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Abstract

Earthquakes are the result of complex interactions between tectonic plates, the mantle, and
the lithosphere. Complex geodynamic conditions contribute to the occurrence of seismic
phenomena. Tectonic plates can collide, move apart, or slide past each other. Mantle
convection by internal heat drives plate motions that deform the lithosphere. Rocks deform
elastically as stress accumulates and pore fluid pressure changes. Rupture occurs when
stress exceeds frictional resistance. The connection between variations in gravity and the
magnitude of earthquakes remains unclear. This work aims to examine aspects of this
correlation. Three sets of earthquakes, one with events from all over the world, one from
broader Greece, and one from the Hellenic Trench in Greece, aiming to cover all cases of
geodynamics, from very different to very similar, were employed. Time series of gravity
measurements at earthquake epicenters were extracted from GRACE satellite data. Time
derivatives of the gravity field, as well as magnitude-dependent variations—reflecting
changes relative to earthquake strength—were computed. Multiple linear regression (MLR),
partial least squares (PLS) regression, and neural networks (NN) were used to model the
relationship between gravity or its derivatives and earthquake magnitude. A correlation
between the earthquake magnitude and magnitude derivatives was found. By using the
global and Greek datasets, the best accuracy was obtained with MLR, reporting a mean
squared error (MSE) of 0.069 with an R2 of 0.979, and MSE was 0.011 with R2 score of
0.997, respectively. By using the Hellenic Trench set, PLS regression derived the best
correlation results, reporting an MSE of 0.004 and an R2 of 0.977. Experimental results
suggest that gravity, and therefore crustal density, is related to the magnitude of the
impending earthquake, but not to its timing.

Keywords: gravity; earthquake; lithosphere; machine learning; magma; MLR; neural
network; PLS; satellite image

1. Introduction
Earthquakes are among the most devastating natural disasters. Predicting the occur-

rence and magnitude of earthquakes has long been a subject of scientific research [1,2].
Prediction of earthquake occurrence or magnitude is based on the detection and monitoring
of certain seismic precursor geophysical events occurring at various distances around the
epicenter of the earthquake [3–5]. These seismic precursor signs include electromagnetic
perturbations of ultra-low frequency (ULF) and very low frequency (VLF) [6–9], gravity
changes [10–13], vertical and lateral ground movements [14–17], alterations in ground-
water level, its chemical composition, and its temperature [18–21], emission of hydrogen,
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carbon dioxide, and radon gases [22–24], the occurrence of swarms of lower magnitude
earthquakes before the main one [25,26], and changes in characteristics of the atmosphere
over the imminent earthquake epicenter, such as atmospheric heat and density, ionosphere
electron content, and atmospheric cation (H+, O+ and He+) content.

The study of gravity perturbations as potential seismic precursors has a long history
in earthquake research. Pre-seismic gravity fluctuations have been recorded around the site
of an imminent earthquake in many cases [11,13,27–34]. Early observations date back to
the 1960s. Barnes (1966) [35] documented gravity variations associated with the 27 March
1964, Alaska earthquake, while Fujii (1966) [36] reported both pre-seismic and post-seismic
gravity anomalies related to the Niigata earthquake of 16 June 1964, in Japan. Between 1967
and 1971, similar gravity changes were also recorded related to other earthquakes [37–39].
Various mechanisms were proposed to explain these phenomena: Kisslinger (1975) [38]
attributed gravity changes to horizontal dilatancy of subsurface layers and inflow of
groundwater into fractures; Barnes (1966) [35] suggested mass displacements, whereas
Oliver et al. (1975) [39] argued that both crustal deformation and surface movements could
account for the observed gravity disturbances.

Research on pre-seismic gravity variations continued over the following three decades.
Chen Yun-Tai et al. (1979) [40] found that gravity decreased in areas surrounding the
4 February 1975, Haicheng earthquake but increased before the 28 July 1976, Tangshan
earthquake, both in China. Their analysis outlined mass redistribution as the most plausible
explanation. Similarly, Hagiwara (1979) [41] reported pre-seismic gravity anomalies pre-
ceding three Chinese earthquakes between 1975 and 1976. During that period, significant
efforts were directed toward modeling the relationship between gravity changes and seis-
mic activity, with approaches incorporating dilatancy, deep fluid migration, and dip-slip
faulting models of crustal deformation [42–46]. Until recently, these studies relied mainly
on terrestrial gravimeters; however, since 2020, satellite-based gravity measurements have
also been employed [11,12,27,47].

In addition to precursor studies, it has been shown that rapid mass redistribu-
tion during large earthquake ruptures produces so-called Prompt Elasto-Gravity Signals
(PEGS) [48,49]. These signals propagate at the speed of light and can be detected seconds
before seismic waves arrive at distant locations. While PEGS may provide useful constraints
on the magnitude of very large earthquakes, they are not considered true precursor signals,
since they are generated concurrently with the rupture process.

There is still no agreement regarding the underlying reasons for the local disturbances
detected in gravity. Most of the related theories are cited by Liu et al. [50] and Zhu et al. [34].
According to the proposed models, the rocks are expanding under the stress imposed on
them before the earthquake, and cracks are created in the lithosphere, causing changes
in the average crustal mass density, with or without aqueous fluid insurgence from deep
crustal sources, and therefore changes in the local gravity are observed. According to the
lithospheric plate dislocation model, it is the release of stress at the points of contact of the
continuously moving plates that causes the cracks. There is evidence that the change in the
weight of ice masses over polar regions, as the ice melts, could trigger earthquakes [51]. But
there is also evidence of magma movements as the causal factor of earthquake generation,
at least in regions close to volcanoes [29,32,52,53]. Whatever the causes of gravity changes,
there is undisputable published evidence that they constitute pre-seismic signals of incom-
ing earthquakes [13,28–34]. In only a few cases, the gravity changes were measured by
satellites [12,27,47,53]. In the majority of the published work, the gravity was recorded
using ground-based gravimeters [12,27,47]. Prediction of earthquake occurrence or magni-
tude using gravity data is still far from satisfactory. In one of the most successful efforts,
Zhu et al. [34] used an extensive network of terrestrial gravimeters all over China to predict
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the epicenter and year of occurrence of 13 earthquakes of surface wave magnitude (Ms)
only between 6 and 7 degrees Ms. They measured the gravity change intensity in a time
series and its variation trend. Note that the Ms scale is logarithmic, like the Richter scale,
and is designed to give similar numerical results, especially towards the middle values. The
authors attribute the limitations in the prediction range to restrictions in the accuracy of the
gravity meters and their coordination in the network, the unforeseen underground water
and mass movements, and the fluctuating nature of the gravity magnitudes over time.

To this end, the objective of this work is to investigate and establish a more compre-
hensive relation between the gravity change intensities and the magnitudes of various
earthquakes selected from all over the world, covering a broad range of geodynamics, from
very different to very similar. The fluctuating nature of the gravity readings indicates either
wave-like up and down movements of solid and semi-solid masses under the lithosphere
or cyclical opening and resealing of lithospheric cracks. A way was sought to relate these
cyclical changes, rather than the absolute gravity reading, to the earthquake magnitudes.
Satellite-recorded gravity data over the epicenter of a list of worldwide earthquakes were
used for this study. The gravity data were used by Python 3.11.13 algorithms run in the
Jupiter Notebook environment of the Anaconda graphical user interface. Multiple linear
regression (MLR) and partial least squares (PLS) regression methods were used as described
before [54] to correlate earthquake magnitudes with the gravity values or their derivatives.
A neural network (NN) algorithm was also implemented. It was found that a close rela-
tion exists between the derivatives of pre-existing gravity values over the epicenter of the
earthquakes and the earthquake magnitude. This information holds a promising potential
for integration into feature fusion techniques; by combining gravity derivatives with other
relevant predictors, we can enhance the accuracy and robustness of artificial intelligence
(AI) earthquake magnitude prediction models as a warning for natural disaster prevention,
leveraging the complementary strengths of multiple data sources.

The rest of the paper is structured as follows: Section 2 presents materials and proposed
methods. Results are summarized in Section 3, while discussions and conclusions are
included in Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Proposed Methodology

A block diagram of the steps followed for the examination of the correlation of an
earthquake’s magnitude to gravity is given in Figure 1. Three earthquake datasets were
constructed, one including earthquakes from all over the world, one including earthquakes
from Greece and its close neighborhood, and one targeted on the Hellenic Trench in Greece.
The global dataset consisted of 25 earthquakes with magnitudes between 1.0 and 7.3, the
Greek dataset consisted of 26 earthquakes with magnitudes between 2.7 and 7.0, while the
Hellenic Trench dataset consisted of 12 earthquakes of magnitudes 5.0 to 6.5.

The Greek dataset was employed due to the fact that the particular geodynamics of
distant localities on Earth can vary to a large extent, and this might theoretically affect the
association of gravity anomaly values with the earthquake magnitude. The Greek dataset
refers to a much more confined geographic area, and, therefore, it is expected to have more
homogeneous geodynamics. Towards the same direction, the Hellenic Trench dataset aims
to test earthquakes of an even higher geodynamic homogeneity. The Hellenic Trench, also
referred to as the Hellenic Arc or Hellenic Conduction Zone area, is a convergent plate
boundary where the African Plate is sliding beneath the Aegean microplate. This boundary
is a narrow arc starting from the Ionian Sea in the west, passing south of the island of Crete
and rising again towards the Dodecanese Islands in the east. The earthquakes occurring at
this boundary are interplate thrust Earthquakes [55–58].
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Figure 1. Proposed methodology.

For the global dataset, a time series of gravity anomaly values at their epicenter was
also recorded for the day closest to the earthquake and for each of the nine consecutive
months before this measurement. For the Greek dataset, the gravity anomaly values were
recorded for five 10-day intervals, starting nine months before the earthquake and ending
with a final measurement as close as possible to the earthquake date.

It should be noted here that, since in this work we are analyzing the derivatives of
the gravity values G with respect to the earthquake magnitudes M, the latter implies that
G is a continuous function of M. Therefore, it is considered necessary that M consistently
refers to the same physical quantity. For this reason, in case of magnitude values less than
5, referring to the global and the Greek datasets, which were recorded in the mb, ml, md, or
mwr scales, these values were converted to the mww scale, which is the scale used in case
of magnitudes over 5.0, by employing widely accepted conversion formulas [59,60].

Since the dataset of global earthquakes is formed from earthquakes from all over the
world, it is important to examine whether the local geodynamics would influence the corre-
lation between the magnitude of the earthquakes and the gravity anomaly values or their
derivatives. A more confined geographic area would answer the argument that different
geodynamics of the earthquakes make them unsuitable for comparison. In addition, the
time span of gravity measurements was shortened in the Greek dataset to only 50 days, five
measurements at 10-day intervals, ending on a day as close as possible to the day of the
earthquake. This limits the possibility of large changes in geodynamics in Greece during
the 50-day interval of gravity measurements. In the Hellenic Trench dataset, the similarity
of earthquake types is ensured to an even more significant degree, not only due to the
limited geographic extent but primarily because of the uniform geodynamic characteristics.

Based on these data, the final datasets were then constructed, containing the earth-
quake magnitudes and the recorded gravity values. The derivatives along months were
calculated and are referred to in this text as time derivatives. Magnitude derivatives,
showing the change in gravity as the earthquake magnitude changes, were also calculated.

Finally, gravity values and their derivatives were separately fed into MLR, PLS, and
NN algorithms to infer any connection between magnitude and gravity from the magnitude
prediction accuracy of the prediction models. For improved prediction of the PLS model,
variable selection was applied by selecting the months of the dataset whose gravity and
derivative values produced the lowest mean squared error (MSE).

2.2. Construction of Earthquake Datasets

In this work, earthquakes were selected from all over the world and in Greece using
the United States Geological Survey Search Comprehensive Earthquake Catalogue (USGS
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Earthquake Hazards Program) [61,62]. It should be noted here that the aim of this work
is not to examine the geodynamic details of earthquakes but to look for a common factor
among many earthquakes that have different geodynamic substrates. In the case of the
global dataset, the earthquakes are purposely selected from widespread areas so as to
minimize the influence of local geodynamic conditions. The latter approach is an effort to
investigate the common gravity-related denominator related to their magnitude, irrespec-
tive of the local geological peculiarities. The mechanism of earthquake induction could
be different, yet the accompanying gravity conditions still exist. Moreover, a close time
window was selected to neutralize as far as possible the external factors, such as lunar and
solar gravity effects.

Thus, the following datasets of earthquakes were constructed: the global dataset,
which comprised 25 earthquakes that occurred in May of 2021; the Greek dataset comprised
26 earthquakes that occurred during the year 2020; and the Hellenic Trench dataset, which
comprised 12 earthquakes of the same geodynamics. For this work, gravity anomaly is
defined as the deviation (in µGal) of the mean monthly gravity value at the earthquake
(epicenter) from the long-term mean gravity value, calculated over the six-year reference
period between January 2004 and December 2009. More details on both datasets are
provided in Tables A1 and A2 in the Appendix A section.

This research relies on gravity observations from the GRACE mission, a joint initiative
between NASA and the German Aerospace Center (DLR), implemented through its twin
satellites GRACE-1 and GRACE-2, available at https://earthquake.usgs.gov/earthquakes/
search/ (assessed on 11 September 2025). The datasets are archived within the GFZ Data
Services Sample catalog, maintained by the Helmholtz Center for Geosciences in Branden-
burg [63]. For the purposes of this study, processed gravity solutions were obtained via the
COST-G Plotter [64]. COST-G, operating under the International Combination Service for
Time-Variable Gravity Fields and linked to the International Gravity Field Service (IFS),
combines individual monthly gravity field solutions into an internally consistent global
model. Time series of gravity anomalies (reported in mGAL) at the central locations of the
selected earthquakes were extracted from the GFZ repository [63]. For monthly data visu-
alization, the RL06.1 DDK5 product of COST-G was employed, which represents gravity
field variations using GPS-based coordinates of the earthquake epicenters, while for 10-day
intervals, the collection CNES RLO5 TSVD (10-day) was used.

It should be noted here that GRACE satellite gravity sensors suffer from attenuation
or leakage bias of the gravity signal, meaning that the induced filtering smooths out
the noise but also may weaken the actual gravity signal. The latter issue is avoided by
employing spatial filtering of the gravity data. Our data come from the GFZ RL06.1 DDK5
dataset in the COST-G Plotter, which employs spatial filtering to reduce noise and leakage
bias. The DDK filters (decorrelation and smoothing filters) are performing exactly this;
they have various ratios of noise suppression to preserve spatial details. The DDK5 is a
compromise-level filter.

2.3. Data Processing and Machine Learning

The earthquake dataset was saved in the Jupyter Notebook v6.3 as an .xlsx file. A
summary of the data processing and the algorithm characteristics is given in Table 1. The
column containing the magnitudes of the earthquakes was separated and transformed
into a one-dimensional array. The gravity values were formulated into a two-dimensional
array and were standardized by scaling to unit variance. The Savitzky–Golay filter was
implemented to calculate the first- and second-order derivatives of the gravity values.
The first-order time derivatives show the speed of gravity changes as the time of the
earthquake occurrence is approached. The second derivatives are the accelerations; the

https://earthquake.usgs.gov/earthquakes/search/
https://earthquake.usgs.gov/earthquakes/search/
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rate of change in the speed of gravity changes as the time of the earthquake is approached.
Magnitude derivatives, showing the rate and acceleration of gravity changes as we move
along the earthquake magnitudes, were also estimated. Their physical meaning is the
correlation between the magnitude of the earthquake and any pre-existing geophysical
factors determining the gravity magnitude at the site of the earthquake, irrespective of
time-related gravity changes. For MLR, the magnitude and gravity sets were split into
training and test sets, with thirty percent of the earthquakes used for testing the regression
model performance. For NN, the best prediction results were produced with a test set size
of twenty percent.

Table 1. Data processing and algorithm characteristics.

Data Processing MLR PLS Regression Neural Network

Data scaling by using the
Standard scaler () function of
the Scikit-learn 1.7.1 library.

Calculation of derivatives by
using the SavgolFilter ()

function of the Scipy 1.16.1
library.

Calculation of the slope of
gravity values through the

months, by using the
LinearRegression.fit ()

function of the Scikit-learn
1.7.1 library.

Used as callable function.
Regression: linear.

Test size: 0.3
Performance metrics:

MSE, R2 score.
Plotting predicted

against actual
magnitudes.

Used as callable function
Number of components: The

optimal determined by
variable selection.

Model regression function:
PLS regression

Metrics for evaluation of
model performance and

prediction: MSE, R2 score
Plotting predicted against

actual magnitudes

Used as callable function.
Keras 3.10.0 model: sequential,

regression.
Test size: 0.2

Input shape: 10
Input layer: 10 nodes, activation:

relu
Hidden layers: one layer of three

nodes, activation: relu
Output layer: one node, activation:

linear
200 epochs, batch size: 3

Performance metrics: MSE, R2 score
Plotting predicted against actual

magnitudes

Variable selection refers to the selection of those columns (variables) from the gravity
or gravity derivative datasets that produce the least MSE of magnitude prediction using
PLS regression. A Python algorithm was formulated for variable selection, described in
Chariskou et al. [54].

The neural network was a Keras 3.10.0 regression net. The input layer of the neural
network model had as input shape the number of columns of the tested gravity data and
also ten neural nodes. One hidden layer of three nodes and activation ‘relu’ followed.
The output layer had one node and activation ‘linear’, as suggested for regression models.
Two hundred passes (epochs) of the entire set of rows were used, and weights were recal-
culated after every three-row pass (batch size). The algorithm is splitting the gravity and
earthquake magnitude sets into train and test sets (80–20%), calculating the MSE and R2

score between the actual and predicted magnitudes, and plotting them.

3. Results
3.1. Results on the Global Dataset

In Table 2, the gravity anomaly values for the set of global earthquakes are presented,
consisting of 25 earthquakes. The monthly gravity anomaly values at a variable time (last
column, depending on the available data in the COST-G Plotter) from the days before
the occurrence of the earthquake up to nine months before this last measurement were
recorded. The magnitude spans a range of earthquake magnitudes from 1.0 to 7.3.
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Table 2. The magnitude (mag) and gravity anomaly values over the earthquake epicenter on the first day closest to the day of the earthquake (‘last measurement’)
and for each of the nine months before that last measurement. The time lag between the day of the earthquake and the last measurement of gravity anomaly is given
in the column ‘days after last measurement’ and depends on the available data in the COST-G Plotter gravity database.

Mag

Gravity Anomaly (µGal) Before the Earthquake Occurrence
Days After Last
Measurement9 Months 8 Months 7 Months 6 Months 5 Months 4 Months 3 Months 2 Months 1 Month Last

Measurement

1.57 −3.487 −5.937 −4.278 −4.369 −1.289 −3.520 −1.749 −4.532 −5.786 −2.765 4
2.24 −4.138 −4.108 −2.820 −3.337 −0.600 −4.086 −3.067 −1.144 −1.055 −1.535 15
3.15 −1.034 −0.426 0.364 0.614 −1.279 1.061 1.197 −0.086 −1.932 0.854 25
3.81 0.056 3.094 2.305 −0.931 −1.231 1.719 3.018 1.632 2.674 0.022 8
3.92 2.037 0.632 2.405 1.711 4.630 1.980 2.967 0.818 −0.591 3.452 11
4.38 −5.344 −5.530 −6.569 −3.466 −3.616 0.480 −1.455 −2.676 −2.694 1.791 15
4.49 2.777 1.443 2.865 2.702 2.388 −0.754 1.278 −0.077 2.233 1.667 15
4.60 −1.349 0.794 1.304 0.276 1.835 −2.168 3.664 2.941 3.101 0.715 29
4.71 −0.035 3.146 2.384 −0.854 −1.071 1.737 3.107 1.705 2.794 0.102 11
4.82 6.548 5.996 4.717 3.617 4.899 4.233 4.752 4.362 7.393 5.855 4
4.93 −5.026 −5.050 −4.505 −5.224 −1.393 −4.778 −1.554 0.512 4.305 −1.561 11
5.10 −4.883 −0.989 −2.268 −1.282 −0.539 −1.495 0.799 −0.655 0.856 −0.549 15
5.20 −0.739 −1.745 −0.400 −1.701 −3.591 −4.291 −3.604 −0.037 −3.262 −0.828 4
5.30 0.181 −3.431 −0.853 0.221 −1.784 −1.306 0.347 −0.111 −0.933 −0.341 18
5.40 1.187 −0.334 1.644 1.786 1.259 0.978 0.387 2.953 1.942 1.578 4
5.50 10.093 10.243 9.949 10.278 13.981 9.739 9.423 8.840 9.917 6.484 14
5.60 3.130 −0.102 0.223 1.814 −0.386 0.390 0.583 0.014 −0.552 −1.204 15
5.70 −0.159 −0.092 2.888 0.080 0.945 2.912 1.728 1.169 1.571 1.153 8
5.80 1.452 1.319 −1.649 −1.760 −1.215 0.774 −1.389 2.153 1.243 −0.059 4
5.90 −1.462 −1.574 −0.793 1.784 4.895 1.487 1.953 2.877 −0.031 1.044 15
6.10 4.072 4.061 1.557 −0.345 −0.356 −3.801 −0.013 −4.869 −5.458 −5.185 4
6.50 0.320 −2.159 0.689 −0.731 0.544 −0.226 −0.375 0.524 −0.554 0.413 4
6.70 2.542 −0.193 −0.378 −1.175 −1.334 −1.365 2.048 −0.372 −0.829 −0.673 25
6.90 2.360 1.813 3.379 3.316 3.046 7.530 4.223 2.591 2.588 2.585 14
7.30 5.915 5.242 4.546 3.199 4.956 3.133 3.633 4.263 7.501 4.647 4
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During data processing, indications of a trend in gravity change over time, as the time
of the earthquake approached, were observed by visual inspection of the plots. Figure 2
presents indicative, randomly selected plots of gravity values and their time derivatives
against earthquake magnitudes. Recall that magnitude (mag) measurements are all in the
mww scale. To verify and accurately measure them, the slopes of the gravity values over
time, as the time of the earthquake was approached, were calculated from the earthquake
time-series data for each earthquake. Plots of earthquake magnitudes against their pre-
seismic time-series gravity slopes and their time derivatives were constructed. In a pilot
investigation step, earthquake magnitude prediction was also attempted by applying
multiple linear regression on their magnitude derivatives.

  
 

(a) (b) 

 
(c) 

Figure 2. Plots of (a) gravities; (b) first derivatives; (c) second derivatives, against time before
an earthquake. Randomly selected earthquakes are shown to avoid plot overcrowding. They are
shown by their magnitude in the legend. Gravity values fluctuate unpredictably over time, in
a way unrelated to the earthquake magnitude. The gravity rate of change (first derivative over
time) and its acceleration (second derivative) also do not show any pattern associated with the
earthquake magnitude.

Figure 3 shows the MLR results of attempts to predict earthquake magnitudes from
the time series of gravity and its derivatives. It is clear from the results presented in Figure 3
that there is no connection between gravity time series and magnitudes; gravities over the
epicenter fluctuate unpredictably over time. Wave-like patterns are observed for the first
and second time derivatives, but with phases, wavelengths, or amplitudes unrelated to the
earthquake magnitudes. In accordance with that, negative R2 values were produced by the
attempted prediction models, indicating no correlation between the gravities or their time
derivatives to the earthquake magnitudes. Also, large mean-squared errors were produced.
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(a) (b) 

 
(c) 

Figure 3. Plots of actual earthquake magnitudes against the values predicted by multiple linear
regression using (a) the gravity values of the dataset; (b) their first-order time derivatives; (c) their
second-order time derivatives. Neither the time series of gravity values over the earthquake epi-
centers, nor their time derivatives, are correlated to the earthquake magnitude. Blue dots indicate
the generated values, while blue trend line indicates how well this predictions align with the actual
measurements; red stars are the calculated data, while the red trend line shows the relationship
between calculated and measured values. Green dotted trend line shows the internal consistency of
measured data.

The first-order magnitude derivatives of gravity show the amount by which the gravity
changes for an infinitesimally small, but always the same, change in earthquake magnitude.
In Figure 4, it can be seen that this relates to the earthquake magnitude. Progressively larger
gravity values are associated with larger magnitudes (Figure 4a), although a fluctuation
is evident, curiously more intense in the range of 4.5 to 6.5. The first-order magnitude
derivative plot (Figure 4b) reveals an interesting phenomenon. For small magnitudes, up
to 4.5, the derivative is positive but with a negative slope. The second-order magnitude
derivative for the same magnitude interval is negative with a positive slope (Figure 4c). A
possible explanation and conclusion could be that as the lithosphere becomes denser and
‘tighter’, increasingly resisting large changes in its density, earthquakes that occur would
be of a larger magnitude. In the interval of 5.8 to 7.3, the first derivative is again positive,
but with a positive slope, while the second derivative is becoming increasingly positive
(positive slope). Once again, larger earthquakes are associated with a denser lithosphere,
but there is no resistance to further densening. The intriguing range is between 4.5 and 5.8,
where a drop in the first and second derivative values is observed. Both the rate of gravity
changes and the acceleration of this change decline to reach negative values. The lithosphere
is at first still resistant to further densening. But as this resistance is weakening, as indicated
by the negative derivatives, larger earthquakes occur. No increase in gravity is observed in
this magnitude range, but an oscillatory fluctuation and a negative first derivative are. This
indicates a negative ‘speed’ of gravity change. Decreases in gravity values occur for each
unit of change in magnitude to achieve earthquakes of these magnitudes. The curves of
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second-order derivatives are in agreement with those of the first derivatives. Notably, the
curve patterns are similar for almost all months before the earthquake.

  

(a) (b) 

 
(c) 

Figure 4. (a) Plots of gravity values; (b) their first-order magnitude derivatives; (c) second-order
magnitude derivatives, against earthquake magnitudes and for various time periods in months before
the earthquake occurrence, using the global dataset. Similar patterns were observed for all months.
Gravity values are higher at all months for earthquakes of greater magnitudes, although they oscillate
widely in the range of 4 to 6.5. The first derivatives are negative in magnitude in the range of 5.5 to
6.5 for most months. They gradually decrease to approach zero in the region of almost zero to four
and increase precipitously for magnitudes above six. These alterations are correspondingly reflected
in the shapes of the second-order derivatives.

Figure 5 illustrates the plots of actual earthquake magnitudes against the values
predicted by MLR using the first-order and the second-order magnitude derivatives of
the gravity values, whereas Figures 6 and 7 show the results of PLS regression and neural
network, respectively. All three methods indicate a correlation of the earthquake magnitude
to the first- and second-order magnitude derivatives, with MLR slightly better, followed
by the neural network, but with the PLS regression not falling significantly behind in
predictive efficiency. The first-order magnitude derivatives are a comparatively better
predictor dataset than the second-order derivatives.

A summary of the prediction performance of the three machine learning algorithms
on the gravity values and their derivatives is given in Table 3. The first- and second-order
magnitude derivatives are very well correlated to the earthquake magnitudes with any
of the three machine learning methods used. Good correlation was also observed when
the third-order magnitude derivatives of the gravity time slopes were used. Large MSEs
and negative R2 scores were obtained when the gravity values themselves or their time
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derivatives were used. Negative R2 values signify a correlation even worse than if the
average values of the gravities or their derivatives were used.

 
(a) (b) 

Figure 5. Plots of actual earthquake magnitudes against the values predicted by MLR using (a) the
first-order magnitude derivative; (b) the second-order magnitude derivative of gravity values. The
correlation between the earthquake magnitude and the rate of gravity change for each infinitely small
change in the magnitude of the earthquake (first derivative-over-magnitudes) allows a very accurate
prediction of the earthquake magnitude. Better predictions can be made using the second-order
derivatives. Blue dots indicate the generated values, while blue trend line indicates how well this
predictions align with the actual measurements; red stars are the calculated data, while the red trend
line shows the relationship between calculated and measured values. Green dotted trend line shows
the internal consistency of measured data.

  
(a) (b) 

 
(c) 

Figure 6. Plots of actual earthquake magnitudes against the values predicted by PLS using (a) the
gravity data; (b) their first-order magnitude derivatives; (c) their second-order magnitude derivatives.
The best correlation of the earthquake magnitude, as inferred by the R2 score, is with the first-order
magnitude derivatives of the gravity values. Blue dots indicate the generated values, while blue
trend line indicates how well this predictions align with the actual measurements; red stars are the
calculated data, while the red trend line shows the relationship between calculated and measured
values. Green dotted trend line shows the internal consistency of measured data.
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(a) (b) 

 
(c) 

Figure 7. Plots of actual earthquake magnitudes against the values predicted by NN using (a) the
gravity anomaly values; (b) the first-order magnitude derivative; (c) the second-order magnitude
derivative of the gravity values. The best correlation of the earthquake magnitude, as inferred by the
R2 score and MSE value, is with the second-order magnitude derivatives of the gravity values. Blue
dots indicate the generated values, while blue trend line indicates how well this predictions align
with the actual measurements; red stars are the calculated data, while the red trend line shows the
relationship between calculated and measured values. Green dotted trend line shows the internal
consistency of measured data.

Table 3. MSE and R2 (coefficient of determination) regression score for the correlation of earthquake
magnitude from their gravity values and their derivatives over their epicenter, using various machine
learning methods, on the global dataset.

MLR PLS NN

MSE R2 Score MSE R2 Score MSE R2 Score

Gravity values 2.864 −4.130 2.151 −0.211 11.860 −1.545
1st magnitude derivative 0.071 0.871 0.127 0.928 0.191 0.940

1st time derivative 3.121 −4.590 2.116 −0.192 4.291 −0.182
2nd magnitude derivative 0.028 0.948 0.131 0.926 0.273 0.923

2nd time derivative 3.626 −5.495 1.978 −0.114 7.553 −1.030
Slope 3rd magnitude derivative 2.864 −4.130 2.151 −0.211 11.860 −1.545

3.2. Results on the Greek Dataset

The characteristics of the Greek earthquake dataset are provided in Table A2 in the
Appendix A section. Table 4 includes the gravity anomaly values at their epicenters as
five measurements 10 days apart, while the last measurement is taken as close to the day
of the earthquake as possible. Recall that magnitude (mag) measurements are all in the
mww scale.
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Table 4. The magnitude (mag) and gravity anomaly value over the earthquake epicenter on the
first day closest to the day of the earthquake (‘last measurement’) and for each of the five 10-day
intervals before that last measurement. The time lag between the day of the earthquake and the last
measurement of gravity anomaly is given in the column ‘days after last measurement’ and depends
on the available data in the COST-G Plotter gravity database.

Mag Days After Last
Measurement

Last
Measurement 10 Days 20 Days 30 Days 40 Days 50 Days

2.71 7 −0.665 −0.386 −0.503 0.238 −0.438 0.052
2.91 6 0.817 1.031 0.517 0.728 −0.660 −1.309
2.98 2 −1.483 −0.964 −1.787 −0.573 −1.319 −2.641
3.05 5 0.439 −0.586 0.164 1.085 1.670 1.638
3.12 8 −0.022 3.567 0.120 2.772 5.024 0.111
3.37 15 2.155 4.949 3.695 2.672 3.271 2.827
3.81 5 −3.674 −2.813 −2.314 −3.629 −2.234 −2.255
3.92 3 0.962 0.408 2.035 0.966 1.041 0.533
4.03 2 1.892 2.155 2.863 3.689 4.217 3.337
4.30 2 1.552 2.646 2.042 1.738 2.334 3.304
4.38 9 1.248 1.552 1.050 1.180 1.161 1.099
4.49 9 −0.583 1.290 −2.100 −2.683 −2.627 −4.802
4.25 5 3.745 3.237 3.858 2.852 1.635 2.059
4.70 1 3.966 5.240 3.552 2.874 2.715 1.944
4.71 13 −0.280 −0.442 1.513 −1.728 −2.296 −2.171
4.90 8 4.907 0.536 4.569 4.866 3.655 1.786
5.00 2 4.779 3.889 3.028 4.914 3.689 4.271
5.10 7 0.748 −0.082 −0.064 0.200 0.148 −2.086
5.20 7 2.771 1.793 1.597 2.318 1.574 1.103
5.30 5 −3.235 −2.493 −2.009 −3.333 −1.940 −1.945
5.40 1 −0.950 0.526 0.808 0.394 1.118 0.587
5.50 3 −0.994 1.306 −2.422 0.198 0.441 0.643
5.60 7 1.457 −1.820 −2.383 −2.275 −4.461 −5.903
5.70 5 −0.248 −1.054 −1.715 0.706 −0.062 0.368
5.90 3 1.744 2.939 1.980 1.220 1.351 0.532
7.00 5 −3.205 −2.497 −2.036 −3.357 −1.949 −1.975

A correlation of the magnitudes of the earthquakes that occurred in Greece to the
gravity anomaly values over their epicenters and the derivatives of these values was
implemented. Figure 8 includes the plots of gravity values and their first-order derivatives,
as well as the second-order magnitude derivatives, against earthquake magnitudes and
for various time periods in days before the earthquake occurrence. Similar patterns are
observed for all measurements. Derivative values are higher for earthquakes of greater
magnitudes, although they oscillate in the range of 4 to 6.0. The shapes of the first- and
second-order derivatives are similar to those of the corresponding plots for the set of global
earthquakes for the same magnitude range, with negative derivatives in approximately the
same magnitudes between 4.5 and 6.0. The first derivatives are negative in magnitude in
the range between 4.8 and 5.8, while they increase rapidly for magnitudes above six. These
alterations are correspondingly reflected in the shapes of the second-order derivatives, as
observed from the figure.
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(a) (b) 

 
(c) 

Figure 8. (a) Plots of gravity values; (b) their first-order derivatives; (c) second-order magnitude
derivatives, against earthquake magnitudes and for various time periods in days before the earth-
quake occurrence, using the Greek dataset.

Figure 9 illustrates the results of MLR and PLS regression on the Greek dataset, by
using the first-order and the second-order magnitude derivatives. Except for MLR using
the first-order derivatives, the rest of the results exhibit excellent correlation between the
magnitude derivatives and the earthquake magnitude. The best performance is achieved
with MLR on the second-order derivatives, showing an MSE of 0.011 and a correlation
score R2 of 0.977. The combined results for all three machine learning methods are shown
in Table 5. Once again, the magnitude derivatives are ones better associated with the
earthquake magnitudes, while the raw gravity anomaly values and their time derivatives
show no relation to the magnitudes.

Table 5. MSE and R2 (coefficient of determination) regression score for the correlation of earthquake
magnitude from their gravity values and their derivatives over their epicenter, using various machine
learning methods, on the Greek dataset.

MLR PLS NN

MSE R2 Score MSE R2 Score MSE R2 Score

Gravity values 2.072 −0.923 1.303 −0.163 2.056 −0.986
1st magnitude derivative 0.066 0.932 0.500 0.553 0.436 −0.603

1st time-derivative 0.562 0.065 1.086 0.029 1.671 −0.449
2nd magnitude derivative 0.011 0.980 0.153 0.862 0.685 0.456

2nd time-derivative 1.886 −0.750 1.216 −0.086 2.199 −0.953
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(a) (b) 

  
(c) (d) 

Figure 9. Plots of actual earthquake magnitudes against the values predicted by MLR and PLS
regression for the Greek dataset: (a) MLR with the first-order magnitude derivatives; (b) MLR with
the second-order magnitude derivatives; (c) PLS regression with the first-order magnitude derivatives;
(d) PLS regression with the second-order magnitude derivatives. Blue dots indicate the generated
values, while blue trend line indicates how well this predictions align with the actual measurements;
red stars are the calculated data, while the red trend line shows the relationship between calculated
and measured values. Green dotted trend line shows the internal consistency of measured data.

3.3. Results on the Hellenic Trench Dataset

The characteristics for the Hellenic Trench dataset are provided in Table A3 in the
Appendix A section. The gravity anomaly values for the dataset of the earthquakes that
occurred in the Hellenic Trench region are presented in Table 6. The dataset contains
earthquakes of magnitude over 5.0 mww. In this case, no conversion of the magnitude
scale was necessary. The first-order and the second-order magnitude derivative plots
against the earthquake magnitudes are shown in Figure 10. In agreement with the first-
order magnitude derivative shapes on the other two earthquake datasets (Figures 4 and 8),
negative values are observed in the approximate region of 5.0 to 6.0 mww. The exact
areas of negative values vary somewhat, since quite different datasets are used. Very good
correlations of the earthquake magnitudes to the magnitude derivatives were obtained
with both MLR and PLS regression, especially with the second-order derivatives. Figure 11
illustrates the results of MLR and PLS regression on the Hellenic Trench dataset, by using
the first-order and the second-order magnitude derivatives. A summary of the results
obtained by all three ML methods is given in Table 7. It should be noted that the results
lead to the same assumptions as in all previous experimental cases.
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Table 6. The magnitude (mag) and gravity anomaly value over the earthquake epicenter on the first
day closest to the day of the earthquake (‘last measurement’) and for each of the five 10-day intervals
before that last measurement, for the Hellenic trench dataset. The time lag between the day of the
earthquake and the last measurement of gravity anomaly is given in the column ‘days after last
measurement’ and depends on the available data in the COST-G Plotter gravity database.

Mag Days After Last
Measurement

Last
Measurement 10 Days 20 Days 30 Days 40 Days 50 Days

5.00 3.6 0.636 −0.295 −0.323 0.191 0.403 −1.514
5.10 4.4 −1.615 −1.544 −0.118 0.604 −0.320 −0.301
5.20 3.6 0.688 −0.223 −0.260 0.202 0.341 −1.644
5.30 8.0 0.423 0.835 1.844 0.242 2.119 2.656
5.40 8.0 0.305 0.800 −0.043 −0.080 0.220 0.159
5.50 1.5 0.799 0.810 −0.223 0.127 −0.906 0.091
5.60 6.9 2.807 2.447 4.805 1.373 1.564 0.232
5.70 3.7 0.622 −0.308 −0.319 0.186 0.403 −1.524
5.90 3.3 1.744 2.939 1.980 1.221 1.352 0.533
6.00 6.9 3.786 2.515 3.083 3.846 3.931 3.982
6.40 2.6 0.996 2.296 0.914 0.485 1.366 0.274
6.50 7.3 −0.207 0.213 0.285 −1.760 −2.037 −2.490

  
(a) (b) 

 
(c) 

Figure 10. (a) Plots of gravity values; (b) their first-order magnitude derivatives; (c) second-order
magnitude derivatives, against earthquake magnitudes and for various time periods in days before
the earthquake occurrence, using the Hellenic Trench dataset.
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(a) (b) 

 

 
(c) (d) 

Figure 11. Plots of actual earthquake magnitudes against the values predicted by MLR and PLS
regression for the Hellenic Trench Dataset: (a) MLR with the first-order magnitude derivatives;
(b) MLR with the second-order magnitude derivatives; (c) PLS regression with the first-order magni-
tude derivatives; (d) PLS regression with the second-order magnitude derivatives. Blue dots indicate
the generated values, while blue trend line indicates how well this predictions align with the actual
measurements; red stars are the calculated data, while the red trend line shows the relationship
between calculated and measured values. Green dotted trend line shows the internal consistency of
measured data.

Table 7. MSE and R2 (coefficient of determination) regression score for the correlation of earthquake
magnitude to their gravity values and their derivatives over their epicenter, using various machine
learning methods, on the Hellenic Trench dataset.

MLR PLS NN

MSE R2 Score MSE R2 Score MSE R2 Score

Gravity values 4.861 −91.600 0.238 −0.095 9.479 −100.03
1st magnitude

derivative 0.004 0.913 0.021 0.901 1.064 −2.549

1st time-derivative 1.722 −6.428 0.283 −0.306 2.352 −32.933
2nd magnitude

derivative 0.006 0.972 0.004 0.977 9.113 −48.970

2nd time-derivative 0.687 −12.103 0.269 −0.241 12.818 −40.710

4. Discussion
Despite the intense efforts by many researchers to predict earthquake occurrence and

magnitude from gravity changes, the results are still far from satisfactory. This work shows
that time series of gravity changes are not associated with earthquake magnitudes. Their
first-order time derivatives represent the speed with which gravity changes take place,
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and the second-order derivatives are the accelerations in the gravity changes. Gravity
changes are supposed to be the result of lithospheric-level pressures and relaxations created
by plate contacts or by convection currents of flowing masses under the plates. Since
the gravity first-order time derivatives are not related to earthquake magnitude, it is not
the speed of convectional mass flows, and in extension, their momentum, responsible for
the magnitudes.

However, it is shown that the gravity magnitude derivatives are associated with
earthquake magnitude. Since this first derivative is negative in the magnitude range
between 4.5 and 6.5, we conclude that earthquakes of those magnitudes are associated
with a looser crustal mass net and its lower density or with downwards positioning of
magma masses. In contrast, larger magnitudes are associated with a denser crustal mass,
perhaps the result of pressure between the plates or with magma masses positioned close
to the surface. It must be emphasized that these are not time derivatives but magnitude
derivatives. The meaning of this is that the changes in crustal density or magma positioning
do not occur timewise before the earthquake but are already in place. Whatever the reason
for triggering the earthquake, the magnitude is related to the already existing crustal
density or magma positioning. The negative slopes of the first derivatives in the magnitude
range of almost zero to 4 degrees indicate that looser masses or deeper magma positions
help to cause earthquakes of gradually increasing magnitudes.

There is plenty of evidence that gravity alterations, caused by interaction with celestial
bodies, such as the sun or moon, are contributing to earthquake occurrence [65–69]. In this
work, we examined the gravity field vector perpendicular to the Earth’s surface. Gravity
field vectors exercised by celestial bodies horizontally to the Earth’s surface are possible.
Their pulling-pushing effect on lithospheric plates could be a cause of earthquakes. Due to
the Earth’s rotation, the perpendicular or horizontal effect of celestial gravity fields would
last only a few hours, unlikely to be detected by the monthly or weekly recordings of the
satellites. To our knowledge, no daily, let alone multiple daily, gravity recording exists yet.

It must be noted that the atmospheric pressure can affect the ground gravity [70–72]. The
same applies to hydrology factors, including groundwater movements [73–77]. Regardless
of the cause, it is ultimately changes in gravity that play a role in triggering earthquakes.
Although the effect of groundwater could also be attributed to crust extension or contrac-
tion [78], no such explanation is possible for the atmospheric pressure. In conclusion, it
is not only the underground pressures that stress the lithosphere, but the overground or
surface forces also have a significant role in earthquakes’ induction. In both cases, it is the
crustal plates that receive both pressures, and this is recorded as changes in gravity.

A possible limitation of this work is the consideration of low-magnitude earthquakes
in the methodology. Future work will consider extending the dataset by including high-
magnitude earthquakes from Mw = 5.0 to Mw = 9.0. Yet, it should be noted that the latter
is not always feasible, since most of the time, for most regions, there is a lack of actual
acceleration time-history records, especially of high intensity, due to the absence of nearby
seismic stations or due to low seismic variations.

This work does not intend to predict the occurrence or the magnitude of earthquakes;
it aims to elucidate some of the relations of gravity to the magnitudes of the earthquakes.
There are significant problems in attempting to predict earthquake magnitudes using deriva-
tives. Since it is the magnitude derivatives that are related to earthquake magnitude, these
derivatives must be calculated for any earthquake of unknown magnitude to be predicted.
Yet, derivative calculations require the gravity values of the unknown-magnitude earthquake
to be intercalated between the rows of a dataset of known-magnitude earthquakes. The exact
intercalation position is not known since the new earthquake is of unknown magnitude. Also,
the constructed MLR, PLS, or NN prediction model will be different after the intercalation of
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the new earthquake. Preliminary prediction attempts were, however, made in this work; the
results were not satisfactory, confirming our concerns, and therefore were not included.

5. Conclusions
This work aims to investigate the potential relationship between gravity field vari-

ations and earthquake magnitude using GRACE satellite data and advanced AI-based
modeling techniques.

Three different earthquake datasets, one with large differences in the geodynamics
of the epicenters and long time series of gravity data, one with more limited geodynamic
differences and short time series data, and one with similar geodynamics, were used, re-
sulting in the same shape of curves in the plots of magnitude derivative against earthquake
magnitude. In both cases, there are negative first-order magnitude derivative values in
approximately the same magnitude range between 4.5 and 6.0. While no direct correlation
was found between gravity or its temporal derivatives and earthquake magnitude, strong
predictive performance was achieved using magnitude derivatives. The derivatives of both
datasets show very good correlation to the earthquake magnitudes, while the best results
were obtained with MLR and poorer with the NN.

Our experimental findings indicate that, despite the fact that gravity changes do not
determine the timing of seismic events, they are indicative of the underlying crustal density
and magma dynamics that influence earthquake strength. Results emphasize that pre-existing
geophysical conditions play a critical role in shaping the magnitude of an earthquake, offering
valuable insight for future seismic risk assessment and modeling efforts.
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Appendix A

Table A1. The global dataset: dates, times, geographic coordinates of the epicenters, magnitude (mag.), depth, and location of the earthquakes used in this study.
Magnitude scales: ml = local magnitude (Richter scale); md = duration magnitude scale; mb = body-wave magnitude (P-waves); mww = moment magnitude (from
W-phase inversion).

Time Latitude Longitude Mag Depth magType dmin rms net Id Place horizontalError Depth
Error magError Mag

Nst locationSource magSource

2021-05-19
T10:41:12.805Z 38,182 −117,889 1 7.8 ml 0.025 0.08 nn Nn

00807589

30 km SE of
Mina,

Nevada
0.5 0.24 8 nn nn

2021-05-01
T02:14:48.715Z 32,116 −102,162 2 5.9 ml 0.015 0.1 tx Tx

2021ilkv

15 km NNW
of Midland,

Texas
0.71 0.64 0.1 11 tx tx

2021-05-13
T14:41:45.330Z 18,004 −66,760 3 11 md 0.158 0.15 pr Pr

2021133006

1 km SE of
Magas
Arriba,

Puerto Rico

0.33 0.24 0.16 10 pr pr

2021-05-25
T04:24:46.561Z 24,755 122,495 4 10 mb 0.55 0.82 us Us

6000efji

60 km WNW
of Yonakuni,

Japan
2.6 1.9 0.258 4 us us

2021-05-27
T13:30:51.483Z −27,092 −70,936 4.1 54.44 mb 0.581 1.39 us Us

6000ef53

67 km WNW
of Copiapo,

Chile
5.7 10.7 0.302 3 us us

2021-05-03
T15:19:57.804Z 53,802 160,385 4.5 71.99 mb 1298 0.58 us Us

7000dzq0

142 km NE of
Petropavlovsk-
Kamchatsky,

Russia

10.1 8.3 0.05 116 us us

2021-05-03
T11:46:46.696Z −61,875 −81,575 4.6 10 mb 3296 0.68 us Us

7000dzp9
108 km SW of
Sechura, Peru 8.2 1.9 0.073 56 us us

2021-05-16
T17:32:48.435Z 27,745 52,142 4.7 10 mb 4588 0.75 us Us

7000e3l3
76 km WNW
of Mohr, Iran 8.6 1.5 0.057 94 us us

2021-05-28
T13:06:35.311Z 24,877 122,549 4.7 10 mb 0.586 0.53 us Us

6000egzm

64 km NW of
Yonakuni,

Japan
2.3 1.9 0.185 9 us us

2021-05-21
T19:03:08.243Z 34,519 99,048 4.9 10 mb 4100 0.94 us Us

7000e557

Southern
Qinghai,

China
7.8 1.8 0.057 98 us us

2021-05-28
T07:24:16.071Z 36,524 70,135 5 209.8 mb 0.697 0.78 us Us

6000efd7

25 km ESE of
Farkhar,

Afghanistan
5.9 5.5 0.053 112 us us

2021-05-29
T01:25:14.219Z 1019 120,085 5.1 17.42 mww 0.702 0.88 us Us

6000efq7

214 km N of
Palu,

Indonesia
4.8 3.3 0.086 13 us us
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Table A1. Cont.

Time Latitude Longitude Mag Depth magType dmin rms net Id Place horizontalError Depth
Error magError Mag

Nst locationSource magSource

2021-05-21
T23:56:16.899Z 5887 126,646 5.2 10 mb 5131 0.78 us Us

7000e57i

73 km SE of
Pondaguitan,
Philippines

3.9 1.7 0.048 146 us us

2021-05-05
T01:17:26.708Z −20,697 −173,463 5.3 10 mww 6939 0.73 us Us

7000e07n

134 km SE of
Pangai,
Tonga

8.7 1.8 0.098 10 us us

2021-05-21
T01:37:36.219Z −9889 160,446 5.4 16.49 mww 0.664 1.04 us Us

7000e4yd

74 km SE of
Honiara,
Solomon
Islands

5.5 3.2 0.08 15 us us

2021-05-29
T01:02:41.087Z 36,311 141,987 5.5 12.04 mww 3055 0.85 us Us

6000efq6

122 km ENE
of Hasaki,

Japan
2.3 3 0.071 19 us us

2021-05-03
T08:46:39.830Z 51,306 100,420 5.6 18 mww 2050 0.51 us Us

7000dznc

28 km SW of
Turt,

Mongolia
7.3 1.8 0.065 23 us us

2021-05-25
T21:36:44.310Z −17,576 −174,808 5.7 201.18 mww 4551 0.83 us Us

7000e68h

147 km NW
of Neiafu,

Tonga
10.9 3.7 0.051 37 us us

2021-05-21
T12:09:22.756Z −8421 112,332 5.8 106 mww 1801 0.65 us Us

7000e50p

33 km SSW of
Sumberpu-

cung,
Indonesia

3.6 1.9 0.062 25 us us

2021-05-30
T20:47:51.021Z −56,826 −140,710 5.9 10 mww 27476 0.75 us Us

6000egs4

Pacific-
Antarctic

Ridge
15.2 1.8 0.086 13 us us

2021-05-21
T13:48:37.193Z 25,727 100,008 6.1 9 mww 4438 0.93 us Us

7000e532
25 km NW of
Dali, China 6.8 1.7 0.053 34 us us

2021-05-21
T22:13:18.379Z −16,601 −177,373 6.5 10 mww 4518 0.96 us Us

7000e579

265 km SSE
of Alo, Wallis
and Futuna

7.3 1.4 0.061 26 us us

2021-05-12
T14:05:15.667Z −17,387 66,314 6.7 10 mww 10669 0.68 us Us

7000e2ec

Mauritius-
Reunion
region

8.2 1.7 0.036 75 us us

2021-05-01
T01:27:27.215Z 38,200 141,597 6.9 43 mww 2619 0.82 us Us

7000dz5t

30 km SSE of
Onagawa

Cho, Japan
7.3 1.9 0.041 58 us us

2021-05-21
T18:04:13.565Z 34,598 98,251 7.3 10 mww 4655 0.77 us Us

7000e54r

Southern
Qinghai,

China
3 1.7 0.037 71 us us
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Table A2. The Greek dataset: dates, times, geographic coordinates of the epicenters, magnitude (mag), depth, and locality of the earthquakes that occurred in Greece
and its neighborhood during the year 2020. Magnitude scales: ml = local magnitude (Richter scale); md = duration magnitude scale; mb = body-wave magnitude
(P-waves); mww = moment magnitude (from W-phase inversion).

Time Latitude Longitude Mag Depth magType dmin rms net Id Place horizontalError Depth
Error magError Mag

Nst locationSource magSource

2020-07-22
T16:28:51.512Z 39,669 19,763 2.7 10 ml 0.049 0.84 us us6000b2a3 8 km WNW of

Kontokali 6.6 2.0 0.097 14 us us
2020-05-11

T09:33:07.394Z 37,824 27,144 3.0 10 ml 1.297 0.67 us us70009dzb 10 km WSW of
Kusadasi 5.3 2.0 0.085 18 us us

2020-04-27
T20:15:03.107Z 41,425 19,527 3.1 10 ml 1.023 0.62 us us60009dg4 9 km NNW of

Shijak 5.4 2.0 0.064 32 us us
2020-06-01

T23:15:01.842Z 40,459 21,483 3.2 10 ml 0.847 0.26 us us6000a40l 7 km WSW of
Emporio 3.9 2.0 0.077 22 us us

2020-04-13
T23:56:37.740Z 41,603 28,747 3.3 10 ml 2.069 1.03 us us70008vrx 33 km N of

Durusu 4.6 2.0 0.085 18 us us
2020-02-20

T00:32:32.386Z 35,272 23,962 3.6 10 mb 0.758 0.82 us us70007tbw 17 km WNW of
Chora Sfakion 3.4 2.0 0.352 2 us us

2020-10-30
T12:41:31.954Z 37,797 26,977 4.0 10 mb 1.425 0.63 us us7000cask 4 km N of

Samos 5.8 1.9 0.195 7 us us
2020-04-18

T23:36:53.658Z 38,073 20,321 4.1 21.78 mb 1.555 1.05 us us70008zl8 17 km SW of
Lixouri 5.0 6.2 0.100 27 us us

2020-10-17
T20:31:59.067Z 39,108 23,415 4.2 10 mb 1.224 0.7 us us6000c91f 8 km SW of

Skiathos 4.9 1.9 0.264 4 us us
2020-07-07

T15:19:51.452Z 38,836 25,331 4.3 8.92 mb 2.118 0.74 us us7000ajhc 38 km NNW of
Psara 4.5 5.9 0.126 18 us us

2020-06-04
T04:51:18.397Z 35,089 26,052 4.4 10 mb 0.972 0.75 us us6000a9vs 14 km SSW of

Sitia 6.1 1.9 0.178 9 us us
2020-02-04

T16:47:10.864Z 38,997 27,941 4.5 10 mb 0.698 1.04 us us60007phg 12 km NE of
Akhisar 4.7 1.9 0.105 27 us us

2020-10-30
T09:20:36.917Z 34,401 26,428 4.6 10 mb 1.291 0.58 us us7000catf 89 km S of

Palekastro 5.1 1.9 0.164 11 us us
2020-02-06

T09:24:16.857Z 39,254 21,497 4.7 10 mwr 1.393 0.9 us us70007jsv 10 km SSE of
Anthiro 2.9 1.7 0.068 21 us us

2020-02-18
T16:09:23.758Z 39,107 27,817 4.8 10 mb 0.534 0.68 us us70007sgb 12 km E of

Kirkagac 2.8 1.8 0.060 87 us us
2020-12-29

T08:06:09.922Z 34,709 24,069 4.9 10 mb 0.887 1.12 us us6000d3y3 14 km S of
Kastri 5.0 1.4 0.052 149 us us

2020-08-17
T07:27:02.373Z 36,897 23,770 5.0 95.34 mww 1.502 0.61 us us6000bfuq 56 km SSE of

Hydra 5.4 1.5 0.056 31 us us
2020-05-22

T03:40:30.610Z 34,483 25,886 5.1 10 mww 1.147 0.97 us us70009n06 60 km SSE of
Ierapetra 6.0 1.8 0.056 31 us us

2020-10-12
T04:11:27.566Z 35,644 26,246 5.2 10 mww 0.751 1.06 us us6000c7nd 49 km N of

Palekastro 3.3 1.7 0.050 38 us us
2020-10-30

T15:14:55.887Z 37,831 26,822 5.3 10 mww 1.518 1.28 us us7000c7zh 8 km NW of
Kokkari 5.2 1.9 0.098 10 us us

2020-09-26
T22:50:25.082Z 39,984 24,334 5.4 10.38 mww 1.585 0.58 us us6000c1rq 31 km SSE of

Karyes 5.8 3.8 0.046 45 us us
2020-01-28

T15:38:34.436Z 35,218 27,891 5.5 10 mww 0.681 0.65 us us60007i7j 69 km ESE of
Karpathos 5.2 1.7 0.052 35 us us



Appl. Sci. 2025, 15, 11126 23 of 26

Table A2. Cont.

Time Latitude Longitude Mag Depth magType dmin rms net Id Place horizontalError Depth
Error magError Mag

Nst locationSource magSource

2020-01-22
T19:22:16.298Z 39,072 27,838 5.6 5.6 mww 0.567 0.66 us us60007d2r 15 km ESE of

Kirkagac 4.1 3.1 0.057 30 us us
2020-05-20

T23:43:16.920Z 35,159 20,277 5.7 13.45 mww 2.416 0.52 us us70009m4x 224 km SW of
Methoni 6.7 3.4 0.048 42 us us

2020-09-18
T16:28:17.575Z 35,036 25,303 5.9 44 mww 0.421 0.78 us us7000bpvt 12 km SSE of

Arkalochori 5.9 1.9 0.050 39 us us
2020-10-30

T11:51:27.348Z 37,897 26,783 7.0 21 mww 1.518 0.59 us us7000c7y0 13 km NNE of
Neon Karlovasi 1.4 1.8 0.036 75 us us

Table A3. The Hellenic Trench dataset: dates, times, geographic coordinates of the epicenters, magnitude (mag), depth, and locality of the earthquakes that occurred
in Greece and its neighborhood during the year 2020. Magnitude scales: ml = local magnitude (Richter scale); md = duration magnitude scale; mb = body-wave
magnitude (P-waves); mww = moment magnitude (from W-phase inversion).

Time Latitude Longitude Mag Depth magType dmin rms net Id Place horizontalError Depth
Error magError Mag

Nst locationSource magSource

2020-05-18
T11:48:07.371Z 34.1328 25.5231 5.0 10 mww 1.265 0.71 us us70009jm3

98 km S of
NΓ©a AnatolΓ,

Greece
7.1 1.8 0.075 17 us us

2020-06-19
T07:43:21.049Z 34.2871 25.5222 5.1 10 mww 1.126 0.62 us us6000aepr

81 km S of
NΓ©a AnatolΓ,

Greece
7.1 1.9 0.08 15 us us

2020-05-18
T04:18:17.970Z 34.1648 25.6205 5.2 10 mww 1.271 0.86 us us70009jdm

93 km S of
NΓ©a AnatolΓ,

Greece
6.9 1.8 0.05 39 us us

2021-09-28
T04:48:08.650Z 35.0817 25.2018 5.3 10 mww 0.328 0.94 us us7000ff36

9 km SW of
ArkalochΓ3ri,

Greece
4.5 1.7 0.046 45 us us

2020-06-03
T09:03:29.381Z 34.3323 25.8927 5.4 10 mww 1.26 0.62 us us6000a52k 76 km S of IerΓ’

petra, Greece 7.2 1.8 0.098 10 us us

2020-01-30
T01:28:05.202Z 35.1565 27.8845 5.5 10 mww 0.708 0.9 us us60007jpa

72 km ESE of
Karpathos,

Greece
5.3 1.8 0.055 32 us us

2021-12-26
T18:59:02.711Z 35.1923 26.9659 5.6 10 mww 0.388 1.09 us us6000gfhq 25 km S of Fry,

Greece 5.7 1.8 0.056 31 us us

2020-05-18
T23:22:35.162Z 34.1855 25.5173 5.7 10 mww 1.215 0.6 us us70009k7k

92 km S of
NΓ©a AnatolΓ,

Greece
5.5 1.7 0.073 18 us us

2020-09-18
T16:28:17.575Z 35.0368 25.3034 5.9 44 mww 0.421 0.78 us us7000bpvt

12 km SSE of
ArkalochΓ3ri,

Greece
5.9 1.9 0.05 39 us us

2019-11-27
T07:23:42.383Z 35.7174 23.2284 6.0 69 mww 1.421 1.02 us us70006dlt

45 km WNW of
KΓssamos,

Greece
6.5 1.9 0.051 37 us us

2021-10-12
T09:24:05.099Z 35.1691 26.2152 6.4 20 mww 0.86 0.46 us us6000ftxu

4 km SW of
Palekastro,

Greece
6.1 1.8 0.048 42 us us

2020-05-02
T12:51:05.561Z 34.1818 25.7101 6.5 10 mww 1.293 1.01 us us700098qd

91 km S of
NΓ©a AnatolΓ,

Greece
6.7 1.8 0.048 42 us us
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