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Abstract

Occupational radiation exposure in nuclear medicine presents complex spatial and tempo-
ral patterns due to the use of unsealed radiopharmaceuticals and prolonged proximity to
patients. Traditional passive dosimetry provides only cumulative dose values, limiting its
usefulness in identifying task-specific exposures or capturing momentary fluctuations. This
study applied a real-time dosimetry system capable of second-by-second measurements,
combined with time-series analysis, to evaluate staff exposure during myocardial perfusion
imaging using technetium-99m. Dosimeters were placed on the left and right sides of the
neck and head of two radiological technologists. Dose rates were continuously recorded
throughout the injection and imaging phases. The right side of the neck received the high-
est cumulative and peak dose rates among all sites. Although no significant difference in
total dose was observed between the injection and imaging phases, specific high-exposure
events were detected. Notably, ECG lead placement and post-injection handling produced
dose spikes. A positive correlation was found between administered activity and dose
rate at neck-level sites but not at head-level sites. These findings demonstrate the value of
real-time dosimetry in identifying procedural actions associated with elevated exposure.
Time-series analysis further contextualized these peaks, supporting improved task-specific
protective strategies beyond the capabilities of conventional dosimetry.

Keywords: nuclear medicine; radiation exposure; eye dose; myocardial perfusion imaging;
single-photon emission computed tomography (SPECT)

1. Introduction
Adverse tissue reactions resulting from radiation exposure have been well docu-

mented [1–4]. In recent years, increasing evidence has suggested the potential for stochastic
effects, even at low doses [5–7]. These findings have intensified global concern over
radiation protection, particularly among healthcare professionals with occupational expo-
sure [8–10]. Consequently, more stringent regulatory standards and protective measures
have been implemented, leading to reduced occupational doses across various radiological
specialties [11–14].
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Effective management of occupational radiation exposure is essential not only for
staff safety but also for maintaining workforce well-being and public trust in radiological
practices [15–17]. In clinical environments, various radiation protection measures have
been introduced to reduce occupational exposure [18–22]. Comprehensive dose monitoring
and targeted protective strategies are critical to minimizing the potential health risks of
radiation exposure among healthcare workers, especially in high-use domains, such as
nuclear medicine [23–27].

Nuclear medicine presents a unique exposure profile owing to its use of unsealed
radioactive materials [28–31]. Unlike conventional radiographic procedures, where expo-
sure is limited to brief image acquisition periods, nuclear medicine staff are continuously
exposed to radiation during radiopharmaceutical preparation, injection, and patient inter-
actions [32–34]. Ongoing advancements in radiopharmaceutical development are expected
to broaden the clinical applications of nuclear medicine in both diagnostic and therapeutic
settings [35,36]. Despite this prolonged exposure, lens dose protection in nuclear medicine
has received comparatively little attention. The International Commission on Radiologi-
cal Protection (ICRP) Publication 118 reported that lens opacities and radiation-induced
cataracts may occur at lower doses than previously assumed, prompting a revision of the
occupational lens dose limit to 20 mSv/year, averaged over five years [37]. In response, the
International Atomic Energy Agency Technical Document (IAEA TECDOC) 1731 identified
nuclear medicine as a specialty requiring specific interventions to reduce lens exposure [38].
Consequently, this issue has led to increased scrutiny of occupational eye lens exposure
across many clinical disciplines in recent years [39–42]. Epidemiological studies have
shown higher risks of cataracts and certain cancers among nuclear medicine personnel
compared to their unexposed counterparts, emphasizing the need to improve occupational
exposure assessment and control in these environments [43].

Reducing occupational exposure in nuclear medicine requires both adequate training
for healthcare professionals and a clear identification of exposure-related factors [44,45].
Although passive personal dosimeters are widely used in clinical practice, they provide
only cumulative dose data and cannot attribute increased exposure to specific tasks or
behaviors. Consequently, there is a growing need for real-time dosimetry systems that
enable second-by-second dose monitoring [46–48]. Real-time dosimetry is increasingly
adopted in interventional radiology and cardiology, where it has proven useful for identi-
fying dose peaks and informing protective behaviors [49,50]. However, its application in
nuclear medicine—particularly for assessing lens exposure and task-specific contributions—
remains underexplored.

Previous research has identified challenges in personal dose assessment within nuclear
medicine due to spatial dose variation and frequent changes in staff positioning [51]. These
findings underscore the need for a more dynamic and precise monitoring approach.

In this study, we evaluated occupational radiation exposure during nuclear medicine
procedures using a real-time dosimetry system. By continuously monitoring dose rates
during both the imaging and injection phases and correlating them with staff movements,
we aimed to identify specific actions and time points associated with increased exposure,
particularly to the neck and eye lenses. This approach offers valuable insights for enhancing
shielding strategies, optimizing workflow, and implementing individualized protection
measures in nuclear medicine.

2. Materials and Methods
2.1. Subjects

This study was conducted at Sendai Kosei Hospital, Japan, and involved two radiolog-
ical technologists who routinely perform nuclear medicine procedures. This investigation
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was designed as an exploratory pilot study to evaluate the feasibility of applying real-time
dosimetry in nuclear medicine procedures. Due to the practical constraints of performing
continuous second-by-second monitoring during routine clinical practice, two radiologi-
cal technologists were enrolled. Both participating radiological technologists specialized
in nuclear medicine practice at our institution, and all examinations were performed in
accordance with applicable professional guidelines [52]. The target procedure was rest-
ing myocardial perfusion imaging using single-photon emission computed tomography
(SPECT), performed with either technetium-99m methoxyisobutylisonitrile (99mTc-MIBI)
or technetium-99m tetrofosmin (99mTc-tetrofosmin).

A total of 14 patients were included in the study, comprising nine radiopharmaceutical
administration sessions conducted in the administration room and 13 imaging sessions
performed in the SPECT room. The measurements were classified into two procedural
phases: administration and imaging. The administered activity was recorded for each
patient. Administered activities were measured using a CRC-55tR (Capintec, Inc., Florham
Park, NJ, USA). Manufacturer specifications indicate accuracy better than ±2%, linearity
within ±2%, and a response time within 2 s (4–16 s for very low-activity samples). All cases
were randomly selected from routine clinical practice.

Figure 1 illustrates the procedural workflow and layouts of the administration and
SPECT rooms.

 

Figure 1. Workflow and room layout for myocardial perfusion SPECT procedures.

This study was approved by the ethics committee of our institution (The ethics com-
mittee of the Sendai Kosei Hospital, Approval Number: 30-19, Approved on 1 June 2021).
Informed consent was obtained from all subjects.

2.2. Dosimetry

Real-time radiation monitoring was performed using the RaySafe i3 system (Unfors
RaySafe AB, Billdal, Sweden). The RaySafe i3 is a semiconductor-based active personal
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dosimeter and exhibits favorable baseline performance as a real-time dosimeter [53]. Within
the dose rate range of 40 µSv·h−1 to 150 mSv·h−1, the stated measurement uncertainty is
the greater of 10% or 10 µSv·h−1 [54]. According to the manufacturer, devices undergo
factory calibration (irradiation tests) during production, and conformity with specifications
is verified prior to shipment. During each session, dose rate data were logged at 1 s
intervals and were exported via the vendor software (Dose Viewer, version 1.3.135.0)
for subsequent analysis. Dosimeters were placed on both the left and right sides of the
head and neck to evaluate potential lateral differences in radiation exposure (Figure 2).
In addition, simultaneous measurements at head- and neck-level allowed comparison
between lens-level (head) and trunk-level (neck) exposures. This dual placement strategy
provided insight into whether trunk-worn dosimeters, commonly used in clinical practice,
adequately reflect actual lens dose. Using RaySafe i3, both the cumulative dose per session
and the dose rate at one-second intervals were recorded. All measurements were evaluated
as the 1 cm dose equivalent [Hp(10)].

 

Figure 2. Dosimeter placement sites on the radiological technologists.

Radiation-shielding measures were applied consistently throughout the study period
following routine clinical practice. Specifically, during the radiopharmaceutical administra-
tion phase, tungsten syringe shields were used to reduce hand and body exposure. In the
imaging phase, movable lead shields were strategically positioned within the examination
room to further minimize ambient radiation exposure to the technologists. Additional
radiation protective equipment (e.g., lead protectors) was not used in routine clinical work
and was therefore not used in this study.

2.3. Data Analysis

All statistical analyses were performed using JMP Student Edition version 18.2.1
(JMP Statistical Discovery LLC, Cary, NC, USA). Statistical significance was set at p < 0.05.
Outliers were not excluded in all analysis.

To evaluate site-specific differences in occupational radiation exposure, the cumulative
dose per session was compared across four measurement positions: left head, right head,
left neck, and right neck. The cumulative dose values were analyzed without distinguishing
between the administration and imaging phases. Data distribution was assessed using
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the Shapiro–Wilk test for normality and Levene’s test for homogeneity of variance. As
several variables did not satisfy these assumptions, non-parametric statistical methods were
adopted. The Friedman test was used to assess overall differences among the four dosimeter
positions. This test is a non-parametric repeated-measures ANOVA that analyzes rank-
based data, without assuming normality or homoscedasticity. When significant differences
were, post hoc pairwise comparisons were conducted using the Nemenyi test, which
performs all-pairs post hoc comparisons on differences in average ranks. This procedure
calculates a critical distance based on the Studentized range, thereby controlling the family-
wise error rate.

To compare radiation exposure levels between procedural phases, the cumulative dose
per session was analyzed separately for the administration and imaging phases at each of
the four dosimeter positions. The Wilcoxon rank-sum test was used to determine whether
significant differences existed between the two phases.

Linear regression analysis was performed to assess the relationship between adminis-
tered radiopharmaceutical activity and cumulative radiation dose at each dosimeter site.
Regression coefficients and corresponding p-values were calculated to evaluate the strength
and significance of the correlations.

To identify specific procedural actions associated with short-term radiation exposure
peaks, time-series dose rate data recorded at one-second intervals were analyzed. Using
video recordings, time-series dose rate data were aligned with the corresponding workflow
steps for both the administration and imaging phases. For every session, we computed the
mean dose rate for each step as the sum of 1 s dose rate values divided by the corresponding
detection time (Σ dose rate/detection time). Subsequently, analyses were conducted on
a per-session basis to identify steps exhibiting increased dose rate and to infer plausible
determinants of exposure. In accordance with the IAEA emergency preparedness guide-
lines, an ambient dose rate of >100 µSv/h at 1 m is used as a screening criterion to isolate
potential high-exposure sources, as it indicates the possible presence of objects that could
cause deterministic health effects if carried or handled [55]. Instances in which the dose
rate exceeded 100 µSv/h were defined as high-exposure actions, and these moments were
subsequently identified and analyzed.

3. Results
3.1. Differences by Dosimetry Position

Tables 1 and 2 summarize the cumulative doses, maximum dose rates, and adminis-
tered activities recorded at each measurement site during the administration and imaging
phases. The mean ± SD detection time for each phase was 52.33 ± 17.68 s in the adminis-
tration phase and 57.54 ± 30.85 s in the imaging phase. Figure 3 presents a comparison of
the cumulative dose per session across all measurement sites.

Table 1. Cumulative dose and administered activity during the administration phase by
dosimetry positions.

Session
Number

LH RH LN RN
RT

(A/B)
AD

(MBq)CD
(µSv)

MDR
(µSv/h)

CD
(µSv)

MDR
(µSv/h)

CD
(µSv)

MDR
(µSv/h)

CD
(µSv)

MDR
(µSv/h)

1 0.03 41.36 0.19 55.78 0.15 108.3 0.28 104.72 A 644.7
2 0.14 61.12 0.23 56.85 0.23 74.59 0.70 98.96 A 636.3
3 0.12 57.83 0.39 88.12 0.31 108.3 0.94 141.07 A 726.2
4 0.22 70.64 0.21 87.76 0.33 130.89 0.34 107.96 A 683.5
5 0.52 89.01 0.88 82.44 0.36 86.33 0.71 102.54 A 619.3
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Table 1. Cont.

Session
Number

LH RH LN RN
RT

(A/B)
AD

(MBq)CD
(µSv)

MDR
(µSv/h)

CD
(µSv)

MDR
(µSv/h)

CD
(µSv)

MDR
(µSv/h)

CD
(µSv)

MDR
(µSv/h)

6 0.17 59.10 0.35 74.52 0.16 61.93 0.88 114.05 A 615.4
7 0.20 94.64 0.57 79.31 0.32 76.75 0.66 186.14 A 614.2
8 0.12 87.90 0.15 78.68 0.46 102.34 1.15 125.74 B 903.9
9 0.21 64.26 0.23 71.85 0.50 108.00 1.28 134.34 B 862.3

Mean 0.19 0.35 0.31 0.77 700.64
SD 0.13 0.22 0.12 0.32 103.83

LH, left head; RH, right head; LN, left neck; RN, right neck; RT, radiological technologist; AD, administered
activity; CD, cumulative dose; MDR, maximum dose rate. Uncertainties: Approximate measurement uncertainties
were ±2% for the administered activity and ±10 µSv/h (or 10%) for the maximum dose rate.

Table 2. Cumulative dose and administered activity during the imaging phase by dosimetry positions.

Session
Number

LH RH LN RN
RT

(A/B)
AD

(MBq)CD
(µSv)

MDR
(µSv/h)

CD
(µSv)

MDR
(µSv/h)

CD
(µSv)

MDR
(µSv/h)

CD
(µSv)

MDR
(µSv/h)

1 0.22 56.14 0.41 79.66 0.60 114.43 0.91 133.72 A 731.9
2 0.21 76.11 0.33 106.45 0.22 58.11 0.80 136.95 A 486.7
3 0.17 52.86 0.19 97.66 0.20 69.53 0.46 141.85 A 944.5
4 0.22 54.35 0.25 78.62 0.20 64.94 0.50 137.90 A 691.8
5 0.17 74.82 0.25 81.09 0.03 34.24 0.37 96.96 A 639.3
6 0.36 107.65 0.27 96.62 0.44 63.30 0.55 153.80 A 644.7
7 0.15 100.42 0.26 85.92 0.28 77.96 0.21 134.94 A 636.3
8 0.28 62.85 0.35 60.85 0.46 72.24 0.63 145.09 A 683.5
9 0.48 82.05 0.63 99.94 0.28 74.25 0.44 119.58 A 619.3

10 0.35 107.59 0.40 83.22 0.38 112.00 0.40 92.89 A 615.4
11 0.25 66.99 0.55 81.09 0.30 107.90 0.77 150.30 A 614.2
12 0.07 41.71 0.06 51.80 0.69 104.51 3.23 185.17 B 903.9
13 0.11 56.10 0.38 80.12 0.77 88.96 1.04 135.00 B 862.3

Mean 0.23 0.33 0.37 0.79 697.98
SD 0.10 0.14 0.20 0.71 121.40

LH, left head; RH, right head; LN, left neck; RN, right neck; RT, radiological technologist; AD, administered
activity; CD, cumulative dose; MDR, maximum dose rate. Uncertainties: Approximate measurement uncertainties
were ±2% for the administered activity and ±10 µSv/h (or 10%) for the maximum dose rate.

Figure 3. Cumulative dose per session at each dosimeter position. * p < 0.05, ** p < 0.001.
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The Friedman test revealed statistically significant differences among the two measure-
ment sites. Post hoc Nemenyi tests identified significant differences between the following
pairs: right and left neck, right neck and right head, right neck and left head, and left
and right head. Among all sites, the right neck exhibited the highest cumulative dose and
tended to show the highest peak dose rates.

3.2. Comparison of Radiation Exposure Between the Administration and Imaging Phases

Figure 4 shows the cumulative dose per session at each dosimeter position during
the radiopharmaceutical administration and imaging phases. No statistically significant
differences in cumulative dose were observed between the two phases at any of the four
measurement sites. Although the median dose at the neck positions was slightly higher
during the administration phase, this difference was not statistically significant.

  
(a) (b) 

 
(c) (d) 

Figure 4. Cumulative dose per session during the administration and imaging phases: (a) left head,
(b) right head, (c) left neck, (d) right neck.

3.3. Relationship Between Administered Activity and Exposure

Figure 5 illustrates the relationship between administered activity and cumulative
dose per session at each dosimeter position. At the neck (left/right), there appears to be a
slight tendency toward higher dose with higher activity, whereas the head positions show
a possible inverse tendency. However, explained variance is low (low R2); these patterns
should be regarded as suggestive rather than definitive.
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(a) (b) 

  
(c) (d) 

Figure 5. Correlation between administered activity and cumulative dose at each measurement site:
(a) left head, (b) right head, (c) left neck, (d) right neck.

3.4. Identification of Exposure-Causing Actions

To identify specific tasks contributing to radiation exposure, time-series dose rate
data were analyzed at one-second intervals for each measurement site. Figures 6 and 7
summarize the mean dose rate for each workflow step during the administration and
imaging phases, respectively. In the administration phase, a pronounced increase in dose
rate was observed during the injection step. In the imaging phase, elevated mean dose rates
were noted during patient positioning immediately before and after SPECT acquisition and
during electrocardiogram (ECG) lead placement/removal.

Figure 6. Mean dose rate by workflow step during the administration phase. Error bars indicate
95% confidence intervals across sessions.
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Figure 7. Mean dose rate by workflow step during the imaging phase. Error bars indicate
95% confidence intervals across sessions.

Figures 8 and 9 depict the sessions with the highest recorded peak dose rates during
the administration and imaging phases, respectively. In the administration phase (Figure 8),
no measurable radiation was detected before the radiopharmaceutical injection. A sharp
increase in dose rate—often exceeding 100 µSv/h—was consistently observed immedi-
ately after injection. Smaller peaks also occurred during post-injection handling, such as
treatment of the injection site.

In the imaging phase (Figure 9), dose rate peaks—often exceeding 100 µSv/h—were
most frequently recorded during electrocardiogram (ECG) lead placement and removal.
Additional peaks were observed during tasks requiring close patient assistance, such as
bed transfer and patient positioning, which involved proximity to the patient’s thoracoab-
dominal region. In contrast, no measurable radiation was detected during the SPECT
image acquisition.

Figure 8. Time-series dose rate data during an administration session with the highest peak. A
sharp increase was observed immediately after injection, with additional smaller peaks during
post-injection handling.
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Figure 9. Time-series dose rate data during an imaging session with the highest peak. Peaks occurred
mainly during ECG lead placement and removal, while no measurable radiation was detected during
SPECT acquisition.

4. Discussion
Radiation dose management is a critical concern across medical disciplines [56], in-

cluding diagnostic radiology [57,58], interventional cardiology [59–61], and radiation ther-
apy [62,63]. In nuclear medicine, where staff are exposed to gamma photons emitted from
unsealed radiopharmaceuticals, the energy characteristics differ significantly. Gamma
radiation has higher photon energy and deeper tissue penetration, rendering conventional
protective strategies less effective. Therefore, nuclear medicine requires different radiation
protection approaches, often involving alternative materials, shielding configurations, or
workflow designs tailored to its unique exposure conditions.

In this study, we employed a real-time dosimetry system capable of recording dose
rates on a second-by-second basis throughout nuclear medicine procedures. Unlike passive
dosimeters, which yield only cumulative retrospective data, real-time systems capture the
timing and context of specific tasks or movements associated with elevated exposure. In
the absence of real-time lens dosimeters at present, we have evaluated near-eye exposure
patterns using this device. This approach enables a more nuanced understanding of
occupational doses and supports the development of targeted safety interventions.

Our findings revealed significant variations in dose depending on the anatomical
site of measurement. The right neck consistently exhibited the highest cumulative and
peak doses, likely influenced by the technologists’ handedness, body orientation, and
procedural habits. These results indicate that individual working styles and laterality can
produce substantial asymmetry in exposure levels between the left and right sides of the
body. Notably, cumulative doses at head positions remained below 2 µSv across both the
administration and imaging phases combined. Given these findings, it is unlikely that
technologists performing nuclear medicine procedures would exceed the annual eye lens
dose limit of 20 mSv or the ICRP threshold of 0.5 Gy over 5 years. However, this does not
necessarily guarantee an accurate assessment of eye lens exposure. Dose estimates based
solely on trunk-mounted personal dosimeters may not fully reflect the actual dose received
by the eye lens. Therefore, careful interpretation of dose measurements is warranted,
particularly in clinical environments with complex spatial exposure patterns.
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Although cumulative doses did not differ significantly between the administration
and imaging phases overall, some imaging sessions were associated with higher expo-
sures. These cases typically involved patients requiring additional assistance owing to
their poor physical condition, resulting in prolonged close contact between staff and the
radiation source.

Analysis of the relationship between administered activity and radiation dose sug-
gested a weak positive tendency at the neck positions and a possible inverse tendency at
the head-level sites, with low R2 indicating limited explanatory power. The neck correlation
is expected, as this region is more frequently exposed during close-contact procedures
and typically lacks substantial shielding. In contrast, the negative correlation observed
at the head positions is likely incidental, possibly due to low-dose levels or variability
in positioning.

During injection procedures, technologists generally maintained a greater distance
from patients, especially at the head level, which likely contributed to reduced lens-region
exposure. Dose rate spikes during the injection phase were brief and typically occurred
immediately after radiopharmaceutical administration. The use of tungsten syringe shield-
ing effectively mitigated these peaks, reaffirming the importance of shielding practices and
proper user training.

The most prominent dose rate peaks during imaging were observed during the place-
ment and removal of ECG leads. These tasks require staff members to work in close
proximity to the patient’s upper abdomen and thoracic region. It is well-established that
approximately one hour after administration, 99mTc-MIBI accumulates most intensely in
the liver [64]. Previous studies have also shown that among various measurement positions
around the patient (head, chest, and foot), the chest region consistently yields the highest
occupational exposure [65]. Although close patient contact during ECG lead handling
is often unavoidable, our findings underscore the need to provide staff with feedback
regarding the elevated radiation exposure associated with this specific task. In contrast,
no measurable radiation dose was detected during imaging acquisition itself, likely owing
to the increased distance (~2 m) between staff and patient and the use of lead shielding
barriers. These observations emphasize how procedural planning and physical layout can
directly influence occupational dose levels.

While this study focused specifically on myocardial perfusion imaging using 99mTc,
the exposure patterns observed may be relevant to other nuclear medicine procedures.
However, further investigations across various radiopharmaceuticals and clinical work-
flows are necessary to validate the generalizability of our findings.

This study had certain limitations. The sample size was small, and the analysis was
limited to a single procedure type and radiopharmaceutical at a single institution. These
factors may limit the generalizability of the findings and should be considered when
interpreting the results. Nevertheless, these participants performed routine procedures
representative of daily clinical practice, and the exposure patterns observed—such as
elevated doses during radiopharmaceutical injection and ECG lead handling—are con-
sistent with tasks universally performed in nuclear medicine. Thus, while the present
results should be interpreted as preliminary, they provide important pilot data that can
guide the design of larger-scale studies in the future. In addition, the dosimeter used
in this study specifies a measurement uncertainty of the greater of ±10% or ±10 µSv/h.
Therefore, small differences or subtle trends at low dose rates should be interpreted with
caution. As the dosimeter was not designed for eye-lens dosimetry, precise lens dose Hp(3)
cannot be obtained. Results should be regarded as near-eye exposure trends, not direct
lens-dose estimates.
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Future studies should expand real-time dosimetry to include extremity dose monitor-
ing and examine a broader range of nuclear medicine procedures and isotopes. Real-time
monitoring can provide actionable feedback on task-specific exposure patterns and support
the development of evidence-based, procedure-tailored radiation protection strategies in
nuclear medicine.

5. Conclusions
This study employed real-time dosimetry with one-second interval measurements to

evaluate occupational radiation exposure during nuclear medicine procedures, offering
novel insights through time-series dose rate analysis. Our findings demonstrated that
the right neck received significantly higher radiation doses than other anatomical sites,
underscoring the limitations of conventional dosimeter placement. Although no significant
overall dose differences were observed between the imaging and injection phases, higher
exposures were occasionally recorded during imaging sessions requiring additional patient
assistance. The highest peak dose rates occurred during ECG lead placement and removal,
identifying these tasks as key contributors to staff exposure due to close contact with
the patient’s thoracic region. Maintaining appropriate distance from patients and using
protective equipment such as tungsten syringe shields proved effective in minimizing
exposure. These results support the integration of real-time dosimetry into routine clinical
workflows. By enabling task-specific exposure assessments, real-time systems can guide
the development of optimized shielding protocols, improved procedural designs, and
personalized radiation protection measures for nuclear medicine personnel.
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