Monocular Curb Edge Detection via Robust Geometric Correspondences
Abstract
1. Introduction
- Demonstrate that image-based homography can capture subtle plane changes and curb-height road gradients from monocular input, establishing feasibility for safety-critical detection.
- Propose a monocular, geometry-driven pipeline that uses robust correspondences, homography decomposition, and temporal reasoning, complemented by late-stage IMU alignment.
- Release a small, purpose-built dataset (four curb, two speed-bump sequences) to test the binary detectability question under controlled conditions, laying groundwork for later large-scale studies.
- Report curb vs. speed-bump behavior, explaining why curbs exhibit a strong plane transition signature while speed bumps do not under a single-plane model.
2. Materials and Methods
2.1. Dataset
2.2. Ground Truth Generation
2.3. Architecture
3. Results
3.1. Metrics
3.2. Performance Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gallo, O.; Manduchi, R.; Rafii, A. Robust Curb and Ramp Detection for Safe Parking Using the Canesta TOF Camera. In Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, J.; Wang, Y.; Jia, W.; Sun, M.; Tang, Y. Obstacle Classification and 3D Measurement in Unstructured Environments Based on ToF Cameras. Sensors 2014, 14, 10753–10782. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Park, J.; Byun, J.; Yu, W. Robust Ground Plane Detection from 3D Point Clouds. In Proceedings of the 2014 14th International Conference on Control, Automation and Systems (ICCAS), Gyeonggi-do, Republic of Korea, 22–25 October 2014; pp. 1076–1081. [Google Scholar] [CrossRef]
- Zhang, W. LIDAR-based Road and Road-edge Detection. In Proceedings of the 2010 IEEE Intelligent Vehicles Symposium, San Diego, CA, USA, 21–24 June 2010; pp. 845–848. [Google Scholar] [CrossRef]
- McDaniel, M.W.; Nishihata, T.; Brooks, C.A.; Iagnemma, K. Ground Plane Identification Using LIDAR in Forested Environments. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, 3–7 May 2010; pp. 3831–3836. [Google Scholar] [CrossRef]
- Lee, Y.H.; Leung, T.; Medioni, G.G. Real-time Staircase Detection from a Wearable Stereo System. In Proceedings of the 21st International Conference on Pattern Recognition (ICPR 2012), Tsukuba, Japan, 11–15 November 2012; IEEE Computer Society: Los Alamitos, CA, USA, 2012; pp. 3770–3773. [Google Scholar]
- Schwarze, T.; Lauer, M. Robust Ground Plane Tracking in Cluttered Environments from Egocentric Stereo Vision. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 2442–2447. [Google Scholar] [CrossRef]
- Kusupati, U.; Cheng, S.; Chen, R.; Su, H. Normal Assisted Stereo Depth Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Se, S.; Brady, M. Ground Plane Estimation, Error Analysis and Applications. Robot. Auton. Syst. 2002, 39, 59–71. [Google Scholar] [CrossRef]
- Romero, L.M.; Guerrero, J.A.; Romero, G. Road Curb Detection: A Historical Survey. Sensors 2021, 21, 6952. [Google Scholar] [CrossRef] [PubMed]
- Oniga, F.; Nedevschi, S. Polynomial Curb Detection Based on Dense Stereovision for Driving Assistance. In Proceedings of the 2010 IEEE Intelligent Transportation Systems Conference (ITSC), Madeira Island, Portugal, 19–22 September 2010; pp. 1110–1115. [Google Scholar] [CrossRef]
- Varma, V.S.K.P.; Adarsh, S.; Ramachandran, K.I.; Nair, B.B. Real Time Detection of Speed Hump/Bump and Distance Estimation with Deep Learning using GPU and ZED Stereo Camera. In Proceedings of the 8th International Conference on Advances in Computing and Communications (ICACC), Procedia Computer Science, Kochi, India, 13–15 September 2018; Volume 143, pp. 988–997. [Google Scholar] [CrossRef]
- Dragon, R.; Van Gool, L. Ground Plane Estimation Using a Hidden Markov Model. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 4026–4033. [Google Scholar] [CrossRef]
- Man, Y.; Weng, X.; Li, X.; Kitani, K. GroundNet: Monocular Ground Plane Normal Estimation with Geometric Consistency. In Proceedings of the 27th ACM International Conference on Multimedia, New York, NY, USA, 21–25 October 2019; pp. 2170–2178. [Google Scholar] [CrossRef]
- Zhou, J.; Li, B. Homography-based Ground Detection for a Mobile Robot Platform Using a Single Camera. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 4100–4105. [Google Scholar] [CrossRef]
- Klappstein, J.; Stein, F.; Franke, U. Applying Kalman Filtering to Road Homography Estimation. In Proceedings of the ICRA 2007 Workshop: Planning, Perception and Navigation for Intelligent Vehicles, Atlanta, GA, USA, 14 April 2007. [Google Scholar]
- Arróspide, J.; Salgado, L.; Nieto, M.; Mohedano, R. Homography-based Ground Plane Detection Using a Single On-board Camera. IET Intell. Transp. Syst. 2010, 4, 149–160. [Google Scholar] [CrossRef]
- Knorr, M.; Niehsen, W.; Stiller, C. Robust Ground Plane Induced Homography Estimation for Wide Angle Fisheye Cameras. In Proceedings of the 2014 IEEE Intelligent Vehicles Symposium (IV), Dearborn, MI, USA, 8–11 June 2014; pp. 1288–1293. [Google Scholar] [CrossRef]
- Zou, M.; Kageyama, Y.; Akashi, T. Curb Detection Using a Novel Deep Learning Framework Based on YOLO-v2. IEEJ Trans. Electr. Electron. Eng. 2022, 17, 1321–1329. [Google Scholar] [CrossRef]
- Peralta-López, J.E.; Morales-Viscaya, J.A.; Lázaro-Mata, D.; Villaseñor Aguilar, M.J.; Prado-Olivarez, J.; Pérez-Pinal, F.J.; Padilla-Medina, J.A.; Martínez-Nolasco, J.J.; Barranco-Gutiérrez, A.I. Speed Bump and Pothole Detection Using Deep Neural Network with Images Captured through ZED Camera. Appl. Sci. 2023, 13, 8349. [Google Scholar] [CrossRef]
- Ruseruka, C.; Mwakalonge, J.; Comert, G.; Siuhi, S.; Ngeni, F.; Anderson, Q. Augmenting Roadway Safety with Machine Learning and Deep Learning: Pothole Detection and Dimension Estimation Using In-Vehicle Technologies. Mach. Learn. Appl. 2024, 16, 100547. [Google Scholar] [CrossRef]
- Ma, Z.; Liu, Y.; Wang, C.; Chen, L. Annotation-Free Curb Detection Leveraging Altitude Difference Images. arXiv 2025, arXiv:2409.20171. [Google Scholar]
- Marko, N.; Rozsa, Z.; Ballagi, A.; Sziranyi, T. Monocular Ground Normal Prediction for the Road Ahead. IEEE Trans. Intell. Veh. 2025, in press.
- Shan, T.; Englot, B.; Meyers, D.; Wang, W.; Ratti, C.; Daniela, R. LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October 2020; pp. 5135–5142. [Google Scholar]
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Shoemake, K. Animating Rotation with Quaternion Curves. Comput. Graph. 1985, 19, 245–254. [Google Scholar] [CrossRef]
- Pizer, S.M.; Amburn, E.P.; Austin, J.D.; Cromartie, R.; Geselowitz, A.; Greer, T.; ter Haar Romeny, B.; Zimmerman, J.; Zuiderveld, K. Adaptive Histogram Equalization and Its Variations. Comput. Vision Graph. Image Process. 1987, 39, 355–368. [Google Scholar] [CrossRef]
- Wang, Y.; He, X.; Peng, S.; Tan, D.; Zhou, X. Efficient LoFTR: Semi-Dense Local Feature Matching with Sparse-Like Speed. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 16–22 June 2024; pp. 21666–21675. [Google Scholar]
- Barath, D.; Matas, J.; Noskova, J. MAGSAC: Marginalizing Sample Consensus. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 10189–10197. [Google Scholar] [CrossRef]






| Description | Seq 13 | Seq 14 | Seq 15 | Seq 16 | Seq 17 | Seq 18 |
|---|---|---|---|---|---|---|
| Sequence Type | Curb | Curb | Curb | Curb | Speed Bump | Speed Bump |
| Highest value (m) | 0.07 | 0.05 | 0.05 | 0.03 | 0.01 | 0.03 |
| Plane change detected | Yes | Yes | Yes | No | No | No |
| Module | Runtime (ms) | Notes |
|---|---|---|
| Feature Detector and Matcher Module | 56.79 ms | EfficientLoFTR [28] (pretrained) |
| Homography Estimation Module | 4.25 ms | MAGSAC [29] |
| Decomposition and Vector Selection Module | 0.16 ms | |
| Average | 63.94 ms | |
| Average (rate) | 15.64 FPS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marko, N.; Rozsa, Z.; Ballagi, A.; Sziranyi, T. Monocular Curb Edge Detection via Robust Geometric Correspondences. Appl. Sci. 2025, 15, 12922. https://doi.org/10.3390/app152412922
Marko N, Rozsa Z, Ballagi A, Sziranyi T. Monocular Curb Edge Detection via Robust Geometric Correspondences. Applied Sciences. 2025; 15(24):12922. https://doi.org/10.3390/app152412922
Chicago/Turabian StyleMarko, Norbert, Zoltan Rozsa, Aron Ballagi, and Tamas Sziranyi. 2025. "Monocular Curb Edge Detection via Robust Geometric Correspondences" Applied Sciences 15, no. 24: 12922. https://doi.org/10.3390/app152412922
APA StyleMarko, N., Rozsa, Z., Ballagi, A., & Sziranyi, T. (2025). Monocular Curb Edge Detection via Robust Geometric Correspondences. Applied Sciences, 15(24), 12922. https://doi.org/10.3390/app152412922

