Comparisons Between Frail and Non-Frail Hospitalized Patients in Muscle Strength and Range of Motion After Hip Fracture Surgery: A Single-Blind Experimental Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.2.1. Clinical Frailty Scale [3,18]
2.2.2. Upper Extremity Muscle Strength
2.2.3. Lower Extremity Muscle Strength
2.2.4. Upper and Lower Extremities Range of Motion
2.3. Procedure
2.4. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Clinical Frailty Scale Results
3.3. Active Range of Motion and Muscle Strength
4. Discussion
4.1. Comparison of Muscle Strength Between Frail and Non-Frail Patients
4.2. Comparison of Active Joint Range of Motion Between Frail and Non-Frail Patients
4.3. Regarding the Demographic Characteristics
4.4. Limitations and Recommendations for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AROM | Active range of motion |
| MRC | Medical Research Council |
References
- Taylor, J.A.; Greenhaff, P.L.; Bartlett, D.B.; Jackson, T.A.; Duggal, N.A.; Lord, J.M. Multisystem physiological perspective of human frailty and its modulation by physical activity. Physiol. Rev. 2022, 103, 1137–1191. [Google Scholar] [CrossRef]
- Dionyssiotis, Y.; Masiero, S.; Maccarone, M.C.; Prokopidis, K.; Dzhafer, N.; Matzaroglou, C.; Tsekoura, M.; Panayotov, K.; Papathanasiou, J. Frailty: Future prospectives in rehabilitation medicine. Eur. J. Transl. Myol. 2023, 33, 11206. [Google Scholar] [CrossRef]
- Rockwood, K.; Theou, O. Using the clinical frailty scale in allocating scarce health care resources. Can. Geriatr. J. 2020, 23, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, S.; Walston, J.D. Frailty in older adults: Insights and interventions. Cleveland Clin. J. Med. 2005, 72, 1105–1112. [Google Scholar]
- Liu, L.K.; Lee, W.J.; Chen, L.Y.; Hwang, A.C.; Lin, M.H.; Peng, L.N.; Chen, L.K. Association between frailty, osteoporosis, falls and hip fractures among community-dwelling people aged 50 years and older in Taiwan: Results from I-Lan Longitudinal Aging Study. PLoS ONE 2015, 10, e0136968. [Google Scholar] [CrossRef]
- Gerosa, A.; Ottaviani, S.; Tagliafico, L.; Page, E.; Pizzonia, M.; Giannotti, C.; Casabella, A.; Signori, A.; Nencioni, A.; Monacelli, F. Long-term survival in frail older adults sustaining a hip fracture: Does the perioperative period really matter? J. Gerontol. Geriatr. 2024, 72, 193–203. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, A.; Lou, Y.; Peng, D.; Jiang, Z.; Xia, T. Effects of frailty on outcomes following surgery among patients with hip fractures: A systematic review and meta-analysis. Front. Med. 2022, 9, 840585. [Google Scholar] [CrossRef] [PubMed]
- Kistler, E.A.; Nicholas, J.A.; Kates, S.L.; Friedman, S.M. Frailty and short-term outcomes in patients with hip fracture. Geriatr. Orthop. Surg. Rehabil. 2015, 6, 209–214. [Google Scholar] [CrossRef]
- Krishnan, M.; Beck, S.; Havelock, W.; Eeles, E.; Hubbard, R.E.; Johansen, A. Predicting outcome after hip fracture: Using a frailty index to integrate comprehensive geriatric assessment results. Age Ageing 2014, 43, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Berg, O.K.; Stutzer, J.M.; Hoff, J.; Wang, E. Early maximal strength training improves leg strength and postural stability in elderly following hip fracture surgery. Geriatr. Orthop. Surg. Rehabil. 2021, 12, 2151459321999144. [Google Scholar] [CrossRef]
- Song, Y.; Wu, Z.; Huo, H.; Zhao, P. The impact of frailty on adverse outcomes in geriatric hip fracture patients: A systematic review and meta-analysis. Front. Public Health 2022, 10, 882665. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Li, Z.; Zhao, D.; Hu, Y.; Lu, X. Prevalence of frailty among elderly patients with hip fracture in China: Protocol for a systematic review and meta-analysis. BMJ Open 2023, 13, e072623. [Google Scholar] [CrossRef]
- Farrow, M.; Biglands, J.; Tanner, S.F.; Clegg, A.; Brown, L.; Hensor, E.M.A.; O’connor, P.; Emery, P.; Tan, A.L. The effect of ageing on skeletal muscle as assessed by quantitative MR imaging: An association with frailty and muscle strength. Aging Clin. Exp. Res. 2020, 33, 291–301. [Google Scholar] [CrossRef]
- Haider, S.; Grabovac, I.; Dorner, T.E. Effects of physical activity interventions in frail and prefrail community-dwelling people on frailty status, muscle strength, physical performance and muscle mass—A narrative review. Wien. Klin. Wochenschr. 2019, 131, 244–254. [Google Scholar] [CrossRef]
- Brown, M.; Sinacore, D.R.; Ehsani, A.A.; Binder, E.F.; Holloszy, J.O.; Kohrt, W.M. Low-intensity exercise as a modifier of physical frailty in older adults. Arch. Phys. Med. Rehabil. 2000, 81, 960–965. [Google Scholar] [CrossRef] [PubMed]
- Toosizadeh, N.; Wendel, C.; Hsu, C.H.; Zamrini, E.; Mohler, J. Frailty assessment in older adults using upper-extremity function: Index development. BMC Geriatr. 2017, 17, 1. [Google Scholar] [CrossRef]
- Scano, A.; Re, R.; Tomba, A.; Amata, O.; Pirovano, I.; Brambilla, C.; Contini, D.; Spinelli, L.; Amendola, C.; Caserta, A.V.; et al. Non-surgical lower-limb rehabilitation enhances quadriceps strength in inpatients with hip fracture: A study on force capacity and fatigue. Appl. Sci. 2023, 13, 6855. [Google Scholar] [CrossRef]
- Vrettos, I.; Voukelatou, P.; Panayiotou, S.; Kyvetos, A.; Kalliakmanis, A.; Makrilakis, K.; Sfikakis, P.P.; Niakas, D. Validation of the revised 9-scale clinical frailty scale (CFS) in Greek language. BMC Geriatr. 2021, 21, 393. [Google Scholar] [CrossRef]
- Benton, M.J.; Spicher, J.M.; Silva-Smith, A.L. Validity and reliability of handgrip dynamometry in older adults: A comparison of two widely used dynamometers. PLoS ONE 2022, 17, e0270132. [Google Scholar] [CrossRef] [PubMed]
- Hislop, H.J.; Montgomery, J. Muscle Testing: Techniques of Manual Examination; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- James, M.A. Use of the Medical Research Council muscle strength grading system in the upper extremity. J. Hand Surg. 2007, 32, 154–156. [Google Scholar] [CrossRef]
- O’Neill, S.; Jaszczak, S.L.T.; Steffensen, A.K.S.; Debrabant, B. Using 4+ to grade near-normal muscle strength does not improve agreement. Chiropr. Man. Ther. 2017, 25, 28. [Google Scholar] [CrossRef]
- Hermans, G.; Clerckx, B.; Vanhullebusch, T.; Segers, J.; Vanpee, G.; Robbeets, C.; Casaer, M.P.; Wouters, P.; Gosselink, R.; Van den Berghe, G. Interobserver agreement of Medical Research Council sum-score and handgrip strength in the intensive care unit. Muscle Nerve 2011, 45, 18–25. [Google Scholar] [CrossRef]
- Pradon, D.; Roche, N.; Enette, L.; Zory, R. Relationship between lower limb muscle strength and 6-minute walk test performance in stroke patients. J. Rehabil. Med. 2013, 45, 105–108. [Google Scholar] [CrossRef]
- Lind, V.; Svensson, M.; Harringe, M.L. Reliability and validity of a digital goniometer for measuring knee joint range of motion. Meas. Phys. Educ. Exerc. Sci. 2021, 26, 191–198. [Google Scholar] [CrossRef]
- Tajali, S.B.; MacDermid, J.C.; Grewal, R.; Young, C. Reliability and validity of electro-goniometric range of motion measurements in patients with hand and wrist limitations. Open Orthop. J. 2016, 10, 190–205. [Google Scholar] [CrossRef] [PubMed]
- Carey, M.A.; Laird, D.E.; Murray, K.A.; Stevenson, J.R. Reliability, validity, and clinical usability of a digital goniometer. Work 2010, 36, 55–66. [Google Scholar] [CrossRef]
- Houglum, P.A. Therapeutic Exercise for Musculoskeletal Injuries, 4th ed.; Human Kinetics: Champaign, IL, USA, 2016. [Google Scholar]
- Wang, K.Y.; Hussaini, S.H.; Teasdall, R.D.; Gwam, C.U.; Scott, A.T. Smartphone applications for assessing ankle range of motion in clinical practice. Foot Ankle Orthop. 2019, 4, 2473011419874779. [Google Scholar] [CrossRef] [PubMed]
- Fong, C.M.; Blackburn, J.T.; Norcross, M.F.; McGrath, M.; Padua, D.A. Ankle-dorsiflexion range of motion and landing biomechanics. J. Athl. Train. 2011, 46, 5–10. [Google Scholar] [CrossRef]
- Jones, A.; Sealey, R.; Crowe, M.; Gordon, S. Concurrent validity and reliability of the Simple Goniometer iPhone app compared with the Universal Goniometer. Physiother. Theory Pract. 2014, 30, 512–516. [Google Scholar] [CrossRef]
- Hancock, G.E.; Hepworth, T.; Wembridge, K. Accuracy and reliability of knee goniometry methods. J. Exp. Orthop. 2018, 5, 46. [Google Scholar] [CrossRef]
- Eimiller, K.; Stoddard, E.; Janes, B.; Smith, M.; Vincek, A. Reliability of goniometric techniques for measuring hip flexor length using the modified Thomas test. Int. J. Sports Phys. Ther. 2024, 19, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Khamwong, P.; Nosaka, K.; Pirunsan, U.; Paungmali, A. Reliability of muscle function and sensory perception measurements of the wrist extensors. Physiother. Theory Pract. 2010, 26, 408–415. [Google Scholar] [CrossRef]
- Neumann, D.A. Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation; Elsevier Health Sciences: Philadelphia, PA, USA, 2016. [Google Scholar]
- West, A.M.; Scarborough, D.M.; McInnis, K.C.; Oh, L.S. Strength and motion in the shoulder, elbow, and hip in softball windmill pitchers. PMR 2019, 11, 1302–1311. [Google Scholar] [CrossRef]
- Dangar, M.; Sorani, D.; Rathod, S. Analysis of reference range of glenohumeral rhythm during flexion and abduction—An analytical study. Int. J. Health Sci. Res. 2024, 14, 217–224. [Google Scholar] [CrossRef]
- Fess, E.; Moran, C. Clinical Assessment Recommendations, 1st ed.; American Society of Hand Therapists: Indianapolis, IN, USA, 1981. [Google Scholar]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef]
- Schwartz, D.A. What can handgrip strength tell the therapist about hand function? J. Hand Ther. 2005, 18, 457. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Pabla, P.; Jones, E.J.; Piasecki, M.; Phillips, B.E. Skeletal muscle dysfunction with advancing age. Clin. Sci. 2024, 138, 863–882. [Google Scholar] [CrossRef]
- Lewsey, S.C.; Weiss, K.; Schär, M.; Zhang, Y.; Bottomley, P.A.; Samuel, T.J.; Xue, Q.-L.; Steinberg, A.; Walston, J.D.; Gerstenblith, G.; et al. Exercise intolerance and rapid skeletal muscle energetic decline in human age-associated frailty. JCI Insight 2020, 5, e139160. [Google Scholar] [CrossRef]
- Reid, K.F.; Pasha, E.; Doros, G.; Clark, D.J.; Patten, C.; Phillips, E.M.; Frontera, W.R.; Fielding, R.A. Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: Influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties. Eur. J. Appl. Physiol. 2013, 114, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Dudzińska-Griszek, J.; Szuster, K.; Szewieczek, J. Grip strength as a frailty diagnostic component in geriatric inpatients. Clin. Interv. Aging 2017, 12, 1151–1157. [Google Scholar] [CrossRef]
- Ko, Y.; Park, J.; Baek, S.H. Independent association between frailty and fear of falling in older adults after hip fracture surgery: A cross-sectional study using a secondary analysis. Nurs. Res. Pract. 2025, 2025, 2175740. [Google Scholar] [CrossRef]
- Doherty, W.J.; Stubbs, T.A.; Chaplin, A.; Langford, S.; Sinclair, N.; Ibrahim, K.; Reed, M.R.; Sayer, A.A.; Witham, M.D.; Sorial, A.K. Implementing grip strength assessment in hip fracture patients: A feasibility project. J. Frailty Sarcopenia Falls 2021, 6, 66–78. [Google Scholar] [CrossRef]
- Toosizadeh, N.; Mohler, J.; Najafi, B. Assessing upper extremity motion: An innovative method to identify frailty. J. Am. Geriatr. Soc. 2015, 63, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
- Pike, J.M.; Singh, S.K.; Barfield, W.R.; Schoch, B.; Friedman, R.J.; Eichinger, J.K. Impact of age on shoulder range of motion and strength. JSES Int. 2022, 6, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Alzaabi, H.S.; Walton, L.M.; Arumugam, A. Association between demographic characteristics, lower limb range of motion, functional performance, ability to dual task, quality of life and risk of falls in older adults of the United Arab Emirates: A cross-sectional study. Heliyon 2022, 8, e08869. [Google Scholar] [CrossRef] [PubMed]
- Burbank, P.M.; Reibe, D.; Padula, C.A.; Nigg, C. Exercise and older adults. Orthop. Nurs. 2002, 21, 51–63. [Google Scholar] [CrossRef]
- Freemont, A.; Hoyland, J. Morphology, mechanisms and pathology of musculoskeletal ageing. J. Pathol. 2007, 211, 252–259. [Google Scholar] [CrossRef]
- Marcucci, L.; Reggiani, C. Increase of resting muscle stiffness, a less considered component of age-related skeletal muscle impairment. Biomedicines 2020, 8, 8982. [Google Scholar] [CrossRef]
- Kinnucan, E.; Molcjan, M.T.; Wright, D.M.; Switzer, J.A. A prospective look at the link between frailty and shoulder function in asymptomatic elderly individuals. Geriatr. Orthop. Surg. Rehabil. 2018, 9, 2151459318777583. [Google Scholar] [CrossRef]
- Juma, S.; Taabazuing, M.M.; Montero-Odasso, M. Clinical Frailty Scale in an acute medicine unit: A simple tool that predicts length of stay. Can. Geriatr. J. 2016, 19, 34–39. [Google Scholar] [CrossRef]
- Rose, M.; Pan, H.; Levinson, M.R.; Staples, M. Can frailty predict complicated care needs and length of stay? Intern. Med. J. 2014, 44, 800–805. [Google Scholar] [CrossRef]
- Schweller, E.; Mueller, J.; Rivera, O.J.S.; Villegas, S.J.; Walkiewicz, J. Factors associated with hip fracture length of stay among older adults in a community hospital setting. JAAOS Glob. Res. Rev. 2023, 7, e23.00050. [Google Scholar] [CrossRef] [PubMed]
- Lari, A.; Haidar, A.; AlRumaidhi, Y.; Awad, M.; AlMutairi, O. Predictors of mortality and length of stay after hip fractures: A multicenter retrospective analysis. J. Clin. Orthop. Trauma 2022, 28, 101853. [Google Scholar] [CrossRef]
- Chan, S.; Wong, E.K.C.; Ward, S.E.; Kuan, D.; Wong, C.L. The predictive value of the Clinical Frailty Scale on discharge destination and complications in older hip fracture patients. J. Orthop. Trauma 2019, 33, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, J.; Wu, D. Risk factors for frailty in older adults. Medicine 2022, 101, e30169. [Google Scholar] [CrossRef]
- Fhon, J.R.S.; Cabral, L.M.S.; Giacomini, S.B.L.; Reis, N.A.D.; Resende, M.C.; Rodrigues, R.A.P. Frailty and sociodemographic and health factors, and social support network in the Brazilian elderly: A longitudinal study. Rev. Esc. Enferm. USP 2021, 56, e20210073. [Google Scholar] [CrossRef]
- Boirie, Y. Physiopathological mechanism of sarcopenia. J. Nutr. Health Aging 2009, 13, 717–723. [Google Scholar] [CrossRef]
- Xi, S.; Wu, Z.; Cui, J.; Yin, S.; Xi, S.; Liu, C. Association between frailty, as measured by the FRAIL scale, and 1-year mortality in older patients undergoing hip fracture surgery. BMC Geriatr. 2025, 25, 1. [Google Scholar] [CrossRef]
- Li, Y.; Liu, F.; Xie, H.; Zhu, Y. Investigation and analysis of frailty and nutrition status in older adult patients with hip fracture. Nutr. Clin. Pract. 2023, 38, 1063–1072. [Google Scholar] [CrossRef]
- Aguirre, L.E.; Villareal, D.T. Physical Exercise as Therapy for Frailty; Nestlé Nutrition Institute Workshop Series; Karger: Basel, Switzerland, 2015; Volume 83, pp. 83–92. [Google Scholar] [CrossRef]
- Bray, N.W.; Smart, R.R.; Jakobi, J.M.; Jones, G.R. Exercise prescription to reverse frailty. Appl. Physiol. Nutr. Metab. 2016, 41, 1112–1116. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; He, S.; Meng, D.; Yang, G.; Wang, Z. Hybrid exercise program enhances physical fitness and reverses frailty in older adults: Insights and predictions from machine learning. J. Nutr. Health Aging 2023, 27, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Guo, H.; Liang, S.; Tian, Z.; Wang, R.; Yang, G.; Wang, Z. Effectiveness of a hybrid exercise program on the physical abilities of frail elderly and explainable artificial-intelligence-based clinical assistance. Int. J. Environ. Res. Public Health 2022, 19, 6988. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Yi, J.; Zhang, Y.; Sha, L.; Jin, S.; Liu, Y. The effectiveness of a group-based Otago exercise program on physical function, frailty and health status in older nursing home residents: A systematic review and meta-analysis. Geriatr. Nurs. 2022, 49, 30–43. [Google Scholar] [CrossRef]
- García-Gollarte, F.; Mora-Concepción, A.; Pinazo-Hernandis, S.; Segura-Ortí, E.; Amer-Cuenca, J.J.; Arguisuelas-Martínez, M.D.; Lisón, J.F.; Benavent-Caballer, V. Effectiveness of a supervised group-based Otago exercise program on functional performance in frail institutionalized older adults: A multicenter randomized controlled trial. J. Geriatr. Phys. Ther. 2021, 46, 15–25. [Google Scholar] [CrossRef]


| Variables | Frail Group (n = 30) | Non-Frail Group (n = 30) | Mann–Whitney U | t-Test | p | Effect Size r |
|---|---|---|---|---|---|---|
| Age, years, Mean (Standard Deviation) | 84.43 (5.09) | 80.03 (7.14) | - | 2.74 | 0.00 | 0.72 |
| Women, number (%) | 15 (50) | 16 (53.3) | 465.00 | 0.79 | 0.02 | |
| Living Conditions | ||||||
| Alone, number (%) | 9 (30) | 5 (16.5) | 390.00 | 0.22 | 0.11 | |
| At least 1 companion, number (%) | 21 (70) | 25 (83.3) | 510.00 | 0.22 | 0.11 | |
| Comorbidities | ||||||
| None, number (%) | 0 | 2 (6.7) | 480.00 | 0.15 | 0.05 | |
| Cardiovascular disease, number (%) | 25 (83.3) | 24 (80) | 435.00 | 0.74 | 0.02 | |
| Hypertension, number (%) | 27 (90) | 16 (53.3) | 300.00 | 0.00 | 0.28 | |
| Respiratory disease, number (%) | 5 (16.5) | 4 (13.3) | 435.00 | 0.72 | 0.02 | |
| Neurodegenerative disease, number (%) | 0 | 1 (3.3) | 465.00 | 0.31 | 0.02 | |
| Dementia, number (%) | 6 (20) | 0 | 360.00 | 0.01 | 0.17 | |
| Diabetes, number (%) | 12 (40) | 6 (20) | 360.00 | 0.09 | 0.17 | |
| Incontinence, number (%) | 2 (6.7) | 0 | 420.00 | 0.15 | 0.05 | |
| Thyroid disease, number (%) | 3 (10) | 5 (16.5) | 480.00 | 0.45 | 0.05 | |
| Autoimmune disease, number (%) | 1 (3.3) | 2 (6.7) | 465.00 | 0.55 | 0.02 | |
| Osteoarthritis, number (%) | 11 (36.7) | 6 (20) | 375.00 | 0.15 | 0.14 | |
| Osteopenia, number (%) | 2 (6.7) | 4 (13.3) | 480.00 | 0.39 | 0.05 | |
| Depression, number (%) | 4 (13.3) | 3 (10) | 435.00 | 0.69 | 0.02 | |
| Walking ability | ||||||
| Indoors only, number (%) | 10 (33.3) | 0 | 300.00 | <0.001 | 0.28 | |
| Indoors and outdoors, number (%) | 20 (66.7) | 30 (100) | 600.00 | <0.001 | 0.28 | |
| Indoor walking aid | ||||||
| Without aid, number (%) | 15 (50) | 30 (100) | 675.00 | <0.001 | 0.43 | |
| Cane, number (%) | 13 (43.3) | 0 | 255.00 | <0.001 | 0.37 | |
| Walker, number (%) | 2 (6.7) | 0 | 420.00 | 0.154 | 0.05 | |
| Injury cause Fall on the same level (fainting, acute muscle weakness), number (%) | 3 (10) | 0 | 405.00 | 0.078 | 0.08 | |
| Fall from the bed, number (%) | 2 (6.7) | 3 (10) | 465.00 | 0.64 | 0.02 | |
| Fall from the stairs, number (%) | 1 (3.3) | 2 (6.7) | 465.00 | 0.55 | 0.02 | |
| Slip/trip on the floor, number (%) | 22 (73.3) | 14 (46.7) | 330.00 | 0.03 | 0.22 | |
| Cannot recall, number (%) | 2 (6.7) | 0 | 420.00 | 0.15 | 0.05 | |
| Outdoor fall, number (%) | 0 | 11 (36.7) | 615.00 | <0.001 | 0.31 |
| Variable | Frail Group (n = 30) | Non-Frail Group (n = 30) | Mann–Whitney U | p | Effect Size r |
|---|---|---|---|---|---|
| Clinical Frailty Scale, number (%) | |||||
| Fit, number (%) | 0 | 8 (26.7) | 570.00 | 0.00 | 0.22 |
| Managing well, number (%) | 0 | 22 (73.3) | 780.00 | <0.001 | 0.62 |
| Living with very mild frailty, number (%) | 2 (6.7) | 0 | 420.00 | 0.15 | 0.05 |
| Living with mild frailty, number (%) | 8 (26.7) | 0 | 330.00 | 0.00 | 0.22 |
| Living with moderate frailty, number (%) | 12 (40) | 0 | 270.00 | <0.001 | 0.34 |
| Living with severe frailty, number (%) | 8 (26.7) | 0 | 330.00 | 0.00 | 0.22 |
| Variable | Frail Group (n = 30) (Mean ± Standard Deviation) | Non-Frail Group (n = 30) (Mean ± Standard Deviation) | t-Test | df | p | Effect Size d |
|---|---|---|---|---|---|---|
| Right shoulder abduction AROM | 110.68 ± 32.53 | 132.6 ± 26.73 | −2.85 | 58 | 0.01 | 0.75 |
| Right wrist extension AROM | 58.46 ± 11.54 | 62.79 ± 12.11 | −1.42 | 58 | 0.16 | 0.37 |
| Knee extension AROM | 98.17 ± 17.47 | 110.80 ± 14.27 | −3.07 | 58 | 0.01 | 0.80 |
| Ankle dorsiflexion AROM | 17.13 ± 4.75 | 20 ± 4.65 | −2.36 | 58 | 0.02 | 0.62 |
| Variable | Frail Group (n = 30) | Non-Frail Group (n = 30) | Mann–Whitney U | p | Effect Size r |
|---|---|---|---|---|---|
| Mean Rank | Mean Rank | U | |||
| Left shoulder abduction AROM | 24.57 | 36.43 | 628.00 | 0.008 | 0.33 |
| Right elbow flexion AROM | 25.85 | 35.15 | 589.50 | 0.039 | 0.26 |
| Left elbow flexion AROM | 25.75 | 35.25 | 592.50 | 0.035 | 0.27 |
| Left wrist extension AROM | 26.18 | 34.82 | 579.50 | 0.055 | 0.24 |
| Hip flexion AROM | 22.85 | 38.15 | 679.50 | <0.001 | 0.43 |
| Right-hand grip strength | 20.35 | 40.65 | 754.50 | <0.001 | 0.58 |
| Left-hand grip strength | 21.72 | 39.28 | 713.50 | <0.001 | 0.50 |
| Hip flexion MRC | 24.13 | 36.87 | 641.00 | 0.002 | 0.36 |
| Knee extension MRC | 28.47 | 32.53 | 511.00 | 0.243 | 0.11 |
| Ankle dorsiflexion MRC | 24.85 | 36.15 | 619.50 | 0.002 | 0.32 |
| Length of hospital stay (days) | 42.77 | 18.23 | 82.00 | <0.001 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidiropoulou, I.; Vavvas, A.; Karzis, K.; Garnavos, C.; Chytas, D.; Christakou, A. Comparisons Between Frail and Non-Frail Hospitalized Patients in Muscle Strength and Range of Motion After Hip Fracture Surgery: A Single-Blind Experimental Study. Appl. Sci. 2025, 15, 12602. https://doi.org/10.3390/app152312602
Sidiropoulou I, Vavvas A, Karzis K, Garnavos C, Chytas D, Christakou A. Comparisons Between Frail and Non-Frail Hospitalized Patients in Muscle Strength and Range of Motion After Hip Fracture Surgery: A Single-Blind Experimental Study. Applied Sciences. 2025; 15(23):12602. https://doi.org/10.3390/app152312602
Chicago/Turabian StyleSidiropoulou, Ilektra, Anastasios Vavvas, Konstantinos Karzis, Christos Garnavos, Dimitrios Chytas, and Anna Christakou. 2025. "Comparisons Between Frail and Non-Frail Hospitalized Patients in Muscle Strength and Range of Motion After Hip Fracture Surgery: A Single-Blind Experimental Study" Applied Sciences 15, no. 23: 12602. https://doi.org/10.3390/app152312602
APA StyleSidiropoulou, I., Vavvas, A., Karzis, K., Garnavos, C., Chytas, D., & Christakou, A. (2025). Comparisons Between Frail and Non-Frail Hospitalized Patients in Muscle Strength and Range of Motion After Hip Fracture Surgery: A Single-Blind Experimental Study. Applied Sciences, 15(23), 12602. https://doi.org/10.3390/app152312602

