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Abstract

Generative Adversarial Networks (GANs) generate synthetic content to support applica-
tions such as data augmentation, image-to-image translation, and training models where 
data availability is limited. Nevertheless, their broader deployment is constrained by lim-
itations in data availability, high computational and energy demands, as well as privacy 
and security concerns. These factors restrict their scalability and integration in real-world 
applications. This survey provides a systematic review of research aimed at addressing 
these challenges. Techniques such as few-shot learning, consistency regularization, and 
advanced data augmentation are examined to address data scarcity. Approaches designed 
to reduce computational and energy costs, including hardware-based acceleration and 
model optimization, are also considered. In addition, strategies to improve privacy and 
security, such as privacy-preserving GAN architectures and defense mechanisms against 
adversarial attacks, are analyzed. By organizing the literature into these thematic catego-
ries, the review highlights available solutions, their trade-offs, and remaining open issues. 
Our findings underline the growing role of GANs in artificial intelligence, while also em-
phasizing the importance of efficient, sustainable, and secure designs. This work not only 
concentrates the current knowledge but also sets the basis for future research.

Keywords: GANs; data limitations; energy—computational cost; privacy—security; deep 
learning; artificial intelligence

1. Introduction
Deep Learning (DL) has emerged as the most effective and widely adopted approach 

due to its capability to model complex, high-dimensional data [1]. Generative Adversarial 
Networks (GANs), first introduced in 2014 [2], support generation of synthetic data re-
quired in machine learning (ML) applications. Before GANs, probabilistic methods like 
Variational Autoencoders (VAEs) and Restricted Boltzmann Machines offered useful but 
limited ways to learn data distributions. GANs stand out because of their unique training 
approach, which has expanded the potential for creating synthetic data. Unlike traditional 
statistical models, GANs learn complex data distributions through adversarial training, 
without needing explicit assumptions.
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GANs consist of a pair of artificial neural networks that act competitively against 
each other: the generator (G) and the discriminator (D). They are trained in a minimax 
game where the generator creates forged copies of real data and the discriminator at-
tempts to differentiate between original samples and the forgeries [3]. This adversarial 
framework drives both networks to improve in parallel, generating data of great fidelity 
in varied modalities such as audio, images, video, and text [4,5]. GANs have become es-
sential in many scientific and industrial areas, ranging from computer vision [6,7], natural 
language processing [8], medical imaging [9], finance [10], and civil engineering [11]. Ar-
chitectural improvements, such as Deep Convolutional GANs (DCGANs), Wasserstein 
GANs (WGANs), StyleGANs, and Progressive GANs, have been proposed to enhance 
stability, scalability, and output quality. 

Despite these advancements, the literature shows significant gaps in three main ar-
eas: privacy preservation, computational and energy efficiency, and robustness to data 
scarcity [12,13]. Training advanced GANs often requires large computational resources, 
which leads to high energy use and carbon emissions [14]. In [15,16] it was reported that 
training large neural models on multi-GPU setups can consume between 100 and 500 kWh 
of electricity and emit up to 500 kg of CO2 per training run. In [17] is reported that training 
StyleGAN2 for high-resolution image synthesis on 8 GPUs over two weeks consumes ap-
proximately 250–300 kWh of electricity. In addition, GANs trained on sensitive infor-
mation, such as medical images, biomedical identifiers, or financial records, create signif-
icant privacy and security risks. Important ethical and security issues are posed, like deep-
fakes, identity theft, and unauthorized data use [18]. Several surveys examine GANs from 
complementary perspectives [13]. A thorough study in privacy and security [19] provides 
a GAN-based attacks/defenses taxonomy and map their use across application domains 
(medical imaging, network security) focusing on specific implementations. Also, [20] is a 
comprehensive study of privacy and utility metrics across GANs and VAEs, and attack 
types, with a focus on metric selection, evaluation protocols, and guidance on how to 
choose the appropriate measures. In contrast, this survey explicitly integrates three 
themes, analyzing their mutual trade-offs and deployment implications: 

• Data Scarcity—We explore strategies for GANs to work well with restricted training 
datasets. This includes data augmentation techniques and specialized architectures 
aimed at low-data situations [21,22]. 

• Computational and Energy Efficiency—We look at ways to lower the training costs 
and carbon footprint of GANs. This aspect is crucial yet often overlooked in resource-
aware AI [16,17]. 

• Privacy-Preserving Mechanisms—We review methods such as differential privacy, 
federated GANs, and cryptographic frameworks. These enhance security while re-
ducing the risk of misuse [23,24]. 

Whereas previous studies generally focus on optimizing a single aspect (privacy, 
metrics, or applications), our review combines approaches that simultaneously tackle re-
source limitations and privacy concerns, recommending evaluation priorities (such as en-
ergy/carbon accounting) essential for practical implementation. 

We combined trade-offs maps to illustrate how privacy methods (e.g., DCGAN) im-
pact computational expenses and model accuracy, and similarly how compression/accel-
eration affects memorization and vulnerability. Subsequently, we aim to incorporate en-
ergy and carbon metrics into GAN assessment, moving beyond conventional evaluation 
criteria to include sustainability and privacy as key axes. This addresses a gap in prior 
studies, which have discussed metrics without considering energy, or explored applica-
tions and attacks without considering sustainability. Moreover, we examine which tech-
niques can adapt to practical scenarios (small medical groups, non-image tabular infor-
mation, mobile/IoT), where previous studies pay less attention to feasibility and scaling 
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limitations, or emphasize in metrics and effective measurement practices. Our goal is to 
suggest concrete design patterns for deploying GANs under practical constraints. By 
bringing together recent developments and highlighting promising research directions, 
this survey offers both a practical guide for real-world deployment and as a framework 
for addressing the ethical, computational, and methodological challenges of current mod-
els. To the best of our knowledge, it is the first survey to integrate efficiency and privacy 
considerations into a unified view of GANs. 

Finally, it is important to recognize that the impact of GAN research extends beyond 
adversarial training itself. Insights gained from privacy-preserving and energy-efficient 
GANs increasingly inform adjacent areas such as diffusion models, large-scale language 
models, and hybrid generative architectures. 

The rest of this paper is organized as follows: Section 2 provides an analysis on the 
functionality of GANs and the background, while Section 3 reviews related work on the 
evolution of GANs, their applications, limitations and unexplored research areas. Section 
4 presents the methodology and materials used for this survey research. Section 5 analyzes 
strategies to address data scarcity, Section 6 examines methods for computational and en-
ergy efficiency, while Section 7 explores approaches for protecting privacy and security. 
Section 8 outlines the conclusions and limitations of this study and Section 9 provides 
directions for future research. 

2. Background 
A Generative Adversarial Network consists of two neural networks trained in oppo-

sition: the generator and the discriminator. The discriminator learns to distinguish real 

samples )(~ xpx data   from synthetic samples )(
~

zGx =   generated by the generator, 

where )(~ zpz z  is drawn from a prior distribution such as a uniform or normal (Gauss-
ian) distribution that defines the latent space from which the generator draws its input 
noise vectors. Formally, the discriminator estimates the probability )(xD  that a given 
sample is real, while the generator is trained to produce realistic outputs that minimize 
the discriminator’s ability to identify them as fake. ),( GDV  represents the function of 

the adversarial objective between the generator and the discriminator, while ][)(~ ⋅xpxE  

denotes the expected value over samples drawn from each distribution. 
The equation of the competitive training of the D and the G is given by [2] as follows: 

)))]((1[log()]([log),(maxmin )(~)(~ zGDxDGDV zpzxpxDG zdata
−Ε+Ε=  (1)

The discriminator aims to maximize the probability ),( GDV  by correctly distin-
guishing real and generated data, whereas the generator minimizes it by providing sam-
ples that push ))(( zGD  towards one [2]. Figure 1 illustrates the standard GAN frame-
work, highlighting the core adversarial dynamics. The visualization represents the inter-
action between the generator and the discriminator as described above, emphasizing the 
simultaneous adversarial training of both networks. 
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Figure 1. Schematic overview of Generative Adversarial Network (GAN). The generator transforms 
random noise into generated samples, which are evaluated by the discriminator against real data. 
Both networks are trained and updated through backpropagation according to their respective loss 
functions. Gray arrows visualize the forward propagation while orange arrows indicate backprop-
agation. 

Early GAN architectures faced significant challenges, including training instability 
and mode collapse, and low image quality, which motivated a series of refinements be-
tween 2014 and 2016. Conditional GANs (CGANs) were proposed to control the genera-
tion process using auxiliary information [25], while DCGANs improved stability and 
scalability through convolutional architectures [3]. Additionally, LAPGAN (a conditional 
form of GAN integrated into the framework of a Laplacian pyramid) was designed to 
enable high-resolution image generation, addressing one of the key limitations early GAN 
models encountered [26]. The issue of instability continued to drive new designs from 
2017 to 2018. The WGAN introduced a new distance metric that helped reduce model 
collapse and improved convergence [27]. WGAN-GP variant added a gradient penalty 
regularization, further stabilizing the training process. New evaluation metrics like Incep-
tion Score (IS) [28] and Fréchet Inception Distance (FID) [29] provided standardized 
benchmarks to assess generative quality. 

From 2017 onward, GANs were rapidly adopted for image synthesis and translation. 
Pix2Pix [30] demonstrated supervised image-to-image translation using paired datasets, 
while CycleGAN [31] extended the method to unpaired data. StyleGAN [7] and its suc-
cessors, StyleGAN2 [32] and StyleGAN3 [33], made significant advances by generating 
high-resolution, photorealistic images with remarkable fidelity. 

Figure 2 illustrates the chronological evolutions of important GAN architectures. 
Each model represents a significant improvement resolving distinct limitations such as 
stability, scalability, mode robustness, application and quality. 
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Figure 2. Evolution of fundamental GAN architectures from 2014 to 2025. 

In addition to current algorithmic and hardware enhancements, recent advance-
ments in control theory indicate alternative methods for stabilizing and accelerating GAN 
training. Models like state-filtered disturbance rejection control (SFDRC) [34] introduce 
dynamic state filters that target and mitigate high-frequency disturbances, similar to re-
moving stochastic gradient noise in adversarial learning. Thus, incorporating SFDRC-
based filtering enhances convergence stability and energy efficiency. 

Similarly, multilayer neurocontrol systems with active disturbance rejection control 
(ADRC) [35] address high-order uncertain systems by combining neural approximations 
with adaptive disturbance compensation. This model resembles the generator-discrimi-
nator interaction: the controller (discriminator) assesses and mitigates external disturb-
ances (training instabilities) as the plant (generator) acquires the target distribution. Inte-
grating ADRC principles into GAN optimization may produce adaptive gradient control-
lers capable of autonomously modifying learning rates, filtering out stochastic noise, and 
ensuring convergence despite data shortages or adversarial disturbances. 

Over the last five years, research has increasingly shifted toward domain-specific ap-
plications, where GANs are designed for specialized tasks. In the medical imaging do-
main, Conditional Random Field (CRF)-Guided GAN is a recent approach that seeks to 
produce 3D high-resolution medical image synthesis with reduced memory require-
ments, thereby improving both image fidelity and computational efficiency [36]. Several 
GAN variants have also been developed for agriculture. Leafy-GAN aids plant disease 
detection, AnimalGAN produces synthetic animal-testing data, and Plant Identification 
GAN (PI-GAN) supports plant classification. These models contribute to sustainable 
farming by enabling early disease detection, minimizing animal testing, and improving 
crop monitoring [37,38]. 

In the field of audio synthesis, GANs have shown considerable performance. Wave-
GAN generates waveforms trained on speech datasets, allowing the production of sound 
effects, bird vocalizations, and musical instruments, broadening GAN applications into 
acoustics [39]. 

Despite these advances, challenges related to data limitations, computational costs, 
and privacy concerns, which are critically examined in Section 3, still persist.  
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3. Related Work and Problem Statement 
Despite the rapid advancements, several research areas remain insufficiently ex-

plored. Non-visual domain, such as electroencephalogram (EEG) signal generation [40] 
and alphanumeric character recognition [41], and time-series analysis [42], have received 
limited attention, due to data scarcity and high labeling costs. Sequential and time-series 
domains often depend on binary adversarial feedback for learning, which provides insuf-
ficient signals for the network to accurately reflect the temporal dynamics in the training 
data [43]. In graph-based data, face inherent challenges, as standard embedding algo-
rithms fail to preserve a graph’s topological structure and differentiate heterogeneous 
nodes and edges [44]. The computational and energy costs of training large-scale GANs, 
along with data scarcity constrain many potential applications [13]. Structured latent 
spaces and disentangled representations have been proposed to improve controllability 
[18,45]. However, they often add extra training complexity and do not solve the basic ef-
ficiency problems. Moreover, the “black-box” nature of GANs restricts interpretability of 
the learnt features [46], and complicates secure data management. Current evaluation 
metrics poorly capture perceptual and semantic fidelity. This leads to limited trust and 
reproducibility in GAN-generated data. In summary, while GANs have matured signifi-
cantly in image synthesis and domain-specific applications, their underexplored non-vis-
ual areas and latent space structures represent promising paths for future research. Be-
yond image synthesis, GANs have shown strong potential across diverse scientific do-
mains. In the following, we review the related works aligned with the three main dimen-
sions of our research, introducing the problem statement for each case. 

3.1. Data  Scarcity 

A crucial aspect of successful GAN training is the use of extensive, high-quality da-
tasets [47,48]. Modern and high-quality GANs require about 105 to 106 images to operate 
properly [49]. Therefore, limited datasets interfere with the training process of the neural 
networks [49–52]. This difficulty occurs as the generator attempts to approximate the real 
data distribution while avoiding memorization of the provided data [53]. The training 
process of both the discriminator and the generator is unstable, implying that the discrim-
inator can determine whether the data are authentic, whereas the generator does not re-
ceive sufficient training, resulting in the creation of repetitive or low-diversity outputs 
[54]. In many scientific fields, such as biology and plant science, providing samples is im-
practical due to significant costs and the scarcity of biological entities [55]. In medicine, 
this issue seems important, as GANs offer limited utility for rare medical conditions [56]. 
Similarly, specific languages and dialects lack sufficient data for neural networks, leading 
to often unreliable sound analysis [57,58]. 

Data augmentation is a prominent method to effectively mitigate overfitting [59]. 
However, the use of augmented data appears to imbalance the training process of GANs 
[60]. This is justified by the fact that a GAN trained on enhanced data would only learn 
and repeat the augmentations, not the distribution of the original data. Undesirable aug-
mentations in the generated samples compromise the accuracy of the outputs. For exam-
ple, if noise is introduced into the training samples to augment them, the generator may 
encode these augmented characteristics, embedding noise into its outputs regardless of 
the original data [61]. Developing approaches that preserve the benefits of augmentation 
without contaminating the generative process remains an important direction for improv-
ing the reliability and applicability of GANs. 

Earlier approaches mainly relied on data augmentations [62], transfer learning, and 
advanced machine learning techniques aiming to improve the efficiency of the model un-
der challenging conditions [63]. More recent and advanced studies explore the range of 
older methods, such as geometric data augmentation [64] and improved transfer learning 
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techniques. New mechanisms have been developed introducing consistency regulariza-
tion [65], meta learning, metric learning and few-shot classifications to stabilize the per-
formance of GAN training under few-shot conditions [66]. Despite these advances, most 
investigations review each approach individually with narrow experimental contexts of-
ten to specific architectures. A structured evaluation is presented in Section 5. 

3.2. Energy Consumption 

Another research concern is the computational and energetical demands of GANs. 
The complexity of the adversarial training has motivated the development of lightweight 
architectures and hardware–based approaches such as memristor accelerators [67] and 
Field-Programmable Gate Array (FPGA) [68]. Currently, several surveys attempt to accu-
rately measure the environmental impact of GANs while also researching the possible 
causes. The research towards computational efficiency and energy consumption is lim-
ited, while existing surveys typically treat algorithmic and hardware methods separately. 
The requirement for solutions is addressed in Section 6 while a comparative analysis is 
included for the most efficient approach. The reduction of CO2 emissions has not been 
sufficiently reviewed nor researched; therefore, this work does not provide a possible so-
lution. 

The increasing use of high-demand AI technologies has led to substantial rises in 
energy consumption and computational costs [16]. Deep generative models focus on im-
proving quality and accuracy, resulting in significant energy use and CO2 emissions [69]. 
Although, convolutional neural networks (CNNs) have been used in several documented 
techniques to address this problem [70], their direct application is limited by two factors: 
(i) the adversarial two-network training dynamics require adaptive data flow methods, 
such as DiffBlock (described in Section 6.1), for efficiency, and (ii) GANs introduce unique 
optimization challenges due to their complex loss functions [71–73]. 

A widely discussed factor of energy inefficiencies is the dual-network architecture of 
GAN models. Both generator and discriminator run forward and backward propagation 
while constantly exchanging data. This raises energy demands and increases memory 
traffic [74]. Frequent data exchanges between memory and processors increase energy use 
and slow down training in contrast to single-network deep learning models [75]. Energy 
estimation is essential for avoiding significant financial losses and reducing the carbon 
footprint [76]. 

Environmental impact factors include (i) the training procedure’s duration, (ii) the 
geographical location of the server, (iii) the electricity grid it uses and (iv) the type and 
model of hardware being used for the training [77]. GAN training functions by consuming 
increasing amounts of energy while also intensifying the emissions of carbon dioxide 
[78,79]. The authors in [15] revealed that estimates of energy and CO2 emissions vary 
widely based on methodology (Figure 3). Partial proxies (e.g., GPU-hours × TDP) disre-
gard CPU and memory usage, as well as temporal fluctuations in power, while coarse 
regional or national averages neglect variations in grid carbon intensity. In contrast, real-
time monitoring that integrates wall-plug power with grid carbon data provides more 
reliable results. Without such comprehensive accounting, energy use and emissions are 
easily miscalculated. Figure 3 compares various methods for estimating CO2 emissions 
and energy consumption during GAN training. It illustrates how methodological choices 
influence the reported values. The left panel depicts CO2 emissions, while the right panel 
shows the corresponding energy consumption. 



Appl. Sci. 2025, 15, 11207 8 of 31

Figure 3. In the left chart, the assessment of carbon emissions is compared when using distinct esti-
mation methods. Similarly, on the right chart the energy consumed in kWh is estimated with five 
different methods. In both charts, each method yielded substantially different results, which is en-
tirely expected given regional variations in grid carbon intensity and methodological assumptions. 
This serves as an illustration that relying on limited information could result in an exaggeration or 
underestimation of carbon emissions. This research was conducted in [15].

For the estimation of CO2 emissions (left panel) three approaches are considered. 
Power × Realtime calculates the total kilograms of CO2 equivalent (kg CO2eq) by integrat-
ing the measured wall-plug power P(t) over time and converting each period using the 
time-resolved grid carbon intensity c(t). The Power × CA Average approach multiplies the 
total measured energy by the California average carbon factor, whereas Power × EPA US 
Average multiplies the total measured energy by the U.S. national average carbon factor.

In terms of energy consumption (right panel), several methods are employed. The 
method proposed by [15] measures system power in real time (GPU + CPU + system) and 
converts it to kWh. A second proxy method uses wall-clock runtime, assuming 33% GPU 
utilization, ignoring CPU/memory and temporal variation. A similar variant assumes full 
100% GPU utilization. Another proxy multiplies accumulated GPU-hours (time × utiliza-
tion) by TDP. Finally, the PFLOPs-hours/(GPU PFLOPs/W) method calculates volume 
(PFLOPs-hours) and applies a performance-per-watt ratio to estimate energy.

These inconsistencies emphasize that the reported energy and carbon metrics should 
not remain purely descriptive but also enhance the development of future models. Accu-
rately measuring energy consumption and carbon emissions can guide trade-offs between 
the complexity of architecture, training duration, and deployment feasibility. For exam-
ple, models with lower energy requirements might more effectively balance accuracy, re-
sponsiveness, and sustainability in real-world applications. Establishing standardized re-
porting practices is essential to ensure that such metrics consistently influence design de-
cisions.

In addition to training, on-device inference poses additional constraints. Interactive 
applications based on GANs (such as mobile image editing, VR/AR headsets, or voice 
synthesis) require low latency but are constrained on memory, processing and battery life 
[80,81]. These limitations hinder practical use, highlighting the need for solutions that 
lower energy consumption without sacrificing fidelity or responsiveness. The complexity 
of the adversarial training has motivated the development of lightweight architectures 
and hardware–based approaches such as memristor accelerators [67] and FPGA [68]. Cur-
rently, several surveys attempt to accurately measure the environmental impact of GANs 
while also researching the possible causes. The research towards computational efficiency 
and energy consumption is minimal, while existing surveys typically treat algorithmic 
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and hardware methods separately. The requirement for solutions is addressed in Section 
6, while a comparative analysis is included for the most efficient approach. The reduction 
of CO2 emissions has not been sufficiently reviewed nor researched; therefore, this work 
does not provide a possible solution.  

3.3.  Data Privacy and Security Vulnerabilities 

GANs are a major target for privacy attacks and security breaches [82]. Sensitive cli-
ent data from facial recognition systems and medical analysis models are the main targets 
of cyber violations [19]. Privacy of neural networks is at risk from Membership Inference 
Attacks (MIAs) [83]. MIAs focus on the information stored in the model’s memory by ex-
ploiting overfitting, a phenomenon that occurs when the generated data closely resembles 
the real training data [84]. Confidential data is revealed and compromised, making the 
issue especially significant in sensitive sectors such as healthcare, power systems, and fi-
nance services [85,86]. Various types of privacy assaults include model inversion and data 
reconstruction attacks. Model inversion attacks leak training-data details by reconstruct-
ing realistic inputs from a model’s outputs enabling the attacker to replicate the original 
data [87]. Medical data and biometrics, such as facial features and fingerprints, which are 
frequently used for personally identifiable information (PII), are the primary targets of 
model inversion attacks [88]. Data reconstruction attacks attempt to recover the actual data 
used for training rather than attempting to synthesize input data [89]. The objective of 
both privacy attacks is the acquisition of sensitive information from the input data. 

Figure 4 illustrates a model inversion (MI) attack where several Models Under Attack 
(MUAs) assist in generating realistic data samples. A generator creates candidate images 
from noise vectors and target class identifiers (ID), refining them iteratively until MUAs 
classify them as genuine. When an auxiliary dataset with similar distribution is available, 
a discriminator further improves realism. Even without such data, the attack remains vi-
able in a data-free setup, demonstrating its robustness. This figure emphasizes how ad-
versaries can reconstruct private data without having access to the training inputs. 
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Figure 4. Mechanism of Model Inversion attack used to reconstruct sensitive training data. The gen-
erator creates candidate images form noise vectors and target class IDs, which are iteratively refined 
until Models Under Attacks classify them as realistic. When available, an auxiliary dataset enhances 
realism via a discriminator; otherwise, the attack proceeds in a fully free-data setting, demonstrating 
its effectiveness. 

GANs may also be exploited for Distributed Denial of Service (DDoS) attacks, posing 
significant cybersecurity concerns [90]. These attacks typically overwhelm transport and 
application layers by flooding networks with excessive traffic, ultimately causing host 
crashes and service outages [22]. Intrusion Detection Systems (IDS) are commonly used 
to mitigate these attacks by filtering out malicious traffic. However, IDS are less effective 
against GAN-generated adversarial traffic, which includes polymorphic DDoS attacks 
and WGAN -based frameworks [91]. Polymorphic adversarial attacks constantly change 
their signatures to avoid detection, whereas [92] demonstrated that WGAN-based frame-
works can generate functionally valid yet discreet adversarial traffic by altering non-func-
tional features. In these frameworks, the discriminator mimics IDS behavior, providing 
feedback to the generator to improve evasion. 

Multiple approaches have been presented to prevent data leakage, including privacy-
preserving objectives and distributed learning frameworks [93]. Research on this area ex-
plores the development of secure but accurate models while training on sensitive datasets 
[94]. At the same time, the balance between maintaining the model’s accuracy and quality 
while providing a privacy aware GAN remains an open research question. Section 7.1. 
provides promising solutions that aim to develop efficient and privacy-aware models. 

4. Methodology and Materials 
We employ a systematic literature review (SLR) approach based on PRISMA [95] 

guidelines and adapted from [96] to provide a structured and reproducible analysis of 
research on Generative Adversarial Networks (GANs) with a focus on efficiency and pri-
vacy-preserving methods. The review procedure comprises four main stages: literature 
identification, screening, categorization, and synthesis. 

For literature retrieval, we implemented a multi-stage search strategy across several 
databases to ensure comprehensive coverage. Peer-reviewed journals and conference pa-
pers were sourced from IEEE Xplore (Institute of Electrical and Electronics Engineers, 
New York, NY, USA), ACM Digital Library (Association for Computing Machinery, New 
York, NY, USA), SpringerLink (Springer Nature, Berlin, Germany), and Elsevier Sci-
enceDirect (Elsevier B.V., Amsterdam, The Netherlands), while Google Scholar (Google 
LLC, Mountain View, CA, USA) was consulted for broader access to preprints, theses, and 
cross-disciplinary work. Also, arXiv (Cornell University, Ithaca, NY, USA) was used to 
include the latest high-impact preprints. The search combined preliminary scoping with 
general terms, refined keyword combinations using Boolean operators, cited reference 
searching from key studies, and filtering by publication type, language, and year. The 
overall search covered the period 2014–2025, while the identification of solutions focused 
on publications from 2023 onwards to highlight the most recent advances. Earlier influen-
tial works are also included when foundational. Keywords included phrases such as 
“GAN effectiveness”, “energy-conscious GANs”, “privacy-protecting GANs”, “differen-
tially private GAN”, and “GAN reduction”. 

During screening and eligibility assessment, the initial pool of publications was re-
fined using predefined inclusion and exclusion criteria. We considered peer-reviewed 
journal articles, conference proceedings, and highly cited preprints that introduced inno-
vative methodological approaches, addressed at least one of the survey’s main themes 
(data scarcity, computational efficiency, or privacy and security), and provided 



Appl. Sci. 2025, 15, 11207 11 of 31 
 

quantitative results, comparative analyses, or formal evaluation metrics. Duplicates, pa-
pers not in English, and studies focused solely on applications without methodological 
contributions were excluded. The initial search yielded 237 records, of which 225 were 
fully evaluated after abstract review and duplicate removal, ultimately incorporating 143 
studies into the synthesis. 

In the categorization stage, studies were organized into three primary themes: first, 
data scarcity, encompassing methods for limited training sets such as data augmentation, 
transfer learning, and few-shot learning; second, computational and energy efficiency, in-
cluding approaches such as model compression, pruning, and hardware acceleration; and 
third, privacy and security, covering differential privacy, federated GANs, cryptographic 
frameworks, and adversarial defense mechanisms. 

During synthesis and analysis, methods within each category were evaluated in 
terms of accuracy, scalability, energy footprint, and privacy guarantees. Methodological 
trade-offs were identified, such as privacy versus utility or efficiency versus stability, and 
research gaps were highlighted to pinpoint areas in need of further exploration. 

This structured methodology, illustrated in Figure 5 ensures that the survey not only 
summarizes the state of the art but also provides a framework for developing efficient, 
privacy-preserving, and resource-aware GAN models. 
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Figure 5. Prisma flow diagram. 

5. Data Limitations 
5.1. Solution Strategies 

To address this issue, we identified and assembled the most impactful studies pro-
posed in the literature. Adaptive Discriminator Augmentation (ADA) [97] applies aug-
mentations to both real and generated data. Typical transformations of data include rotat-
ing, blurring, cropping, color jittering, and pitch shifting, ensuring that the discriminator 
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encounters only augmented data [98]. This method of training neural networks reduces 
training instabilities. However, data augmentation cannot replace real, high-quality data; 
thus, assembling a large and diverse training dataset remains essential. Augmentation is 
best used to address residual gaps in the data distribution [49]. Moreover, applying noise-
based augmentation may lead to inherently noisy outputs [99].

Furthermore, employing pretrained GAN models with Adaptive Filter Modulation 
(AdaFM) [100] can lower the risk of overfitting in data-scarce scenarios [101,102]. Even 
with limited datasets, this technique removes the possibility of overfitting by enabling the 
GAN to make use of previously acquired information. Although, such approaches still 
face limitations when the target samples are restricted between 25 and 1000 samples [52]. 
In AdaFM, low-level filters capture the general features, while high-level filters encode 
domain-specific structures. Although low-level filters can be readily applied across vari-
ous domains, high-level filters exhibit less transferability, potentially hindering perfor-
mance when adjusting to new domains.

Ensuring semantic congruence between the generated and the original data is an-
other challenge for GAN models. Consistency regularization addresses this issue by con-
straining GANs to produce outputs that preserve the essential meaning and recognizable 
structure of the data despite input variations [103]. Prior to the implementation of con-
sistency regularization, semantic alignment was conducted on the modified data instead 
of the unprocessed versions [104]. After applying consistent regularization, the GAN 
model is constrained to preserve stable interpretations, ensuring that alterations do not 
affect the semantics of the data. By keeping the processed images close to their originals, 
the model learns to maintain the correct classification [105]. Figure 6 illustrates how con-
sistency regularization aids the model to recognize that the essential meaning of an image 
remains unchanged despite minor modifications.

Figure 6. The improvement induced by consistency regularization is illustrated in this figure. Each 
picture in the model’s image space is depicted by a colored dot. Images with similar semantic mean-
ing are expected to be geometrically closer in the semantic feature space. Semantic similarity is not 
well captured before consistency regularization is applied, as the processed images of the dog and 
cat appear closer to each other than the two images of the same object. By bringing the augmented 
images (pink and yellow dots) closer to their originals, regularization ensures semantic consistency.

Despite the effectiveness of consistency regularization in GAN training, several lim-
itations have been recognized. As augmentations are applied only to the actual data, the 
training process becomes imbalanced, and the regularization only affects the discrimina-
tor, thereby limiting the overall performance. The generator may internalize artificial 
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augmentation features and embed them into the synthetic samples as undesired artifacts. 
Finally, consistency is restricted in the image space, ignoring the latent space where fur-
ther improvements could be achieved [60].  

In addition to regularization-based approaches, few-shot learning (FSL) is an exten-
sively discussed technique to prevent imbalances in GAN training under limited data 
availability [106,107]. Although consistency regularization focuses on semantic stability, 
FSL approaches offer a broader framework for training GANs with limited data. FSL in-
cludes three main categories: (i) Meta-learning [108], where the model trains on small 
tasks and learns to generalize this “learning-to-learn” skill to new tasks [109,110]. (ii) 
Transfer learning, which modifies pretrained GANs on large datasets for new tasks 
through fine-tuning, facilitating the application of previously gained knowledge 
[111,112]. (iii) Metric learning is a strategy that enables the GAN to compare samples 
within a learnt feature space, promoting the identification of differences and preventing 
overfitting [113,114]. In FSL, extensive research has evaluated classifiers using the Om-
niglot dataset, which consists of 1623 classes of handwritten characters spanning 50 alpha-
bets, with only 20 samples per class [115,116]. According to [117], the most powerful few-
shot classifiers are Memory-Augmented Neural Network (MANN) [118], Convolutional 
Siamese Nets [119], Matching Nets [120], Siamese Nets with Memory [121], Neural Statis-
tician [122], Meta Nets [123], Prototypical Nets [124], Model-Agnostic Meta-Learning 
(MAML) [125], and RELATION NET [117]. Their performance on 1-shot and 5-shot clas-
sification tasks (5-way and 20-way) is summarized in Table 1, which provides a compar-
ative overview of few-shot classifiers employed in research to mitigate data scarcity. These 
results highlight performance differences among models. 

Table 1. This table displays the classification accuracy of few-shot classifiers used to resolve the 
setback of data limitations. The column Fine Tune determines whether the GAN architecture is 
trained by solely the same data (N) or by using the new samples from few-shot task (Y). The two 
categories 5-way Acc. and 20-way Acc. refer to the quantity of classes used in each classification 
problem while ‘-’ is not reported. 1-shot and 5-shot determine the number of samples every GAN 
model is trained on. The symbol ± indicates the standard deviation that was calculated. The outcome 
of this experiment indicates that Relation Net consistently achieves the highest performance among 
all four categories. Statistics were computed in study [117]. 

Models Fine Tune 5-Way Acc. 20-Way Acc. 
  1-shot 5-shot 1-shot 5-shot 

MANN N 82.8% 94.9% - - 
Convolutional Siamese Nets N 96.7% 98.4% 88.1% 96.5% 
Convolutional Siamese Nets Y 97.3% 98.4% 88.1% 97.0% 

Matching Nets N 98.1% 98.9% 93.8% 98.5% 
Matching Nets Y 97.9% 98.7% 93.5% 98.7% 

Siamese Nets with Memory N 98.4% 99.6% 95.0% 98.6% 
Neural Statistician N 98.1% 99.5% 93.2% 98.1% 

Meta Nets N 99.0% - 97.0% - 
Prototypical Nets N 98.8% 99.7% 96.0% 98.9% 

MAML Y 98.7 ± 0.4% 99.9% 95.8 ± 0.3% 98.9 ± 0.2% 
RELATION NET N 99.6 ± 0.2% 99.8% 97.6 ± 0.2% 99.1± 0.1% 

The results of this experiment reveal notable differences in classification accuracy 
among the evaluated modes. As shown in Table 1, Relation Net consistently outperforms 
all other models, achieving accuracies above 97% in both 1-shot and 5-shot tasks for 5-way 
and 20-way classification. Its main advantage is its stability, especially in the challenging 
1-shot/20-way setting, where other few-shot learning models often show considerable 
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performance declines. In GAN frameworks, few-shot classifiers are usually integrated 
into GAN models by enhancing the discriminator with an auxiliary classification head 
that is trained on the support set. A static few-shot encoder is also used to provide con-
sistency regularization. Therefore, the training becomes stable when data is limited. Such 
methods, however, continue to depend on pre-trained models and large-scale datasets 
(e.g., FFHQ with 70,000 images), leading to considerable computational cost and substan-
tial resource requirements. The performance of these models significantly decreases under 
large domain shifts between auxiliary and target datasets, as the learned representations 
fail to transfer effectively. Several studies have attempted to address the limitations using 
simple augmentation techniques. The original data distribution is altered, misleading the 
generator and reducing the robustness and generalization of FSL approaches [106]. 

In addition to hybrid FSL-GAN approaches, several architectures have been devel-
oped to encounter the challenge of small datasets [126]. These consist of Residual Weight 
Masking Conditional GAN (RWM-CGAN) [127], Dynamic GAN (DYNAGAN) [128], 
Gaussian-Poisson GAN (GP-GAN) [52], Diverse and Limited data GAN (DeLiGAN) [21] 
and Frequency-aware GAN (FreGAN) [129]. 

5.2. Critical Analysis 

In Section 5.1., the following solutions were examined in detail: (i) Adaptive Discrim-
inator Augmentation, (ii) AdaFM/pre-trained GANs, (iii) Consistency regularization, and 
(iv) Few-Shot Learning. ADA offers a practical and lightweight yet limited solution that 
is effective primarily for moderately sized datasets. However, when applied to very small 
datasets the artifacts may prevail, reducing fidelity. Despite its cost, the adaptation of pre-
trained GANs with AdaFM is generally an efficient and balanced solution, especially suit-
able for small to medium datasets, as it leverages prior knowledge. Consistency regulari-
zation is effective as a supportive technique but insufficient as a standalone solution for 
limited data training. Few-Shot Learning is the most discussed technique regarding small 
data training. Theoretically, it is the most powerful for very small datasets, but its practical 
applicability is limited by complexity and cost. Pre-trained GANs with AdaFM emerge as 
the most effective and practical solution overall, given their balance of generalization, ro-
bustness and applicability. ADA follows a lightweight approach but with artifact risks. 
FSL is theoretically powerful but demonstrates less potential in practice. Finally, Con-
sistency Regularization is best used as an auxiliary technique rather than a primary 
method. The limitations of the aforementioned approaches are often associated with high 
operational costs, an issue which is discussed in the next section. 

6. Energy Consumption—Computational Cost 
6.1. Problem-Solving Approaches 

A promising strategy utilizes hardware-accelerated GANs that employ memristors-
based neuromorphic computing [130]. Unlike traditional processors, memristors combine 
storage and computation, reducing the need for frequent memory access, which decreases 
energy consumption while enhancing training speed [131,132]. 

The proposed architecture includes a DiffBlock, which computes the cost function 
directly within the GAN, improving accuracy and efficiency. The generator and discrimi-
nator work in parallel: during the forward phase, both networks process data at the same 
time; during the backward phase, the DiffBlock sends error signals to update both models. 
This adaptive scheduling enhances parallelism, minimizes memory traffic, and improves 
energy efficiency [71]. Figure 7 illustrates the operational flow of the proposed memristor-
based GAN architecture, including both forward and backward computations. The flow 
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data is clarified, demonstrating how neuromorphic computing reduces memory traffic 
while enhancing computational efficiency. 

 

Figure 7. Architecture of the proposed memristor-based GAN computation. In this figure, “a” rep-
resents the real data input of the discriminator. The noise input provided to the generator producing 
synthetic data is denoted as “b”. The generated data sent to the discriminator are referred to as “c”. 
The discriminator’s output, denoted by “d,” is passed to the Diff-Block for loss calculation, and “e” 
utilizes this loss to update D’s parameters. The Diff-Block updates the generator’s weights in “f” by 
providing gradients. The path from “a” to “d” represents forward computations, while transitioning 
from “e” to “f”, corresponds to the backward computations. 

Table 2 illustrates that, according to the analysis conducted in [71], the memristor-
based accelerator achieves considerable performance improvements over GPU- and 
FPGA-based counterparts. On the ImageNet dataset, the results yield 4.8× training speed, 
compared to FPGA, and 6.1× less energy demands than GPU. Large Scale Scene Under-
standing LSUN/bedroom dataset achieves the best performance as it delivers up to 5.5× 
faster training than FPGA and 6.1× lower energy consumption in comparison to GPU per-
formance, while maintaining competitive output quality. These results demonstrate that 
neuromorphic hardware can significantly reduce the energy of GANs, allowing for more 
sustainable large-scale training and practical edge deployment. 

Table 2. Performance and Energy Comparison of Hardware-Accelerated GAN compared to Tradi-
tional Accelerators on ImageNet and LSUN/bedroom datasets [71]. On ImageNet dataset and 
LSUN/bedroom dataset, the efficiency of the proposed model is estimated by comparing it with 
GPU-based and FPGA-based GAN accelerators in terms of time and energy. Thus, the speedup and 
the model’s energy efficiency were computed. 

 ImageNet LSUN/Bedroom 

 
Time 

(h) Speedup 
Energy 
(ΚW/h) 

Sav-
ing 

Time 
(h) Speedup 

Energy 
(ΚW/h) 

Sav-
ing 

Hardware-accelerated 
GAN 6.3 - 0.51 - 47.2 - 3.8 - 

GPU 17 2.7× 3.1 6.1× 130 2.8× 23.4 6.1× 
FPGA 30 4.8× 0.79 1.5× 255 5.5× 5.5 1.4× 

Memristors inherently offer low precision in computation, data storage and trans-
mission. Achieving higher precision usually results in slower speeds and higher design 
expenses. Moreover, utilizing 8-bit data precision memristors leads to minor reduction in 
system accuracy. Another limitation is the balance between time, area and parallelism. 
Computing efficiency requires high computing parallelism; however, this increases the 
area and design cost.  

Model compression techniques, such as pruning and knowledge distillation, reduce 
the number of parameters and enable the deployment of smaller student models [133]. 
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These approaches achieve computational efficiency by compressing GAN architectures. 
In [134], GAN Slimming (GS) is introduced, an All-in-One Compression framework that 
integrates channel pruning, quantization, and model distillation. Results indicate that GS 
achieves up to 47× compression with minimal quality loss, distinguishing it from other 
compression approaches. Training GANs is inherently unstable and insufficient. Multiple 
integrated compression strategies are embedded in a single framework often reducing 
instabilities, complicating the optimization process. Simple stacking of pruning, quanti-
zation, and distillation has led to degraded performance and low-quality outputs. Fixed 
discriminator–based methods commonly create inconsistencies regarding the compressed 
generator, reducing the quality of the generated data. The effectiveness of all-in-one com-
pression methods relies on the architectural design of the student network. This depend-
ency influences both the accuracy of the compressed model and its ability to generalize 
across different domains. 

To further address the high energy consumption and memory traffic resulting from 
the dual-network design of GANs, the authors in [74] introduced the Fused Propagation 
(FusedProp) algorithm. Unlike conventional training, where generator and discriminator 
updates require separate forward-backward passes, FusedProp computes gradients for 
both networks simultaneously using one forward and backward propagation, scaling the 
propagation error by a constant factor λ. 𝜆 =  𝜕𝐿ீ𝜕𝐿஽, (2)

In this scheme, depicted in Figure 8, the discriminator loss is multiplied by λ and the 
generator loss by −λ variables, ensuring both networks receive their respective gradient 
signals within the same update cycle. FusedProp delivers 1.49× faster training compared 
to conventional GAN training. An inverted variant, Inverted Fused Propagation 
(InvFusedProp), was also proposed to address hinge loss when the parameter λ is not 
defined, by rescaling discriminator gradients to λ−1. 𝜆ିଵ  =  𝜕𝐿஽𝜕𝐿ீ , (3)

Both methods substantially reduce memory transfers and achieve higher training ef-
ficiency. The illustration directly contrasts conventional GAN training with the standard 
FusedProp method and with its inverted variant, offering a visual representation of how 
memory transfers and computational cost are reduced. 
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Figure 8. Illustration of FusedProp and InvFusedProp compared to conventional GANs. The gradi-
ents of the generator G and the discriminator D are denoted as “ΘG” and “ΘD”, respectively. “λ” is 
the constant factor of the algorithm. The input noise provided to the generator is “z” while “Lg” 
and “Ld” are the loss functions of the generator and the discriminator, respectively. 

Despite the computational efficiency of FusedProp algorithm several limitations have 
emerged. First, FusedProp results in restricted training speed when multiple discrimina-
tor updates are required per generator update. Second, gradient penalties like the R2 pen-
alty are incompatible with FusedProp, because their second-order derivatives can desta-
bilize the generator. However, the commonly used R1 penalty is fully supported. Third, 
architectures that combine auxiliary classification loss with adversarial loss are not cur-
rently incompatible, since balancing multiple objectives in a single backward pass remains 
unstable. In conclusion, FusedProp signifies an important advancement in enhancing 
GAN training by reducing memory use and computational cost. Future research should 
focus on enhancing stability and broadening compatibility with different penalties and 
GAN architectures. Among hardware-accelerated GAN, GAN slimming and FusedProp 
the most effective approach cannot be distinguished. A critical synthesis is provided in 
the next section, outlining strengths and weaknesses of every method. 

6.2. Comparative Assessment 

Section 6.2. presented three potential approaches to address the challenges associated 
with energy consumption and computational costs. These solutions comprise: (i) Memris-
tor-based Neuromorphic GANs with DiffBlock, (ii) Model Compression, and (iii) Fused 
Propagation and Inverted Fused Propagation. Diffblock holds a strong potential for stable 
and large-scale training, but its dependence on specialized neuromorphic hardware re-
stricts practical deployment. Model Compression including pruning, quantization and 
distillation frameworks such as GAN slimming, offers reduced computational costs, but 
its effectiveness relies on combined frameworks instead of standalone methods. 
FusedProp is a promising algorithmic optimization, but its application is limited by in-
compatibilities with advanced loss functions and complex training setups. When critically 
compared, the Memristor-based Neuromorphic method is the most balanced solution 
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offering long-term benefits for energy-efficient GANs. Model compression techniques are 
the most feasible option, providing computational savings without requiring specialized 
hardware. FusedPop provides notable efficiency but is best regarded as a complementary 
method due to its disadvantages. 

Integrating control-based mechanisms like state-filtered disturbance rejection or 
multilayer neurocontrol with active disturbance rejection would connect traditional feed-
back theory with modern generative learning. This would create a path for energy-effi-
cient, disturbance-resistant, and dynamically stable GAN architectures. 

7. Privacy and Security 
7.1. Addressing Approaches 

To address these vulnerabilities, advanced GAN architectures have been proposed 
that balance privacy with model efficiency. One notable example is privacy-preserving 
GAN (privGAN), which employs a privacy discriminator (Dp) to distinguish memorized 
training samples and generated data [83]. When memorization is detected, the generator 
is penalized, reducing overfitting and the risk of information leakage [135]. In contrast to 
non-private GANs, PrivGAN successfully achieves its main objective of reducing MIAs. 
Nonetheless, this method is less resilient against other types of attacks. An additional lim-
itation is that for specific datasets, increasing λ (regularization weight) or Ν (number of 
discriminators) beyond a certain point improves the privacy but lessens sample quality, 
reducing effectiveness against MIAs. It is also observed that as λ rises, certain classes be-
come excessively represented. Moreover, privacy loss is increased with the number of 
epochs, indicating that extended training reduces the overall privacy guarantees. This is 
a limitation inherent to all GAN models and not exclusive to PrivGAN. However, this 
approach fails to provide a mechanism to address it. Finally, this approach demonstrates 
reduced efficiency on smaller datasets [136]. 

Two alternative models, Maximum Entropy GAN (MEGAN) and Mutual Infor-
mation Minimization GAN (MIMGAN), have been developed to enhance privacy. ME-
GAN is based on Fano’s inequality (Formula (4)) and Bayes error theory (Formula (5)). 
The overfitting of the discriminator is inversely related to classification error. Thus, by 
maximizing entropy, Fano’s inequality limits overfitting and reduces the risk of MIAs 
[137]. 𝑃௘ௗ ≥ 𝐻ሺ𝑟௘|𝑥ሻ  −  1log 2 ≈ Ε ൣ𝐻൫𝐷ሺ𝑥ሻ൯൧  −  1log 2  (4)

The variable 𝑃௘ௗ represents the error probability of an adversary attempting to de-
cide whether a given sample belongs to the training set. 𝐻 (·) denotes the entropy, i.e., 
the measure of uncertainty of a random variable, where 𝑟௘ is the random variable repre-
senting membership information, and |𝑥 is a candidate sample. The conditional entropy 
of the membership variable 𝑟௘ given the sample 𝑥 is expressed as 𝐻(𝑟௘|𝑥). Furthermore, Ε ൣ𝐻൫𝐷(𝑥)൯൧  refers to the expected entropy of the discriminator’s output distribution 
across all samples. Finally, the normalization factor log 2 converts units into bits. Maxim-
izing Ε ൣ𝐻൫𝐷(𝑥)൯൧  in Formula (4) the discriminator error is controlled from being too 
small and thus overfitting is prevented. 

Bayes error [138] is the minimal possibility of a MIA to correctly distinguish training 
from non-training samples based on the score: 𝑠 = 𝐷(𝑥) 𝑃௘௠ =  𝑃(𝑠  ∈  𝑅ଵ,𝜔଴) + 𝑃(𝑠  ∈  𝑅଴,  𝜔ଵ) (5)

In Formula (5), the variable 𝑃௘௠ denotes the probability of misclassification, 𝑠 rep-
resents the sample being evaluated, while 𝑅ଵ and 𝑅଴ correspond to the decisions “train-
ing” and “non-training”, respectively. The true states are denoted as 𝜔ଵ for training and 
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𝜔଴ for non-training. The expression 𝑃(𝑠  ∈  𝑅ଵ,𝜔଴) represents the probability of a false 
positive, whereas 𝑃(𝑠  ∈  𝑅଴,𝜔ଵ) corresponds to the probability of false negative. 

Together, Formulas (4) and (5) form the theoretical foundation of MEGAN, ensuring 
that score distributions remain indistinguishable between training and non-training sam-
ples. This helps mitigate MIAs [139]. Although MEGAN enhances privacy against mem-
bership inference attacks, two limitations must be considered. When the discriminator’s 
outputs are near 0.5, it indicates that the model is at peak uncertainty and cannot distin-
guish real from generated samples. This limits the model’s adaptability and reduces the 
diversity of its outputs. Consequently, its capacity to maintain privacy protection while 
maximizing data utility across various datasets is negatively affected [137]. 

MIMGAN reduces privacy leakage by minimizing the mutual information between 
training and generated data, thereby lowering the similarity between real and synthetic 
samples. This model effectively reduces the accuracy of MIAs by increasing the overlap 
parameter λ, while the generalization gap remains largely unaffected. However, the ad-
ditional variance introduced in the discriminator’s output may negatively impact training 
stability. Achieving a balance between privacy and utility requires careful parameter tun-
ing. As a consequence, complexity of the system is increased, presenting challenges for 
effective implementation [137]. Differentially Private GAN (DPGAN) adds carefully con-
trolled noise during training. Although this may decrease accuracy, it provides solid pri-
vacy guarantees. DPGANs face a trade-off among data privacy and output quality. In-
creasing the amount of added noise improves the level of privacy protection, but reduces 
the quality of the generated data. Training also becomes unstable when excessive noise 
disrupts convergence and makes optimization less effective. Furthermore, the accuracy in 
tasks such as classification decreases when models are trained on noisy synthetic data. 
This leads to reduced effectiveness in comparison to training with real data. In datasets 
with high sparsity, such as electronic health records, noise amplifies sparsity, causing in-
formation loss and limiting the model’s ability to identify important connections across 
variables [140]. In [137], a comparative analysis was conducted on the Modified National 
Institute of Standards and Technology (MNIST) dataset [116], a widely used benchmark 
for classification and generative modeling. The results, as shown in Table 3, demonstrate 
the trade-offs among these architectures. In particular, standard GANs achieve the highest 
performance in generating realistic data but offer no privacy protection. MEGAN and 
MIMGAN balance accuracy and privacy, while privGAN and DPGAN prioritize privacy 
at a cost to output quality. 

Table 3. Comparative analysis of privacy-preserving GAN models conducted by [137]. The stand-
ard GAN yields the most realistic outputs, while the DPGAN provides the strongest privacy guar-
antees. 

Model MIA (10% Accuracy) GAN- Test Accuracy Comments 
GAN 59.20% 96.88% Strong output quality, no privacy protection. 

MEGAN 12.08% 94.16% Reduced privacy risk with minimal accuracy loss. 
MIMGAN 13.01% 92.97% Similar performance to MEGAN 
PrivGAN 12.18% 77.51% Moderate privacy, limited output quality. 
DPGAN 10.07% 59.67% Strongest MIA protection, lowest model effectiveness. 

Further innovations include Compressive Privacy GAN (CPGAN), which prevents 
data reconstruction by privatizing input features. Unlike standard GANs, CPGAN re-
places the discriminator with a Service Module (S) and an Attacker Module (A). The gen-
erator transforms inputs into privacy-preserving representations (Z), which are validated 
by S for utility and tested by A for vulnerability. This dual-module framework enhances 
resistance to reconstruction attacks [19,141]. Figure 9 illustrates the CPGAN framework. 
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Figure 9. The CPGAN framework: The Service Module ensures usability of privatized data, and the 
Attacker Module assesses reconstruction resistance. 

CPGAN preserves data privacy and, in comparison to alternative privacy-preserving 
mechanisms like DNN and RAN, achieves better balance between utility and privacy. 
Still, in smaller datasets the tradeoff is severe, leading to poor sample quality. Moreover, 
to ensure privacy, CPGAN diminishes classification accuracy, reducing utility accuracy 
by up to 2.58% for CIFAR-10 dataset compared to non-privacy preserving models. The 
privatizer resides in the device of the user and therefore is restricted to a lightweight de-
sign that remains undeveloped. Lastly, currently CPGAN is trained with raw sensitive 
data that are not protected from attacks during the training stage. 

Another approach, Synthetic Adversarial GAN (SynGAN), generates synthetic ad-
versarial traffic to improve robustness against DDoS attacks [142]. It comprises a genera-
tor, discriminator and evaluator, with the evaluator applying gradient boosting to meas-
ure realism through Root Mean Square Error (RMSE). While SynGAN enhances the train-
ing of IDS by generating realistic synthetic attack traffic, its capability to produce highly 
authentic attacks also raises concerns about potential misuse. Thus, further research is re-
quired to develop GAN architectures that balance privacy, effectiveness, and security. 
SynGAN generates synthetic adversarial traffic, but it also presents several limitations. Its 
current framework is designed only for producing DDoS attacks, which limits its effi-
ciency. In addition, it relies on datasets such as NSL-KDD and CICIDS2017, which provide 
limited diversity and therefore reduce the reliability of the generated attacks. The evalua-
tion process is constrained since the gradient boosting classifier used for validation had 
only limited success in differentiating real and synthetic traffic. Training with GP-WGANs 
is computationally demanding, as it requires powerful GPUs and large memory capacity. 
Finally, SynGAN has not yet been evaluated on commercial Network Intrusion Detection 
System (NIDS) leaving its effectiveness uncertain [143]. A critical analysis is provided in 
Section 7.2. focusing on two criteria for the classification of the methods: (i) solely privacy 
and (ii) the best balance between security and efficiency. 

7.2. Analytical Evaluation 

Various approaches have been proposed to achieve private-preserving GAN models. 
The methods presented in Section 7.1. are: (i) PrivGAN, (ii) Maximum Entropy GAN, (iii) 
Mutual Information Minimization GAN, (iv) Differentially Private GAN, (v) Compressive 
GAN, and (vi) SynGAN. PrivGAN balances between privacy and efficiency, remaining 
sensitive to hyperparameters and small data availability, restricting its robustness. ME-
GAN offers privacy but is unable to maintain a variety of data, limiting its efficiency in 
application. Despite its training stability and degraded output quality, MIMGAN en-
hances privacy in a principled way. DPGAN provides the highest level of privacy protec-
tion, but its effectiveness is limited. CPGAN is a promising approach as it presents an 
overall private model but remains in process development, relying on lightweight de-
signs. In network security, SynGAN is the most efficient architecture; however, its gener-
alizability is limited, and it is constrained by significant computational costs. Considering 
that the classification is determined by privacy strength, DPGAN is the most efficient 
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method. However, an overall balanced approach is typically required. Therefore, 
PrivGAN provides the best balance between privacy and efficiency. MEMGAN and MIM-
GAN are strong theoretical foundations in privacy. DPGAN, as stated earlier, is the most 
privacy-aware model but results in lower sample quality. CPGAN is still an innovative 
framework with promising privacy and effectiveness. Finally, SynGAN is highly special-
ized, useful primarily for DDoS attacks and various network attacks. This critical analysis 
highlights that the trade-offs between accuracy and privacy are the main issue regarding 
the scalability of research to larger datasets, while the sensitivity to limited data and the 
challenges of real-world deployment remain open challenges that should be addressed in 
future work. 

8. Conclusions and Limitations 
Although diffusion models and transformer-based generators have become strong 

alternatives, GANs continue to set the standard for measuring realism, efficiency, and re-
liability in creating synthetic data. This survey has examined critical yet under-researched 
challenges of generative adversarial networks, including data limitations, efficiency and 
security. While notable progress has been achieved, significant gaps remain, such as pri-
vacy-preserving models, pre-trained embeddings and lightweight architectures. The in-
sufficiency of high-quality training data and environmental implications for energy-effi-
cient and privacy-aware models continue to pose major setbacks. Current research pro-
vides solutions for models that are computationally and energetically expensive, insuffi-
cient and vulnerable models, without addressing the underlying problems. This review 
contributes to the relevant literature by exploring under-investigated challenges and of-
fering further insights into the gravity and significance of these issues. By synthesizing 
findings from existing studies and related research, the survey assembles a series of dis-
tinct solutions aiming to mitigate these challenges. The greater part of the objective is 
achieved, as several approaches are proposed to address concerns relating to privacy, se-
curity, data limitation, cost and efficiency. Nevertheless, each solution resolves part of the 
problem while disregarding other aspects of the issue. As summarized in Section 7, most 
approaches show both advantages and disadvantages, and no method provides a com-
prehensive solution to address all challenges. Instead, existing approaches typically target 
specific domains, models or individual issues. Future research should emphasize devel-
oping a GAN architecture that integrates limited data training with energy-efficient com-
putation and privacy-aware mechanisms, aiming to balance utility, robustness and secu-
rity. Thus, this work offers insights that may guide future developments toward more 
reliable and sustainable generative models. 

This literature review is informative in scope but has certain limitations that should 
be acknowledged. Our analysis primarily relies on widely used datasets such as MNIST, 
CIFAR-10 and LSUN, not fully capturing the complexity of real-world data. The scalabil-
ity of larger diverse datasets is not examined, limiting the easy application of this work. 
While this survey emphasizes computational and energy efficiency, most methods often 
provide partial effectiveness, degrading the model’s accuracy. Most architectures provide 
theoretical improvement, but their deployment is unstable due to real-world constraints, 
such as hardware availability, latency and regulatory requirements. Furthermore, as this 
work is a survey study, it synthesizes methods and models for already existing literature 
without providing a new experimental validation. Therefore, the direct comparison be-
tween architectures and approaches is limited under unified evaluation frameworks. 
These limitations suggest further efficient and large-scale research is required to 
strengthen the practical relevance of the findings presented here. 
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9. Future Work 
Within the scope of this survey considering the limitations mentioned, several direc-

tions for future research emerge. Future work should concentrate on developing privacy-
aware and efficiency-oriented GANs, able to achieve desirable performance in larger and 
heterogeneous datasets. More attention should be given to understanding how secure but 
computationally efficient models evolve across different domains and how to maintain 
high accuracy under realistic conditions such as limited data. Reducing the energy foot-
print of GAN training, avoiding stability loss and decreased accuracy, is a pressing issue 
that deserves further exploration. Furthermore, systematic evaluations under unified 
frameworks would provide a basis for the comparison and analysis of the models, ena-
bling a fair assessment of private and efficient GANs. 

Beyond the scope of this review, further research is warranted in several under-ex-
plored areas. Non-visual domains such as signal generation, alphanumeric character 
recognition, time-series analysis, and graph simulation, are neglected when compared to 
video and image domains. These areas introduce unique setbacks such as data scarcity, 
labeling costs, and temporal dynamics, not addressed by the current adversarial methods. 
Another important gap in research is the lack of information of the semantic and geomet-
ric properties of GANs, particularly in multi-modal and 3D GANs. Enhancing the under-
standing of the semantic features would support more secure and accurate data. Finally, 
evaluation metrics fail to align with human perception, are vulnerable to manipulation 
and are unstable across domains, limiting the reliability of comparisons between models.  

Future research should also explore the interaction between control theory and ad-
versarial learning. Concepts like state-filtered disturbance rejection and multilayer neuro-
control with active disturbance rejection can guide adaptive gradient filtering and robust 
optimization techniques. Embedding these controllers into GAN frameworks can reduce 
training oscillations, minimize unnecessary calculations, and improve stability in non-sta-
tionary or resource-limited conditions. 

In summary, future work should concentrate in achieving efficient, computationally 
lightweight and private design while simultaneously addressing broader challenges re-
lating to scalability, feasibility, non-visual domains, latent space understanding and eval-
uation metrics reliability. Resolving these issues will be crucial for ensuring that GANs 
evolve into a secure, efficient and trustworthy tool capable of operating across a wide 
range of scientific and real-world applications.  
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Abbreviations 
The following abbreviations are used in this manuscript: 

ADRC Active Disturbance Rejection Control 
ADA Adaptive Discriminator Augmentation 
AdaFm Adaptive Filter Modulation 
AR Augmented Reality 
CGAN Conditional GAN 
CNN(s) Convolutional Neural Network(s) 
CPGAN Compressive Privacy GAN 
CRF Conditional Random Field 
DCGAN Deep Convolutional GAN 
DeLiGAN Diverse and Limited data GAN 
DL Deep Learning 
DDoS Distributed Denial of Service 
DPGAN Differentially Private GAN 
DynaGAN Dynamic GAN 
EEG Electroencephalogram 
FreGAN Frequency-aware GAN 
FPGA Field-Programmable Gate Array 
FSL Few-Shot Learning 
FusedProp Fused Propagation 
GAN(s) Generative Adversarial Network(s) 
GP-GAN Gaussian-Poisson GAN 
GS GAN Slimming 
(Inv)FusedProp (Inverted) Fused Propagation 
IS Inception Score 
LSUN Large Scale Scene Understanding 
MAML Model-Agnostic Meta-Learning 
MANN Memory-Augmented Neural Network 
MEGAN Maximum Entropy GAN 
MI Model Inversion 
MIA Membership Inference Attacks 
MIMGAN Information Minimization GAN 
ML Machine Learning 
MNIST Modified National Institute of Standards and Technology 
MUA Models Under Attack 
(N)IDS (Network) Intrusion Detection System 
PI-GAN Plant Identification GAN 
PII Personally Identifiable Information 
PrivGAN Privacy-preserving GAN 
RWM-CGAN Residual Weight Masking Conditional GAN 
RMSE Root Mean Square Error 
SLR Systematic Literature Review 
SFDRC State Filtered Disturbance Rejection Control 
SynGAN Synthetic Adversarial GAN 
TDP Thermal Design Power 
VAE Variational Autoencoders 
WGAN Wasserstein GAN 
WGAN-GP Wasserstein GAN with Gradient Penalty 
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