
Academic Editor: Mohammed Chadli

Received: 23 December 2024

Revised: 16 January 2025

Accepted: 29 January 2025

Published: 1 February 2025

Citation: Afshari, A.; Lee, J.; Besenski,

D.; Dimitrijevic, B.; Spasovic, L.

Calibrating Microscopic Traffic

Simulation Model Using Connected

Vehicle Data and Genetic Algorithm.

Appl. Sci. 2025, 15, 1496. https://

doi.org/10.3390/app15031496

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Calibrating Microscopic Traffic Simulation Model Using
Connected Vehicle Data and Genetic Algorithm
Abolfazl Afshari, Joyoung Lee * , Dejan Besenski, Branislav Dimitrijevic and Lazar Spasovic

John A. Reif, Jr. Department of Civil & Environmental Engineering, New Jersey Institute of Technology,
Newark, NJ 07102, USA; abolfazl.afshari@njit.edu (A.A.); besenski@njit.edu (D.B.); dimitrijevic@njit.edu (B.D.);
lazar.spasovic@njit.edu (L.S.)
* Correspondence: jo.y.lee@njit.edu; Tel.: +1-973-596-2475

Abstract: This study introduces a data-driven approach to calibrate microscopic traffic
simulation models like VISSIM using high-resolution trajectory data, aiming to improve
simulation accuracy and fidelity. The study focuses on a highway segment of NJ-3 and NJ-
495 in Hudson County, New Jersey, selected as a case study for its high traffic volume and
strategic significance. Trajectory data from 338 connected vehicles, sourced from the Wejo
dataset, a global provider of anonymized, high-resolution vehicle movement data, along
with traffic volume data from Remote Traffic Microwave Sensors (RTMS), served as inputs.
The trajectories produced by the simulation model were compared to the ground truth
to measure discrepancies. By adjusting driving behavior parameters (e.g., car-following
and lane-changing behaviors) and other factors (e.g., desire speed), a Genetic Algorithm
was adopted to minimize these differences. Results showed significant improvements,
including a 14.19% reduction in mean error, an 18.27% reduction in median error, and a
22.57% reduction in the 75th percentile error during calibration. In the validation phase,
the calibrated parameters yielded a 32.68% reduction in mean error, demonstrating the
framework’s robustness. This study presents a scalable calibration framework using con-
nected vehicle data, providing tools for accurate simulation, real-time traffic management,
and infrastructure planning.

Keywords: traffic microsimulation models; calibration; connected vehicles; trajectories;
driving behavior parameters; Genetic Algorithm; VISSIM

1. Introduction
Traffic simulation models are essential to traffic management and urban planning,

as they provide information on traffic patterns and the possible effects of infrastructure
modifications without requiring actual trials. These models have been utilized for years in
traffic management and have gained even greater importance with the recent development
of transportation networks. In such environments, the ability of simulation models to
closely mimic real-world traffic becomes crucial. Several studies have shown how well
traffic simulation models mimic actual conditions and maximize traffic flow in both urban
and highway environments [1]. However, traffic simulations can also have limitations,
such as high computational demands and reliance on accurate calibration for reliable
results. By ensuring that traffic simulation models accurately represent actual conditions,
accurate calibration makes it possible to evaluate transportation policy, infrastructure
investments, and traffic management tactics. Simulation results might differ greatly from
real traffic behavior if they are not calibrated properly, which reduces their usefulness in
decision-making.
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Numerous parameters must be calibrated in traffic microsimulation software to fine-
tune traffic and driver behaviors. However, identifying optimal values for these parameters
is a complex task. Additionally, traffic engineering simulations are usually confined to
specific areas to save time and costs, even though the designated areas are sometimes
influenced by external traffic. For instance, congestion on a highway may cause backups in
downstream traffic, which is miles away. In such cases, simply expanding the simulation’s
spatial coverage may not always be the solution.

The necessity to solve issues by calibrating traffic simulation models in scenarios
with significant traffic variations and connected vehicle data served as the motivation for
this research. Conventional methods for calibrating traffic simulation models often rely
on giving predetermined parameter values or simple numerical ranges for particular
driving behaviors or network configurations. Although these methods are straightfor-
ward, they are not adaptable enough to take into consideration the particularities of
different networks, such as geometry, traffic patterns, and driver behavior. When used in
a variety of real-world scenarios, this may result in inadequate calibration outcomes. A
one-size-fits-all strategy is unlikely to produce the required degree of precision in various
scenarios since the value of each calibration parameter is fundamentally dependent on
the particular network design and driving behavior characteristics. In order to over-
come these constraints, this paper presents a novel calibration framework that adapts
parameter changes to the particular circumstances of the network being represented.
This method allows traffic simulation models to be calibrated particularly for the target
network. Although this study demonstrates the suggested framework on a particular
highway segment, it is intended to be flexible and applicable to any network. Because
of this, it is a flexible and reliable tool for improving the accuracy of traffic simulation
models in a variety of applications, beyond the constraints of preset parameter values,
and enabling context-sensitive optimization.

To increase the accuracy of microscopic traffic simulation models like VISSIM,
this study presents a calibration framework that combines high-resolution connected
vehicle trajectory data with traditional traffic volume data. As VISSIM is a popular
tool in traffic engineering and offers a stable platform for simulating sophisticated
traffic systems, it was selected for this investigation. Furthermore, automated and
iterative optimization is made possible by its adaptable Component Object Model (COM)
interface, which is essential for the suggested methodology. In the current study, a
microsimulation model was created for a highway segment calibrated as a case study to
test the framework. During the calibration process, vehicle trajectory data from the Wejo
dataset, a comprehensive collection of connected vehicle data, were utilized alongside
Remote Traffic Microwave Sensor (RTMS) data to create a traffic volume dataset used
as an input in the simulation model. Using the two mentioned datasets, vehicles in the
simulation were divided into two groups: connected vehicles from the Wejo dataset
and non-connected vehicles from the RTMS dataset. The trajectory data from connected
vehicles were essential for the remainder of the study. After the simulation period, these
trajectories were extracted and compared to real-world traffic trajectories to identify
discrepancies. In subsequent iterations, driving behavior parameters were adjusted
to make the trajectories more similar. By employing a Genetic Algorithm (GA) and
repeating this process, the differences between the trajectories were minimized, and
optimal values for driving behavior parameters were determined.

The absence of high-resolution data, the difficulty of parameter adjustments, and
the computational burden of iterative simulations are some of the major issues in traffic
simulation calibration that are addressed in this study. The work maintains computational
efficiency while achieving notable reductions in calibration errors through the use of GA and
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distributed computing. The findings show how including cutting-edge data sources, such
as connected vehicle trajectories, can improve traffic models’ precision and dependability,
making them a more effective tool for traffic management and infrastructure development.
The study’s findings show promise for greatly increasing the accuracy of traffic simulations,
which directly affects advanced traffic management and infrastructure design.

The primary objective of this research is to improve the fidelity of microsimulation
models by creating a novel calibration framework that makes use of traffic volume measure-
ments and connected vehicle trajectory data. The study aimed to improve model fidelity
by minimizing the differences between simulated and real vehicle trajectories using a GA.
This section provides a brief introduction to the study. After a quick review of the literature,
the specifics of the suggested methodology are presented in the next section. The outcomes
of this study are thoroughly explored in the results and discussion sections, which are
presented last.

2. Literature Review
In the field of traffic engineering, the fidelity of simulation models is paramount for

predicting and enhancing real-world traffic scenarios. Calibration methodologies have
evolved significantly [2], yet the integration of high-resolution data from connected vehicles
represents a promising frontier that has yet to be fully exploited. This literature review
explores the advances and challenges in the calibration of microscopic traffic simulations,
underscoring the potential for dramatically improved accuracy and applicability. These
models require accurate adjustments of parameters to reflect real-world conditions. Because
of the complexity of these models and the variety of traffic situations and locations, it is
not easy to find an optimum solution to calibrate the models. While researchers have
made lots of efforts and studies to find a fast, accurate, and inexpensive solution [3],
still, none of them can be generalized to all traffic and environmental situations. These
studies vary from traditional techniques to advanced algorithms [4,5], from small road
segments [6] to large-scale traffic networks [7], and each has its advantages and challenges.
Popular microsimulation software like SUMO and AIMSUN have been used for similar
investigations because of their resilience and flexibility. However, VISSIM was selected for
this study due to its compliance with automated optimization via the Component Object
Model (COM) interface and its capacity to integrate data from connected vehicles.

Despite various calibration approaches presented in the literature, a key challenge
remains, which is integrating high-resolution, connected vehicle data to improve model
accuracy across diverse traffic networks. Recent studies introduced various methods
for calibrating traffic models. Leal et al. [8] aimed to calibrate the AIMSUN simulator
for a network in Brazil by utilizing a GA to minimize the mean absolute error of the
delay time between the simulation and observed data, which were vehicle speed and
volume measurement captured in different intersections of the networks. The results
showed a significant improvement compared to the default values of parameters in the
model. They did not, however, evaluate how well the recommended methods worked
in practice. In a study conducted by Arafat et al. [9], VISSIM simulation software was
calibrated for intersections in Miami, Florida, specifically regarding the degree of satu-
ration. The data collected during the green times, along with queue lengths, were then
compared with the real-world data. There were some limitations such as a small sample
size and specific intersection geometry design, which can be considered for expanding the
calibration applicability.

The Bayesian methods for calibrating traffic models were tested in some studies [10–12]. The
application of Bayesian neural networks with heuristic algorithms to predict simulation
results without actually running simulations was tested recently [13]. This approach cap-
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tured the optimal parameter values without repeated simulation runs. Physics-informed
machine learning has been used to enhance the calibration process and results in some
studies [5,14]. They used a physics-informed machine-learning approach [5] and deep rein-
forcement learning [14] to calibrate the model. Keane and Gao [4] used the adjoint method
to minimize the root mean square error between the simulations and measurements. Some
recent studies considered a data-driven calibration approach. By continuously recording
data from loop sensors inside the network, Hwang et al. [15] dynamically optimized the
origin–destination matrix in microscopic traffic simulation. However, the availability and
quality of the data heavily affect the performance of this method.

While high-resolution data in the calibration of traffic simulators play a pivotal role,
capturing accurate data may not be straightforward [16]. Langer et al. [17] aimed to
calibrate the Simulation of Urban Mobility (SUMO) to create a testing environment for
automated driving systems. They captured high-resolution trajectory data using devices
installed in the vehicles driving through the network. A GA was used to find the best
solution and minimize the error between simulated and observed data. Samandar et al. [18]
integrated drone capabilities to collect high-resolution data in a roundabout. In a similar
study, Hale et al. [19] used drones and helicopters to capture vehicle trajectories and used
them to calibrate the traffic models. Both studies were able to calibrate the traffic model
using collected data continuously, yet the duration of data collection in the suggested
approaches was limited.

Practical implementation of the suggested methods demonstrates their performance
in improving the traffic model calibration. In a study conducted by Chaudhari et al. [6] in
India, data collected by cameras during a short period in a segment of roadway without
any intersection or interruption with pedestrians were used to calibrate the Wiedemann
99 car-following model, one of the most used models in traffic engineering. The study
showed significant improvement in the model, although there is a need to test the same
approach in a more complex network. Additionally, the Wiedemann 99 car-following model
was calibrated for bicycle traffic by Kaths et al. [20]. This study compared data captured
from a bicycle simulator to the results obtained from the VISSIM traffic simulation. The
calibrated parameters performed better than the default ones, although capturing the wide
range of behaviors was unsuccessful. Some studies tried to calibrate the simulation model
in specific situations such as work zones [21,22], roads with limited sight distance [23], and
exact locations with a particular traffic behavior [24]. Table 1 compares some of the recent
efforts to calibrate microsimulation models and provides details about them.

Some challenges of calibrating microsimulation models still need to be solved despite
significant progress. Issues such as improving the accuracy of the models, generalized
solutions, and fast and reliable methods need to be considered. In this study, the high-
resolution trajectory of vehicles inside the network was used to process the calibration.
This approach helps to obtain the best possible accurate results compared to past studies.
Because of its shown effectiveness in resolving complicated optimization problems and its
capacity to efficiently explore vast solution spaces, the GA was selected. Its advantage over
conventional techniques in calibrating traffic models was shown in earlier studies [8,17,25],
which makes it a reliable tool for parameter adjustment in a variety of circumstances.
Moreover, the nature of the proposed platform makes it suitable for all types of networks
with every type of traffic and environment.
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Table 1. The literature review on the calibration of microsimulation models.

Author Simulation
Software

Calibration
Method Data Used Key Results

Figueiredo
et al. [26]

AIMSUN
(version 7.0.4)

Sensitivity
analysis of
calibration
parameters

Simulated data
with introduced

errors in
calibration
parameters

Established relationships between
calibration parameter errors and simulation
output accuracy; highlighted the importance

of parameters like reaction time and
minimum distance between vehicles

Otković et al.
[27] VISSIM *

Neural
network-based

calibration
focusing on travel

time prediction

Field data from
roundabouts in
an urban area

Showed that neural network predictions can
effectively calibrate microsimulation models,

improving accuracy in travel time and
queue parameter estimations

Mauro et al.
[28] AIMSUN *

Hypothesis
testing to match
speed–density
relationships

Traffic data
from the A22

Brenner
Freeway, Italy

Achieved a good match between simulated
and observed speed–density relationships,

validating the calibration approach

Hale et al.
[19] VISSIM * Genetic

Algorithm

Vehicle
trajectories and

volumes

Achieved high fidelity between simulation
and real-world data for multi-lane highway

systems

Chun et al.
[23]

SIDRA,
TransModeler

*

Gap acceptance
parameters

Video-based
trajectory data

Calibration improved travel time and delay
accuracy for sight-restricted roundabouts

Zhao et al.
[22] VISSIM *

Iterative
adjustment
(VisVAP)

Vehicle speeds
and travel times

Calibrated for real-time adaptive queue
detection; validated travel speed reductions

Gao et al.
[29] VISSIM *

Multi-point
distribution
calibration

optimization
method

NGSIM
trajectory data

Improved calibration accuracy by about 9%
using multi-point distribution calibration;

combining global and local parameter
calibration yielded results more consistent

with actual driving characteristics

Abdeen et al.
[24] VISSIM * GEH statistic

Traffic volumes,
travel speeds,

travel time

Calibration focused on local driver behavior
parameters; improved simulation accuracy

Haque et al.
[21] VISSIM *

Statistical
inference
(empirical

distributions)

Travel times,
saturation
headways

Demonstrated spatial transferability of
calibrated parameters for Nebraska work

zones

* Version not specified.

3. Methods
This section presents the study’s methodology in detail. This study’s primary objective

is to provide a methodical calibration procedure that will bring a simulation model closer
to actual traffic behavior. In the first subsection, the overall designed architecture of the
system is presented. Then, the data preparation process is explained in detail, followed
by the calibration parameters. In the simulation process subsection, the details about the
simulation setup and execution are described. Subsequent subsections provide insights into
the optimization and evaluation strategies used to refine the model’s accuracy, ensuring
that the simulated results align closely with real-world data. Using connected vehicle data
and traffic flow measurements, the methodology offers a thorough understanding of how
the simulation calibration is carried out, optimized, and validated.
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3.1. Overall Architecture

The process presented in this study consists of multiple stages. The overall process is
summarized in Figure 1. A server handles the main process and controls other resources
and computers. In the current study, an Intel NUC 12 Pro Mini PC running the Ubuntu
20.04.5 LTS operating system is used. However, due to the nature of the code, any computer
with any operating system can perform the server function. As the ground truth, the
trajectories of connected vehicles must be obtained. To create the simulation model, vehicle
volume should be collected from the real world. If the connected vehicle dataset contains
information about all the vehicles in the network, it can be used to calculate vehicle volumes
for the simulation model. In most traffic networks, the market penetration of connected
vehicles is not one hundred percent. Therefore, this study suggests using a traffic data
collection method capable of counting vehicle volumes at multiple locations within the
network. This dataset is useful for determining the total number of vehicles driving in
the network, including connected and non-connected vehicles. The combination of these
two datasets is used to create an origin–destination (O/D) matrix, which serves as the input
for the VISSIM simulation network. The data from connected vehicles are used separately
to evaluate the calibration process. Having the O/D matrix and vehicle trajectories, the
server is ready to start the calibration process.

Appl. Sci. 2025, 15, x FOR PEER REVIEW 6 of 24 
 

3.1. Overall Architecture 

The process presented in this study consists of multiple stages. The overall process is 

summarized in Figure 1. A server handles the main process and controls other resources 

and computers. In the current study, an Intel NUC 12 Pro Mini PC running the Ubuntu 

20.04.5 LTS operating system is used. However, due to the nature of the code, any com-

puter with any operating system can perform the server function. As the ground truth, 

the trajectories of connected vehicles must be obtained. To create the simulation model, 

vehicle volume should be collected from the real world. If the connected vehicle dataset 

contains information about all the vehicles in the network, it can be used to calculate ve-

hicle volumes for the simulation model. In most traffic networks, the market penetration 

of connected vehicles is not one hundred percent. Therefore, this study suggests using a 

traffic data collection method capable of counting vehicle volumes at multiple locations 

within the network. This dataset is useful for determining the total number of vehicles 

driving in the network, including connected and non-connected vehicles. The combina-

tion of these two datasets is used to create an origin–destination (O/D) matrix, which 

serves as the input for the VISSIM simulation network. The data from connected vehicles 

are used separately to evaluate the calibration process. Having the O/D matrix and vehicle 

trajectories, the server is ready to start the calibration process. 

 

Figure 1. Overview of the proposed calibration framework, including server and client processes. 

The client-side simulation process is detailed in Figure 2. 

Figure 1. Overview of the proposed calibration framework, including server and client processes.
The client-side simulation process is detailed in Figure 2.



Appl. Sci. 2025, 15, 1496 7 of 24
Appl. Sci. 2025, 15, x FOR PEER REVIEW 7 of 24 
 

 

Figure 2. Detailed client-side process within the calibration framework, as referenced in Figure 1. 

Calibrating a microscopic simulation model is a non-trivial task that generally de-

mands numerous repetitive simulation runs with different parameter values. To expedite 

the process, instead of running the simulation on a single computer, this research adopts 

a distributed computing architecture, allowing multiple computers (i.e., clients) to con-

duct simulation tasks and send the results back to the server. Multiple desktop and laptop 

computers running the Windows 11 operating system are used as clients in this study. 

The clients utilize the Component Object Model (COM) interface to control the VISSIM 

software Version 2024.00-10 (PTV Group, Karlsruhe, Germany) which is discussed briefly 

in the following subsections. The server generates multiple sets of values for calibration 

parameters and sends these sets, along with the O/D matrices and vehicle trajectories, to 

the clients one by one. Each client uses the O/D matrix as input for the VISSIM model and 

automatically changes the default values of calibration parameters according to the 

server’s instructions. After running the simulation, the results are compared to the vehicle 

trajectories, which serve as the ground truth. Each client evaluates the current calibration 

process and sends the results back to the server. The server then gathers all the results and 

attempts to optimize the calibration parameters for the next iteration. More details about 

these stages are presented in the following subsections. 

3.2. Data Preparation 

As mentioned above, the presented architecture requires two datasets as input for 

the VISSIM simulation model: the O/D matrix, which contains all types of vehicle origins 

and destinations within the network, and connected vehicles’ trajectory data. To create 

the O/D matrix, a traffic detection method should be applied within the network. The 

number of vehicles moving through the network should be countable using this way. If 

the connected vehicle dataset achieves one hundred percent market penetration, there is 

no need to use any other data collection method. However, such a comprehensive dataset 

is currently unavailable in most traffic networks. In this study, RTMS are used to collect 

historical traffic volume data (passenger car equivalent) within the network. Installing 

multiple sensors at various locations within the network facilitates the creation of an O/D 

matrix easily using simple calculations. Both the Wejo dataset and RTMS dataset are avail-

able upon request. 

Figure 2. Detailed client-side process within the calibration framework, as referenced in Figure 1.

Calibrating a microscopic simulation model is a non-trivial task that generally de-
mands numerous repetitive simulation runs with different parameter values. To expedite
the process, instead of running the simulation on a single computer, this research adopts a
distributed computing architecture, allowing multiple computers (i.e., clients) to conduct
simulation tasks and send the results back to the server. Multiple desktop and laptop
computers running the Windows 11 operating system are used as clients in this study.
The clients utilize the Component Object Model (COM) interface to control the VISSIM
software Version 2024.00-10 (PTV Group, Karlsruhe, Germany) which is discussed briefly
in the following subsections. The server generates multiple sets of values for calibration
parameters and sends these sets, along with the O/D matrices and vehicle trajectories, to
the clients one by one. Each client uses the O/D matrix as input for the VISSIM model
and automatically changes the default values of calibration parameters according to the
server’s instructions. After running the simulation, the results are compared to the vehicle
trajectories, which serve as the ground truth. Each client evaluates the current calibration
process and sends the results back to the server. The server then gathers all the results and
attempts to optimize the calibration parameters for the next iteration. More details about
these stages are presented in the following subsections.

3.2. Data Preparation

As mentioned above, the presented architecture requires two datasets as input for the
VISSIM simulation model: the O/D matrix, which contains all types of vehicle origins and
destinations within the network, and connected vehicles’ trajectory data. To create the O/D
matrix, a traffic detection method should be applied within the network. The number of
vehicles moving through the network should be countable using this way. If the connected
vehicle dataset achieves one hundred percent market penetration, there is no need to use
any other data collection method. However, such a comprehensive dataset is currently
unavailable in most traffic networks. In this study, RTMS are used to collect historical traffic
volume data (passenger car equivalent) within the network. Installing multiple sensors at
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various locations within the network facilitates the creation of an O/D matrix easily using
simple calculations. Both the Wejo dataset and RTMS dataset are available upon request.

The connected vehicles’ trajectories are extracted from the Wejo dataset. The Wejo
dataset is a collection of connected vehicle data that captures detailed trajectories and
behavioral information of vehicles on real-world roads. In this dataset, each vehicle is
assigned a unique Journey Identification (JID). For each JID, information, such as longitude
and latitude, speed, and time-stamps, is recorded every second. The Wejo dataset must
first be filtered for the road network under consideration because it includes data on
connected vehicles traveling all roads. Using the geofencing method, all vehicles outside
the designated network are filtered out. In the geofencing method, some polygons around
the area of interest are defined. Any GPS coordinates outside of these polygons are excluded
from the dataset. By completing this process, the noise in the data is reduced, and only
relevant trajectories are included. Moreover, the dataset needs to be filtered for the specific
project period.

Having cleaned the dataset, a script is designed to prepare the datasets for input into
the VISSIM simulation model. This script first examines all connected vehicle trajectories
within the network during the simulation period to capture vehicle origins, destinations,
and entry times into the network. It then creates a list of this information, making it ready
for the main script to place the vehicles in the simulation at the exact times and locations
corresponding to the real world and assigns route decisions to the vehicles based on their
destinations. All the vehicles created in the simulation using this method are categorized
as connected vehicles. Meanwhile, all the vehicles created in the simulation using the O/D
matrix derived from the RTMS data are categorized as non-connected vehicles. To refine
the data, all vehicles from the Wejo dataset are subtracted from the RTMS dataset based on
their time-stamps and locations.

3.3. Calibration Parameters

For calibration, this study selects multiple parameters within VISSIM software (version
2024), primarily from the “driving behavior” section of the freeway menu. The Wiedemann
99 model, recommended for freeways and incorporating ten parameters, is chosen as the
“car-following model”. Historical data from some highways indicate that traffic flow is
influenced by external conditions such as upstream congestion, and merging and diverging
outside of the network. To account for these factors alongside driving behavior parameters,
a dummy highway link, featuring one exit and one entrance along with a reduced speed
area to simulate congestion, should be attached to the end of the highway segment. The
trajectories of vehicles on this dummy link are not considered in the calibration process. In
addition to driving behavior parameters, the calibration process allows for adjustments
to the number of vehicles entering, the dimensions and speed of the reduced speed area,
and the relative flow of cars using the exit on the dummy link. Table 2 shows all the
parameters that can be adjusted in VISSIM software (version 2024) for calibration purposes
in this study.

Table 2. Parameters in the calibration process.

Short Name Long Name Description Unit Default Min Max

LookAheadDistMax
Lookahead

distance
(maximum)

A vehicle’s maximum forward
vision allows it to respond to other
vehicles ahead or to its side (inside

the same link).

m 250 100 400

AccDecelOwn Accepted
deceleration

The lower limit of the vehicle’s lane
changes deceleration. m/s2 −1 −10 0
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Table 2. Cont.

Short Name Long Name Description Unit Default Min Max

CoopDecel
Maximum

cooperative
deceleration

Cooperative braking during
maximum deceleration. m/s2 −3 −10 0

LookBackDistMax
Look back
distance

(maximum)

The farthest a car can see behind it
to respond to other cars behind it

(inside the same link).
m 150 50 250

MaxDecelOwn Maximum
deceleration

Maximum lane-changing
deceleration according to the

designated routes for the overtaking
vehicle.

m/s2 −4 −10 −0.01

NumInteractObj
Number of
interaction

objects

Within its maximum lookahead
distance, the smallest number of
downstream cars and relevant
network objects (signal heads,

limited speed zones, etc.) to which a
vehicle responds.

- 2 1 10

NumInteractVeh
Number of
interaction

vehicles

The maximum number of cars
downstream to which a vehicle can
respond. Other network objects are

not included in this.

- 99 1 99

SafDistFactLnChg
Safety distance
reduction factor

(lane change)

(1) The trailing vehicle’s safety
distance on the new lane, which is

used to decide whether to perform a
lane change; (2) the lane changer’s
safety distance; and (3) the distance

to the slower, preceding lane
changer.

- 0.6 0 1

W99cc0 * Standstill
distance

The ideal spacing between two cars
at a stop. m 1.5 0.5 1.5

W99cc1 * Gap time
distribution

In addition to the standstill distance,
a driver’s desired gap time in

seconds, which is calculated from
the time distribution.

s 0.9 0.5 30

W99cc2 *
‘Following’

distance
oscillation

The maximum distance that a driver
following another car will

consciously go beyond the preferred
safety distance before purposefully

approaching.

m 4 0 15

W99cc3 *
Threshold for

entering
‘BrakeBX’

At the beginning of the deceleration
process, the time in seconds until

the vehicle reaches the upper limit
of the following distance to a slower

leading vehicle.

s −8 −30 0

W99cc4 * Negative speed
difference

The threshold for the relative speed
during the subsequent process as

compared to a slower leading
vehicle.

m/s −0.35 −1 0

W99cc5 * Positive speed
difference

The threshold for the relative speed
during the subsequent process

when compared to a quicker leading
vehicle.

m/s 0.35 0 1

W99cc6 *
Distance

dependency of
oscillation

Distance’s impact on relative speed
thresholds during the subsequent

procedure.
Rad/s 11.44 0 25

W99cc7 * Oscillation
acceleration

Minimal rate of acceleration or
deceleration during the subsequent

oscillation process.
m/s2 0.25 0 1

W99cc8 * Acceleration from
standstill

Acceleration when beginning at a
complete stop. m/s2 3.5 1 8
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Table 2. Cont.

Short Name Long Name Description Unit Default Min Max

W99cc9 * Acceleration at 80
km/h 80 km/h acceleration. m/s2 1.5 0.5 3

LenRedSpeed
Length of

reduced speed
area

The length of the reduced speed
area in the dummy links at the end

of the network.
m - 0 888

DSRedSpeed
Desire speed in
reduced speed

area
Desire speed in reduced speed area. km/h - 5 70

VolInterFlow Volume of
interrupting flow

The number of vehicles that merge
into the dummy link to interrupt the

main flow.
vehicle/h - 0 2000

RelFlowExit
Relative flow of

exit at the
dummy link

The percentage of vehicles that exit
the network at the dummy link. % - 0 0.5

LnChgDist
Lane change

distance before
connectors

The distance before the connector
where cars whose routes or paths
cross it attempt to select the lane
that will get them there without

changing lanes.

m 200 100 2000

DesSpeed Desire speed Desire speed of vehicles in the
network. km/h 90 70 120

* Wiedemann 99 parameter.

3.4. Simulation Process

To run the simulation, each client receives an order from the server. This order includes
a simulation run ID, the O/D matrices, the list of connected vehicle information, and values
for calibration parameters. The client then opens the VISSIM simulation network, which
has already been created and saved in the directory, and starts controlling it using the COM
interface. The COM interface of VISSIM is a powerful mechanism that allows programmatic
control of VISSIM. This interface is a tool for conducting automated and complex simulation
tasks that need high levels of customization and dynamic data handling. The automated
process in this study is conducted by multiple Python codes, which were able to interact
with VISSIM using the COM interface.

The client uses the received O/D matrix to populate the traffic input volumes in
VISSIM software (version 2024), which, based on the available data from RTMS, can be set at
5 min intervals. Consequently, multiple O/D matrices are entered into the software, one for
every five min. The client then starts to adjust the values of the calibration parameters
based on the received order. The client runs the simulation for one Simsec, equivalent to
0.1 s. Meanwhile, the client checks the connected vehicle dataset and places the connected
vehicle at the designated location if it needs to enter the network at that moment. It also
assigns the route decision to the vehicle and records the vehicle ID for future purposes. The
client then simulates another step and repeats this process until the end of the simulation.

After the simulation ends, the client captures and saves the trajectories of the connected
vehicles based on their IDs, which are ready to be compared with the ground truth. This
comparison is necessary to evaluate the accuracy of the calibration parameters in this run.
To ensure statistical robustness and to reduce bias, each client processes the order from the
server five times with different random seeds and reports back the median values of the
results. Figure 2 presents a summary of the simulation process for each client.
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3.5. Optimization and Evaluation Processes

As presented in the previous subsection, the proposed calibration method requires an
evaluation process and optimization. Making the simulation model as close to the ground
truth as possible is the main goal of this process. This is accomplished by the process’s
design, which aims to align the connected vehicles’ trajectories in the simulation with
those in the real world. Furthermore, comparing these two trajectories is chosen as the
main evaluation process in this study. A time–space diagram is created for each connected
vehicle in the network to facilitate this comparison. Then, the trajectories from both the
real world and the simulation are plotted on this diagram. The area between these two
curves in the time–space diagram is defined as the error of the simulation results. Figure 3
illustrates a conceptual time–space diagram with two curves representing hypothetical
trajectories from the real world and the simulation in red and green, respectively. The error
for this vehicle can be calculated using Equation (1).

Error = ∑ Ai = ∑
(∣∣Sj − Cj

∣∣) (1)
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In Equation (1), Ai represents the area between the two trajectory lines. The total
error is considered as the simulation error for each vehicle. Each trajectory is divided into
time intervals of 0.1 s to calculate this area. The value of space for the connected vehicle
trajectory (Cj) is subtracted from the value of space for the simulation trajectory (Sj). The
error is the summation of the absolute values of these differences for each time interval.

For every simulation run, the summation of errors for each vehicle represents the total
error for that simulation. The optimization algorithm aims to minimize this total error.
To optimize the calibration parameters in the VISSIM microsimulation model, a Genetic
Algorithm (GA) is employed due to its effectiveness in handling complex optimization
problems with multiple parameters and nonlinear relationships. By simultaneously exam-
ining several regions of the solution space, GAs conduct a global search, decreasing the
possibility of becoming stuck in local minima [30]. Furthermore, the GA is appropriate for
complex optimization situations when the objective function is neither convex nor differen-
tiable since they do not require gradient information nor convexity assumptions. It can be
efficiently parallelized, as each individual’s fitness evaluation is independent. This aligns
with the architecture, where multiple clients can run simulations concurrently, enhancing
computational efficiency. Previous studies successfully applied GAs for calibrating traffic
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simulation models, demonstrating their effectiveness in finding optimal or near-optimal
solutions [8,25].

To reduce the differences between the simulated and actual vehicle trajectories, the GA
iteratively changes the parameters in Table 2 within predetermined limits. The objective
function of the GA is presented in Equation (2).

Minimize f (θ) =
N

∑
i=1

T

∑
t=1

|(Sit(θ)− Cit)| (2)

In this equation, all of the calibration parameters used in the VISSIM simulation model
are included in the parameter vector θ, which determines the goal function in this equation,
f (θ). N is the number of vehicles, Ti is the number of time points for vehicle i, Cit is the
observed coordinates of vehicle i at time t, and Sit is the simulated coordinates of vehicle
i at time t as a function of the calibration parameters θ. The objective function aims to
minimize the total simulation error by reducing the discrepancies between the simulated
and real-world trajectories of connected vehicles. The function calculates the total error
by summing the areas between the trajectory curves of each vehicle in the simulation and
its corresponding real-world trajectory. These areas represent the differences in position
over time between the simulated and real data; thus, a smaller area (and therefore a smaller
sum of these areas) indicates a more accurate simulation. The GA optimizes the parameters
of the simulation to achieve the lowest possible total error, improving the fidelity of the
simulation model relative to the real-world conditions.

To ensure optimal performance of the GA, a systematic evaluation of its para-
meters—population size, mutation rate, number of generations, and crossover rate—is
conducted, considering the trade-offs between computational efficiency and solution qual-
ity. To balance the algorithm’s exploration and exploitation capabilities and guarantee
convergence to an optimal or nearly optimal solution without incurring undue computing
costs, these parameters must be carefully chosen. The population size determines how
many potential solutions (sets of calibration parameters) are evaluated in each generation.
A larger population provides a diverse set of solutions, enhancing the algorithm’s ability
to explore the search space but increasing computational load. A population size of 32 is
chosen based on a trade-off between computational efficiency and solution quality. This
size is sufficient to maintain genetic diversity without overwhelming computational re-
sources [31]. In order to avoid stagnation at local optima, the mutation rate introduces new
genetic material into the population by regulating the likelihood of random changes in
the parameters of the individuals. A mutation rate of 0.1 is selected to provide a balanced
introduction of variability. This rate is commonly used in GA applications and is effective
in maintaining diversity within the population [32]. The crossover rate in the implemented
GA is set at 100%, meaning crossover is applied in every reproduction step. This decision
is based on the need to maximize exploration of the solution space by ensuring a consis-
tent combination of genetic material from parent solutions. While a 100% crossover rate
might not suit every problem, it is a common practice in GAs, particularly when paired
with an effective mutation operator [32]. The mutation rate, set at 10%, complements the
crossover process by maintaining genetic diversity and preventing premature convergence.
This combination proves effective, as demonstrated by the algorithm’s ability to improve
fitness values and reduce calibration errors across generations iteratively. The number of
generations defines how many iterations the GA will perform, influencing the depth of the
search process. A total of 200 generations is deemed appropriate to allow the algorithm to
converge toward an optimal solution while keeping computation time reasonable.
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3.6. Site Description

As a case study, a section of NJ-3 and NJ-495 eastbound highways in Hudson County,
New Jersey, is selected. This section is 2.75 km in length and connects Bergen County in
New Jersey to Manhattan, New York City, New York, through the Lincoln Tunnel. As this
road serves as one of the connections from the urban areas in New Jersey to the district
areas in New York and also connects the Meadowlands Sports Complex (MetLife Stadium)
to New York City, it is one of the most crowded roadways in the New York Metropolitan
Area. The selected highway segment starts at milepost 9.2 on NJ-3 East and ends at milepost
0.95 on NJ-495 East. Figure 4 shows the selected segment on Google Maps. The highway in
the selected segment has two exits to the local roads and other highways and one merging
section from NJ-495, which are considered in the study. The first half of the section has
three lanes, which are reduced to two lanes in the middle of the section after an exit to
another highway. The section then becomes four lanes after a merge from NJ-495 in the last
quarter of its length.
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Figure 4. The selected highway segment (NJ-3 and NJ-495) on Google Maps alongside the locations
of the RTMS.

The historical trajectory data for 7 July 2021, from 1 PM to 4 PM—which are the peak
hours—are extracted from this dataset. The datasets provide sufficient traffic volume and
vehicle trajectory data for the calibration process, though it is important to acknowledge
that the data collection occurred during the COVID-19 period. By mid-2021, traffic volumes
were rebounding; however, some effects of the pandemic may have persisted. Using
geofencing methods, all trajectories outside the selected segment are filtered out. Overall,
338 individual connected vehicles passed through the highway section in the mentioned
period. This trajectory dataset is then used as the ground truth in this study.

Four RTMS at multiple locations collect historical traffic volumes, enabling the count-
ing of vehicles entering, driving through, and exiting the segment. Figure 4 shows the
locations of these sensors on the highway segment. To refine the O/D matrix, the number
of connected vehicles from the Wejo dataset is subtracted from the RTMS dataset. Finally,
for every five min of the simulation, the O/D matrix for non-connected vehicles is created
and incorporated into the simulation.

After each simulation run with predefined parameters, the script extracts the trajec-
tories of vehicles to produce the time–space diagram for each vehicle and calculates the



Appl. Sci. 2025, 15, 1496 14 of 24

error to be minimized during the calibration process, as explained in the previous sections.
The VISSIM microsimulation model’s parameters are optimized using a GA to improve its
correspondence with ground truth data. The GA iteratively adjusts parameters in Table 2
within predefined ranges. At each iteration, the algorithm mutates these parameters with a
set mutation rate to explore a variety of configurations. The fitness of each configuration is
assessed based on how closely the simulated vehicle trajectories match the actual vehicle
trajectories from the Wejo dataset. A population of possible solutions is created, their
performance is assessed, and the top performers are chosen for the following generation.

The GA continuously adjusts driving behavior parameters to reduce the differences
between the simulated and real-world data. In this study, 200 generations and 32 pop-
ulations are conducted with a mutation rate equal to 0.1. These parameters are chosen
based on their previous successful application in calibrating traffic simulation models such
as [25] and available resources. By striking a balance between exploration and convergence,
these values guarantee that the algorithm can successfully reduce the differences between
simulated and actual trajectories.

4. Results
This section provides a summary of the study’s findings. Although the general

procedure and idea can be applied to any traffic network with any features, the study
was carried out on a highway segment as a case study. This 2.75 km part of the NJ-3
and NJ-495 eastbound highways has three lanes in the first half, two lanes in the third
quarter, and four lanes in the last quarter. It also has two exits to local roads and other
highways as well as a section that merges from NJ-495. High traffic volumes and the
significance of connecting urban regions to district areas led to the selection of this route.
The selected segment, with moderate to high traffic, typical merging areas, and standard
geometric features, represents a typical roadway environment, supporting the method’s
generalizability. However, unique geometric attributes or traffic characteristics in other
sites may require minor adjustments to the calibration process.

4.1. Calibration Results

This study conducted 32,000 simulation runs to calibrate the network (200 generations,
32 populations per generation, and 5 runs per population). Each run used a warm-up period
of 300 s and stopping criteria based on simulation duration. To account for variability, the
five runs per population were conducted using different random seeds, which altered the
arrival times and distribution of non-connected vehicles. However, for connected vehicles,
the script consistently placed them at the same starting point and time to ensure consistency
in their trajectories. All runs were performed under a single demand scenario, representing
peak-hour traffic conditions, as described in Section 3.6. of the paper. It took around 616 h
to complete the simulations, with each generation taking approximately 3 h. With nine
clients on duty most of the time, each replication took approximately 5 min on average
at the fastest possible speed. Figure 5 illustrates the results of the Genetic Algorithm. In
this graph, the vertical axis represents the lowest median error of all populations for each
generation. At each population, the median error across five simulation runs was calculated,
and the best (lowest) error from all populations was selected as the representative result
for that generation. The horizontal axis shows the generations of the GA. This graph
indicates that the procedure found the optimal parameter settings and effectively reduced
the discrepancies between the simulation trajectories and the actual world. Moreover, most
of the reductions in errors occurred in the first quarter of the iterations, indicating that the
process found the optimal solution faster than expected.
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Figure 6 shows time–space diagrams (TSDs) for three randomly selected vehicles out of
the 338 connected vehicles in the dataset that can be matched with the Wejo trajectories. The
selection was conducted randomly without bias to ensure typical results were represented.
In these diagrams, vehicles are represented by lines, where steeper slopes correspond
to slower speeds. The left-hand side TSDs illustrate the trajectory differences before the
calibration process, while the right-hand side ones show the trajectory differences after
the calibration process for the same vehicle. Improved alignment of the simulated vehicle
trajectories with the ground truth trajectories, as seen in the right-hand side diagrams,
demonstrates the effectiveness of the calibration process in making the simulation more
representative of actual traffic behavior.

Table 3 details the total errors before and after the calibration process. Based on the
provided statistical analysis, several insights emerge that highlight the effectiveness of the
calibration process. Initially, the mean error decreased from 208.53 m·min to 178.94 m·min,
reflecting a 14% decrease in mean error, indicating an improvement in overall accuracy.
The median error, which represents the midpoint of error distribution, also saw a notable
reduction from 131.56 to 107.53 m·min, indicating that at least half of the error values are
now significantly lower and signify more consistent performance across different traffic
conditions. The standard deviation, which measures the range of error values, went from
236.58 to 222.66, indicating that errors are more consistent after calibration. The minimum
and maximum errors also improved, with the maximum error reducing from 2249.19 to
2170.08, which suggests a reduction in the most extreme cases of error.

Table 3. Statistical results of the errors in time–space diagrams before and after the calibration process.

Errors in Time–Space
Diagrams

Before
Calibration

After
Calibration % of Change Units

Mean 208.53 178.94 14.19% m·min
Median 131.56 107.53 18.27% m·min

Standard Deviation 236.58 222.66 5.88% m·min
Minimum 3.14 1.66 47.14% m·min
Maximum 2249.19 2170.08 3.52% m·min

25th percentile 34.22 32.42 5.27% m·min
75th percentile 310.90 240.73 22.57% m·min

Variance 55,969.14 49,579.17 11.42% (m·min)2

Skewness 2.76 3.29 −19.25% -
Kurtosis 16.27 19.93 −22.44% -

Coefficient of Variation 1.13 1.24 −9.68% -
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Percentile values give a deeper insight into the distribution of errors. The 25th per-
centile saw a slight improvement (5.27%), indicating that lower error values are becoming
more common. More substantial is the improvement in the 75th percentile, decreasing
from 310.90 to 240.73, showing that higher errors have been effectively reduced. Moreover,
the variance decreased from 55,969.14 to 49,579.17, confirming a reduction in the spread of
error data around the mean. Interestingly, the skewness and kurtosis increased from 2.76 to
3.29 and from 16.27 to 19.93, respectively, indicating that the distribution of errors has be-
come more positively skewed and peaked post-calibration. A slight increase in variability,
as indicated by kurtosis, points to remaining outlier cases that need further investigation.
Lastly, the coefficient of variation increased from 1.13 to 1.24. This increase indicates a
higher relative variability in error distribution relative to the mean after calibration, which
suggests variability in the effectiveness of the calibration across different cases.

Overall, the alignment between the simulated and ground truth trajectories has im-
proved, as evidenced by the decrease in the mean and median errors. These measures show
the simulation model’s overall accuracy as well as its primary tendency. The observed
drop in the mean error can be attributed to the calibration’s successful reduction in bigger
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discrepancies, as indicated by the decrease in the 75th percentile error. This suggests that
high-error instances were effectively handled by the calibration framework, resulting in a
more realistic simulation. When compared to similar research [21,29], the method presented
in this study performed better.

The increase in kurtosis and skewness indicates that although overall errors decreased,
the distribution of errors became more positively skewed and peaked. This suggests that
there are now fewer but more significant outliers and a greater percentage of errors are con-
centrated closer to the bottom end of the distribution. These outliers likely reflect specific
traffic situations, such as highly congested segments or complex merging and lane-changing
behaviors, that were not fully captured during the calibration process. Furthermore, the
higher relative variability in the error distribution, as reflected in the coefficient of variation,
indicates that although the calibration enhanced average performance, its efficacy varied
depending on traffic conditions. This variability may stem from the limitations of the se-
lected model parameters, which might not fully account for certain driver behaviors unique
to the selected highway segment. For example, local driving patterns, such as aggressive
merging or braking, may not have been adequately represented in the calibration dataset.
These findings highlight potential areas for future improvement, including incorporating
additional behavioral data or refining the calibration parameters to better capture such
specific scenarios.

To have a deeper comparison of the simulation results before and after the calibration
process with the ground truth, the vehicle speed data collected by the RTMS are compared to
the data collected from the simulations at data collection points. Although this comparison
is not used for the optimization process, it provides valuable data about the calibration
performance. The installed RTMS cover five different sections of the main highways and
exits. Detailed information about these sections is presented in Table 4.

Table 4. The details of sections used to speed data collection.

Location ID ID in the Simulation Number of Lanes Section Type

Location 1 Link 6 3 Main Road
Location 2 Link 7 1 Exit Ramp
Location 3 Link 29 2 Main Road
Location 4 Link 30 2 Exit Ramp
Location 5 Link 33 4 Main Road

Figure 7 compares the ground truth vehicle speed (RTMS) with vehicle speeds from the
simulation both before and after the calibration process. The calibrated simulations showed
improved alignment with the real-world measurement data, particularly displaying more
stable speed patterns across main roads and exit ramps. This indicates that the calibration
successfully refined the simulation parameters to mimic actual driving conditions better,
thus enhancing the reliability of the traffic models for predictive analyses and planning
decisions. However, as depicted in the figures, the vehicle speeds in the simulation network
still generally exceed the ground truth speeds, even after calibration. Further examination
of vehicle behavior in the calibrated simulation revealed that real-world drivers reduce
their speed slightly in response to changes in road characteristics, such as entering a curve,
an exit ramp, or encountering different road surfaces. Notably, two RTMS are located on an
exit ramp and others near or before a curve. It can be concluded that the simulation did not
adequately mimic this real-world speed reduction, warranting further investigation.
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Figure 7. Average speed comparison of ground truth and simulation results before and after the
calibration process.

4.2. Validation Results

Through multiple runs, the optimization process was able to determine the ideal
calibration parameter values, greatly minimizing the differences between the simulation
and the real world. To validate the calibrated parameter values across different traffic pat-
terns and volumes, this study included a validation phase. The calibration was conducted
using datasets collected during afternoon peak hours, from 1 PM to 4 PM. Validation was
performed using separate datasets collected during morning peak hours, from 7 AM to
9 AM. The morning peak dataset was selected to test the model’s robustness under different
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traffic conditions. Morning traffic typically includes higher commuter volumes, different
congestion patterns, and potentially more variable speeds compared to afternoon peak
hours. This variation provides a challenging scenario to evaluate the model’s generaliz-
ability and validate its performance across diverse traffic conditions. The VISSIM model
was first run with the calibration parameters set to their default values, and the total error
corresponding to these values was computed. Subsequently, the parameters were adjusted
to the calibrated values, and the total error for these calibrated parameters was recorded.
The differences between the default model and the calibrated model in the validation
process are shown in Table 5.

Table 5. Statistical results of the errors in the validation process.

Errors in Time–Space
Diagrams

Before
Calibration

After
Calibration % of Change Units

Mean 366.89 246.97 32.68% m·min
Median 203.55 235.69 −15.79% m·min

Standard Deviation 494.95 184.44 62.74% m·min
Minimum 3.71 4.72 −27.23% m·min
Maximum 2479.92 705.35 71.56% m·min

25th percentile 23.39 85.17 −264.11% m·min
75th percentile 558.05 375.83 32.65% m·min

Variance 244,973.86 34,017.95 86.11% (m·min)2

Skewness 2.51 0.55 78.16% -
Kurtosis 8.46 −0.40 104.69% -

Coefficient of Variation 1.35 0.75 44.64% -

In the validation phase, a significant reduction in mean error by 32.68% from 366.89 to
246.97 m·min was achieved, surpassing the improvement noted during calibration. This
suggests that the calibrated parameters effectively enhanced the average accuracy of the
model even under varying traffic conditions. However, the median error in the validation
results increased by 15.79%, indicating that while some scenarios saw substantial improve-
ments, typical cases represented by the median did not benefit uniformly. This tension
between metrics indicates that while the calibration effectively addressed worst-case sce-
narios, it may have introduced trade-offs in handling typical or best-case scenarios. These
findings highlight the potential need for future refinements to better balance improvements
across the entire error distribution, ensuring consistent benefits for all traffic conditions. The
reduction in the standard deviation during validation was profound, dropping by 62.74%,
compared to a more modest 5.88% during calibration. This marked decrease underscores a
significant enhancement in error consistency, suggesting that the variability in model perfor-
mance was substantially narrowed after applying the calibrated parameters. The maximum
error reduction during validation was also notable, decreasing by 71.56%, a substantial
improvement that highlights the calibration’s effectiveness in reducing worst-case scenario
errors. Conversely, the minimum error and the 25th percentile error showed deteriorations,
increasing by 27.23% and 264.11%, respectively. These results indicate that while extreme
errors were better controlled, the best-case scenario performance worsened, and lower
quartile errors became more prevalent. Skewness and kurtosis changes during validation
showed a trend toward a more symmetric and flatter error distribution, contrasting with
the increases observed during calibration. This suggests that while the calibration process
helped reduce outliers, it also shifted the overall distribution of errors.

The validation results affirm the effectiveness of the calibration process in enhancing
model accuracy and consistency across different testing conditions. However, the increase
in median and 25th percentile errors alongside the variability in skewness and kurtosis
across different datasets point to areas where further calibration refinement could be
beneficial. This highlights the importance of tailoring calibration strategies to accommodate
variations in traffic patterns and conditions to ensure the model’s robustness and reliability.
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Data gathered from the simulations and RTMS are used to compare the average
vehicle speed before and after the calibration of parameters with the ground truth data.
The validation process’s average speed data from 7 to 9 AM are displayed in Figure 8.
Although they still require improvement, the calibrated parameters considerably decreased
the differences between the simulation and the ground truth, as shown in the figure.
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Figure 8. Average speed comparison of ground truth and simulation results before and after imple-
menting calibrated parameters in the validation process.
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These calibrated traffic simulation models have significant practical applications in
traffic engineering. For instance, the improved model accuracy can support enhanced ramp
metering strategies, where precise predictions of traffic flows are essential to managing
merging and lane-changing scenarios effectively. Similarly, the reduced error variability
allows for better corridor management, enabling traffic engineers to design adaptive signal
timings and manage traffic congestion dynamically. These applications demonstrate how
the proposed calibration framework can translate into actionable insights for real-world
traffic management and planning tasks.

5. Discussion and Conclusions
This study effectively illustrated how a VISSIM microsimulation model can be cali-

brated and its ability to simulate a real-world highway segment (a section of the NJ-3 and
NJ-495 eastbound highways in Hudson County, New Jersey) improved by using connected
vehicle data from the Wejo dataset. Our goal was to apply a GA to connected vehicle
data from the Wejo dataset in order to decrease trajectory inconsistencies in a VISSIM
microsimulation model. The objective of this work was to increase simulation accuracy and
model fidelity by utilizing high-resolution trajectory data and iterative optimization.

The study’s findings, which show notable error reductions across important measures,
highlight the value of combining GAs for calibration with connected vehicle trajectory
data. This study emphasizes the benefits of VISSIM’s compliance with high-resolution
trajectory data and distributed computing architecture when comparing the findings to
other research, such as Leal et al. [8], which also used GAs but concentrated on AIMSUN
software (version not specified). Likewise, the strategy employed here provides more
scalability and flexibility for a variety of traffic networks than approaches such as multi-
point distribution calibration [29] or Bayesian neural networks [13]. This approach can
be used to increase simulation fidelity in both urban and highway settings, as evidenced
by the observed improvement in trajectory alignment, especially in the mean and median
error reductions. The accuracy of the model was significantly improved by this calibration,
as shown by the drop in mean and median errors as well as a general decrease in the
variability of error metrics after calibration. The mean error decreased by 14.19%, while
the median error saw an 18.27% reduction, showcasing the effectiveness of the calibration
process in improving overall accuracy.

The results underscore the importance of accurate parameter tuning in traffic simu-
lation models and illustrate the benefit of leveraging connected vehicle data. By offering
a unique calibration framework that goes beyond conventional techniques that rely on
fixed parameter values or limited data sources, this study advances the discipline. This
technique presents a dynamic and data-driven solution that may adjust to the particular
features of any traffic network by utilizing connected vehicle trajectory data. By making
traffic simulation models more realistic and applicable, this invention makes it possible
to analyze and prepare for contemporary transportation systems with greater accuracy.
Particularly notable was the rapid convergence to optimal parameter values within the first
quarter of the iterations, highlighting the efficiency of the GA in finding practical solutions
quickly. However, increased skewness and kurtosis post-calibration suggest that while
the average errors were reduced, the variability, in some cases, increased. The increases
in skewness and kurtosis indicate that while the overall error is reduced, certain extreme
cases still exist, which could point to specific traffic behaviors not fully captured by the
calibration. This suggests potential areas for further refinement, such as incorporating more
detailed behavioral models or data sources.

The suggested strategy has a few limitations despite its proven efficacy. First, even
though the GA effectively reduced the number of discrepancies in this investigation,
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other optimization methods or hybrid approaches might produce even better outcomes.
Furthermore, the framework does not yet take into consideration extremely specific driving
behaviors or external variables that could affect calibration results, such as weather or
incident impacts. By extending the calibration to multi-network settings, adding more
data sources, and investigating sophisticated optimization strategies, future work will
overcome these constraints. The calibration procedure might also be improved by using a
multi-criteria objective function or a more complicated objective function.

The calibrated models have significant practical implications for traffic engineering,
such as improving ramp metering strategies, optimizing corridor management, and aid-
ing in the development of adaptive traffic signal systems. By providing more realistic
simulations, the approach enables traffic engineers and planners to make better-informed
decisions for infrastructure design and operational strategies. The approach outlined in this
paper not only provides a robust framework for enhancing the fidelity of traffic simulations
but also offers a scalable method that can be applied to other segments or networks, irre-
spective of their specific characteristics or geographic locations. As cities and transportation
networks continue to evolve, the integration of advanced simulation tools with real-world
data will be crucial in designing more efficient and sustainable traffic systems.
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