.2. With
this final configuration, the mAP-0.5 metric on the validation set increased by 0.95%, and
the mAP-0.5:0.95 metric improved by 0.17%, while the reduction in the processing speed
was controlled within 8.4%. This ensured that the model met real-time requirements while
maintaining high accuracy.

3. Results
3.1. Experimental Environment and Evaluation Indicators

In this study, the experimental environment consists of a high-performance computer
configured with an Intel Core i7 processor, 32 GB of RAM, and an NVIDIA GeForce RTX
4060 graphics card. The GPU’s memory capacity and computational power ensured the
efficient execution of complex models with high-resolution inputs, providing excellent
stability and efficiency for deep learning model training and inference tasks. Additionally,
in order to efficiently conduct deep learning experiments, PyTorch 2.0.1 was selected as
the main deep learning framework in this paper, and CUDA technology was utilized for
accelerating the model training and inference, which ensured computational efficiency and
a good data processing capability during the experimental process.

For evaluation metrics, this study focused on three aspects: the model accuracy,
computational efficiency, and resource utilization efficiency. The model accuracy was
evaluated by standard metrics such as the precision, recall, and mAP value to ensure that
the model had good performance on different types of datasets. Meanwhile, the training
and inference times of the model were recorded in detail to assess its computational
efficiency. In addition, the CPU and GPU usage, as well as the memory occupancy, were
also taken into account to comprehensively evaluate the resource utilization efficiency of
the model in real-world application scenarios.

3.2. Construction and Processing of Datasets

In this research, 599 nighttime images from the CCTSDB2021 dataset were refer-
enced [44], wherein 80% of the images (479) were utilized as the training set and 20%
(120) served as the validation set. Given the relatively fewer types of nighttime traffic
signs, to augment the data diversity, 9170 daytime road scene images from the TT100K
dataset [45] were also referenced, divided into a training set (7208 images) and a validation
set (1962 images) at an 8:2 ratio. Moreover, 154 self-collected nighttime road scene images
were employed as an independent test set, which covered scenarios such as small targets,
occluded signs, and blurred scenes. Among the 154 images, there were 60 prohibition
signs, 50 warning signs, and 44 instruction signs. Small target signs and occluded signs
account for 19.5% and 20.8% of the total targets, respectively. Small targets were primarily
concentrated in long-distance scenarios or under low-light conditions, while occlusions
were mainly caused by trees, vehicles, or light reflections. Some sample data are shown in
Figure 7. By amalgamating nighttime and daytime data from different datasets, the aim
was to enhance the model’s traffic sign recognition accuracy and generalization capability
under various lighting conditions. Such a dataset construction approach provided a more
comprehensive and representative data foundation for this study.

This dataset included three categories of prohibited signs, warning signs, and direc-
tional signs, and the number of labeled classes reached 221, which basically covered a
variety of common traffic signs in China, as shown in Figure 8. In order to increase the
diversity and robustness of the dataset, this paper carried out data enhancement processing,
including image rotation, scaling, panning, and brightness adjustment operations to simu-
late different observation angles and lighting conditions; the test set was specially designed
to include traffic signs in special environments, such as small targets at night, occlusion,
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blurring, etc., which was aimed at evaluating the performance of the model under complex
conditions and verifying its recognition accuracy and robustness under insufficient lighting,
with blurred or obscured targets, and so on. The purpose of the test set was to evaluate
the model’s performance under complex conditions and verify its recognition accuracy
and robustness with low-light, blurred, or obscured targets, which helped to evaluate the
model’s performance more comprehensively.
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3.3. Model Training Configuration

To optimize the performance of the improved model in nighttime traffic sign detection
tasks, this study conducted experimental validation on the configurations of the input
resolution and batch size. The input resolution and batch size directly affect the model’s
detection accuracy, training stability, and hardware resource utilization. To determine the
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optimal configuration, combinations of input resolutions (640 × 640, 1024 × 1024, and
1280 × 1280) and batch sizes (4, 8, and 16) were tested. The results are shown in Table 3.

Table 3. Model training configuration comparison table.

Input
Resolution Batch Size GPU Memory Usage

(GB)
mAP-0.5

(%)
mAP-0.5:0.95

(%)
Convergence

Stability
Speed

(Epochs/s)

640 × 640 8 1.9 90.34 67.12 Stable 6.7
1024 × 1024 8 4.2 91.88 70.04 Stable 8.3
1280 × 1280 8 4.7 92.84 72.44 Relatively Stable 9.3
1280 × 1280 8 6.2 93.27 73.6 Stable 11.5
1280 × 1280 8 — — — — —

The experimental results indicated that increasing the input resolution significantly
improved the model’s detection accuracy, particularly in small object detection and com-
plex background scenarios. Specifically, at a resolution of 1280 × 1280, the mAP-0.5 on
the validation set reached 93.27%, representing an improvement of 1.39% and 2.93% com-
pared to resolutions of 1024 × 1024 and 640 × 640, respectively. This demonstrates that
higher resolutions can capture target details more clearly, contributing to better detection
performance for small objects.

Secondly, the batch size had a significant impact on memory usage, the training
stability, and the convergence speed. At a resolution of 1280 × 1280, a batch size of
four resulted in a memory usage of approximately 4.7 GB and an mAP-0.5 of 92.84%.
However, the insufficient sample size for gradient updates caused slight performance
degradation due to instability. When the batch size was set to eight, the memory usage was
approximately 6.2 GB, and the mAP-0.5 on the validation set reached 93.27%, with stable
gradient updates and efficient training. However, when the batch size was increased to 16,
the memory requirement exceeded the limits of the experimental device, making training
impossible. Therefore, at a resolution of 1280 × 1280, a batch size of eight was the optimal
configuration in terms of performance, efficiency, and hardware resource utilization.

In summary, the configuration of an input resolution of 1280 × 1280 and a batch size
of eight could effectively enhance the model performance while maintaining the training
efficiency and stability within the limits of hardware resources.

3.4. Model Training and Optimization

In the preparatory stage of model training, we spent a lot of time preprocessing the
training dataset in detail. Firstly, the dataset was partitioned into a validation set and a
training set according to the ratio of 2:8. For the images in the training set, we performed
pixel-level scaling and normalization so that the image size and pixel value distribution
could meet the input requirements of the model. In order to increase the generalization
ability and noise resistance of the model, we also performed a series of data enhancement
operations on the training images, including random cropping, flipping, and color contrast
and brightness adjustment.

The CBAM was embedded into the backbone network of YOLOv5, specifically inserted
at the output position between the ninth layer of the backbone network and the Spatial
Pyramid Pooling Fast (SPPF) module. The CBAM collaboratively optimizes the feature
extraction process through channel attention and spatial attention. The channel attention
module generates weights for each channel via global pooling operations, enhancing
the focus on critical channels. The spatial attention module generates spatial attention
weights through per-channel pooling, enabling the model to concentrate more effectively
on target regions.
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In the detection head, this study replaced the original fixed IoU threshold assignment
strategy with the OTA loss function. OTA dynamically optimizes the positive and negative
sample assignment process by first constructing a cost matrix of matches between predicted
boxes and ground truth boxes, taking into account the IoU loss, classification loss, and the
distance between the centers of bounding boxes. Then, the optimal transport algorithm
is used to solve the matching problem, ensuring a more reasonable allocation of positive
and negative samples, thereby improving the accuracy of bounding box predictions in
object detection.

After integrating the OTA loss with other loss components, this study fine-tuned the
weight proportions to ensure a balance among the loss components, further enhancing the
model’s performance.

To ensure the stability and efficiency of the training process, this paper adopted the
strategy of periodic validation. By evaluating the model on an independent validation set,
we were able to monitor the loss changes during the training and validation process in
real time and adjust the training parameters, such as the learning rate and weight decay,
accordingly. In addition, we calculated key evaluation metrics such as the precision rate,
recall rate, and F1 value to comprehensively assess the performance of the model. Regular
evaluations on independent test sets helped this paper verify the model’s generalization
ability on unknown data and ensure its reliability in real-world applications.

3.5. Ablation Study

This study evaluated the performance of the improved YOLOv5 model on the night-
time traffic sign recognition task. All experiments were conducted under uniform settings:
the number of iterations was set to 120, the batch size was eight, and the input image
resolution was 1280 × 1280.

3.5.1. Performance Analysis of Ablation Study

In order to verify the effectiveness of the improved nighttime traffic sign recogni-
tion algorithm proposed in this paper, ablation experiments were conducted. Firstly, we
compared the addition of the CBAM attention mechanism and the OTA loss function
alone, respectively, and then applied them both to the YOLOv5 model and observed the
performance in various cases. The results are shown in Table 4. In this paper, mAP-0.5 was
chosen as the evaluation index, which could comprehensively assess the performance of
the model in the target detection task.

Table 4. Comparison of experimental results of different methods.

Model CBAM OTA Accuracy
(%) Recall (%) mAP-0.5

(%)
mAP-0.5:0.95

(%) Speed (s) GPU

YOLOv5 - - 85.98 88.71 92.39 72.40 2.38 5.2
YOLOv5 + CBAM

√
- 89.34 87.31 92.44 72.59 2.58 5.5

YOLOv5 + OTA -
√

87.45 87.31 92.43 72.69 2.58 5.4
NTS-YOLO

√ √
90.59 88.81 93.27 73.60 2.57 5.7

In the experiments, we first used the original YOLOv5 model for the nighttime traffic
sign recognition task and obtained a benchmark performance with an mAP-0.5 metric of
92.39%. Next, we added the CBAM attention mechanism and OTA loss function to the
YOLOv5 model and conducted the experiments separately. The results showed that the
addition of the CBAM attention mechanism slightly improved the model’s mAP-0.5 score
to 92.44%, an increase of 0.056%. This indicates that the CBAM mechanism helped the
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model to better focus on the key regions of the image, such as the edges and shapes of the
signs, which improved the performance of the model.

On the other hand, when the OTA loss function was introduced, the mAP-0.5 metric
of the model was further improved to 92.43%, an increase of 0.052%. This indicates that the
optimized loss function could effectively optimize the training process of the model and
improve the accuracy of target detection. The OTA loss function achieved a better match
by minimizing the cost between the predicted bounding box and the true bounding box,
allowing the model to more accurately predict the target location and the bounding box,
thus improving the robustness and stability of the model.

And when the CBAM and OTA were simultaneously applied to the YOLOv5 model, it
could be observed that the mAP-0.5 score was improved to 93.27%, which was an increase
of 0.88% compared to the original model.

However, it is worth noting that the introduction of the CBAM and OTA increased
the computational complexity of the model, resulting in a reduction in the processing
speed from 2.38 it/s to 2.58 it/s, approximately a 7.98% decrease. This speed reduction is
mainly attributed to the attention computation in the CBAM and the dynamic matching
optimization in the OTA loss. While these modules improve the model’s adaptability to
small targets and complex scenarios, they also add an extra computational burden and
memory usage. Specifically, under the 1280 × 1280 resolution setting, the NTS-YOLO
model occupied approximately 5.7 GB of GPU memory, which was 0.5 GB more than
the original YOLOv5. This increase in memory usage was primarily due to the attention
computation in CBAM and the matching optimization in the OTA loss. In terms of GPU
utilization, the NTS-YOLO model maintained a utilization rate of approximately 72%,
compared to 65% for YOLOv5, demonstrating higher resource usage. This indicates that
the improved model makes more efficient use of hardware computing resources while
achieving high-performance operation in the current hardware environment.

Nevertheless, this speed reduction remains within an acceptable range, especially
considering the significant improvement in accuracy. Under the 1280 × 720 resolution
setting, “NTS-YOLO” achieved a processing speed of approximately 11.5 frames per second,
meeting the requirements of most real-time application scenarios, such as intelligent traffic
monitoring and autonomous driving systems. In these scenarios, systems often need
to accurately recognize nighttime traffic signs within a limited time to support decision-
making and ensure safety. This demonstrates that “NTS-YOLO” strikes a balance between
performance and efficiency, proving its practicality and effectiveness in nighttime traffic
sign detection tasks.

3.5.2. Comparative Experiments of Different Models

To further verify the advantages of the NTS-YOLO model, it was compared with
other mainstream object detection algorithms on the test set of the CCTSDB2021 nighttime
dataset. The results are shown in Table 5.

As shown in the results in Table 5, NTS-YOLO outperformed other mainstream models
in key metrics such as the precision (90.59%) and mAP-0.5:0.95 (73.60%) under complex
nighttime scenarios. Compared to ETSR-YOLO, NTS-YOLO achieved a 0.55% improvement
in the mAP-0.5 and a 1.39% improvement in the mAP-0.5:0.95. Although it was slightly
slower than YOLOv7 and YOLOX in terms of the detection speed, its performance of 2.57 s
per frame still meets the real-time requirements of practical applications, while achieving
significant advantages in the detection accuracy.
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Table 5. Performance comparison of mainstream object detection models.

Model Accuracy
(%)

Recall
(%)

mAP-0.5
(%)

mAP-0.5:0.95
(%)

Speed
(it/s) GPU

Faster R-CNN 81.23 83.45 87.12 65.30 3.12 6.8
YOLOv3 83.15 85.21 89.50 68.42 2.85 5.8
YOLOv6 86.50 87.90 91.40 70.60 2.65 5.6
YOLOv7 88.20 88.50 92.10 71.85 2.50 5.4
YOLOX 87.80 88.30 92.05 71.40 2.47 5.3

ETSR-YOLO 87.85 88.01 92.72 72.21 2.45 5.7
YOLOv5 85.98 88.71 92.39 72.40 2.38 5.2

NTS-YOLO 90.59 88.81 93.27 73.60 2.57 5.7

3.5.3. Comparative Analysis Under Different Nighttime Scenarios

In order to comprehensively analyze the performance of the method proposed in this
paper, four different nighttime scenarios were selected, as shown in Figure 9.

As represented in Figure 9a, the recognition accuracy of the YOLOv5 base model
was low in the evening long-distance small target scenarios, and only speed limit and
prohibition signs could be recognized, with a 58% recognition rate for a speed limit of 30
and an average recognition rate of 83% for prohibition signs. With the introduction of OTA
and the CBAM alone, the recognition rate was improved, and an additional indicator sign
was recognized; specifically, the recognition rate of a speed limit of 30 was improved to 74%
and 31%, the average recognition rate of prohibited signs was improved to 86% and 75%,
and the recognition rate of bike lanes was improved to 59% and 63%, respectively. With
the simultaneous introduction of the OTA and CBAM mechanisms, the model was able to
recognize all signs, with a recognition rate of 76% for a speed limit of 30, 89% for prohibited
signs, and 63% for bike lanes. In addition, the model was also able to successfully recognize
a traffic sign (speed limit of 50) where the small target was partially obscured by a tree,
with a recognition rate of 47%.

As represented in Figure 9b, the original YOLOv5 model, as well as the introduction
of the CBAM alone, failed to detect the signs in the nighttime occluded scenario. The
possibility of wrong detection still exists with the introduction of the OTA loss function
alone. After the introduction of the CBAM and OTA, “NTS-YOLO” could successfully
recognize the prohibited signs with a recognition rate of 51%.

As shown in Figure 9c, the recognition rates of YOLOv5, YOLOv5 + OTA, and
YOLOv5 + CBAM were 88%, 89%, and 89%, respectively, for the warning sign “let” in
the nighttime blurred scene. After the introduction of OTA and the CBAM, the recog-
nition rate of “NTS-YOLO” reached 92%, which was an improvement of four to five
percentage points.

As represented in Figure 9d, in the nighttime rainy blur scenario, YOLOv5 and
YOLOv5 + CBAM did not detect the sign, and YOLOv5 + OTA recognized the prohibited
sign with a recognition rate of 51%. With the introduction of OTA and the CBAM, “NTS-
YOLO” was able to successfully recognize two traffic signs with recognition rates of 91%
and 60%, respectively.

A comprehensive analysis of the experimental results showed that the improvements
introduced by adding the CBAM attention mechanism and the OTA loss function had
significant advantages in recognizing traffic signs under complex conditions such as dusk,
occlusion, and blur. The CBAM mechanism helps the model to more accurately capture key
features, thereby improving the accuracy of object detection. Meanwhile, OTA optimizes the
learning process by adjusting the loss function, further enhancing the model’s recognition
performance. The combination of these two mechanisms provides the model with more pre-
cise object detection capabilities, effectively improving the overall recognition performance.
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4. Conclusions
This study improved the nighttime traffic sign recognition network to enhance its

performance in complex nighttime scenarios. Firstly, we introduced the CBAM atten-
tion mechanism and the OTA loss function based on the YOLOv5 model to address the
challenges of recognizing traffic signs in nighttime environments caused by insufficient
lighting, target blurriness, and occlusion. The experimental results show that through the
unsupervised nighttime image enhancement method, this paper successfully improved
the illumination balance and reduced the background noise level of the dataset, which
significantly improved the recognition accuracy of traffic signs.

Secondly, after introducing the CBAM attention mechanism, the recognition accuracy
of the model in the nighttime environment was improved by 0.056%. Meanwhile, the
application of the OTA loss function resulted in a 0.052% improvement in the target
detection accuracy. However, the introduction of the additional attention mechanism and
the optimized loss function resulted in a slight decrease of 8.4% in the model processing
speed. Nevertheless, this performance degradation is acceptable considering the significant
improvement in the recognition accuracy. In practical applications, the relationship between
accuracy and the processing speed needs to be weighed to achieve optimal performance.

However, it is worth noting that the dataset used in this study was primarily based on
Chinese traffic signs, which to some extent limits the model’s applicability in international
scenarios. Chinese traffic signs exhibit regional characteristics in terms of their shape,
color, and text symbols. For example, red circles are used for prohibition signs, and blue
rectangles are used for instruction signs. In contrast, traffic signs in other countries may
differ significantly in design. For instance, Europe uses white signs with red borders widely,
while North America predominantly adopts yellow diamond-shaped warning signs. These
design differences may lead to a decline in the recognition accuracy when the model is
applied to cross-country scenarios, thereby limiting its applicability in international traffic
sign detection tasks.

In the future, to address the limitations of this study and improve the model, the
following directions will be pursued:

(1) Further optimize the computational complexity of the CBAM and OTA modules. By
adopting lightweight attention mechanisms or sparsification optimization strategies,
the additional computational load can be reduced to improve the inference speed.

(2) Expand the internationalization of the training dataset. By incorporating diverse
datasets that encompass traffic sign characteristics from more countries (e.g., GT-
SRB and LISA), the model’s cross-regional applicability can be enhanced, thereby
improving its generalization ability.
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