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Abstract

This study presents a robust and extensible hybrid classification framework for accurately
detecting diseases in citrus leaves by integrating transfer learning-based deep learning mod-
els with classical machine learning techniques. Features were extracted using advanced pre-
trained architectures—DenseNet201, ResNet50, MobileNetV2, and EfficientNet-B0—and
refined via the minimum redundancy maximum relevance (mRMR) method to reduce
redundancy while maximizing discriminative power. These features were classified using
support vector machines (SVMs), ensemble bagged trees, k-nearest neighbors (kNNs), and
neural networks under stratified 10-fold cross-validation. On the lemon dataset, the best
configuration (DenseNet201 + SVM) achieved 94.1 ± 4.9% accuracy, 93.2 ± 5.7% F1 score,
and a balanced accuracy of 93.4 ± 6.0%, demonstrating strong and stable performance. To
assess external generalization, the same pipeline was applied to mango and pomegranate
leaves, achieving 100.0 ± 0.0% and 98.7 ± 1.5% accuracy, respectively—confirming the
model’s robustness across citrus and non-citrus domains. Beyond accuracy, lightweight
models such as EfficientNet-B0 and MobileNetV2 provided significantly higher throughput
and lower latency, underscoring their suitability for real-time agricultural applications.
These findings highlight the importance of combining deep representations with efficient
classical classifiers for precision agriculture, offering both high diagnostic accuracy and
practical deployability in field conditions.

Keywords: transfer learning; lemon leaf disease detection; mRMR feature selection; deep
learning models; SVM classification

1. Introduction
The rapid growth in global food demand has made improving agricultural productiv-

ity imperative [1]. Plant diseases are a major factor reducing yields and directly compro-
mising product quality. Early diagnosis is therefore essential to help the agricultural sector
address these challenges. Timely and accurate detection of leaf diseases not only improves
yields but also promotes environmental sustainability by reducing pesticide use [2]. Be-
cause traditional disease detection methods are generally slow, costly, and reliant on expert
knowledge, there is an increasing need for automated, rapid, and accurate approaches.
In this context, new-generation systems based on artificial intelligence offer effective and
reliable solutions for diagnosing agricultural diseases [3].

This study proposes an optimized hybrid framework that integrates deep learning
and classical machine learning techniques for the detection of plant leaf diseases. Features
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are first extracted from leaf images using advanced transfer learning-based deep learning
models such as EfficientNet-B0, DenseNet201, MobileNetV2, and ResNet50. These features
are then refined with the minimum redundancy maximum relevance (mRMR) method
to remove redundant information and retain the most discriminative attributes. Finally,
the selected features are classified using classical machine learning algorithms, including
support vector machines (SVMs), ensemble bagged trees, k-nearest neighbors (kNNs),
and neural networks. Rather than employing transformer-based, self-supervised, or fully
fine-tuned end-to-end architectures that demand extensive computational resources, the
proposed pipeline is optimized for accuracy–efficiency–deployability balance in resource-
constrained agricultural environments.

Initially optimized for lemon leaf disease detection, the proposed framework was fur-
ther validated on mango and pomegranate leaves to assess its cross-domain generalization
capability and robustness to interspecies variability. This multi-crop evaluation not only
strengthens the reliability of the results but also addresses a critical gap in the literature
regarding external validation in plant disease detection.

The contributions of this study can be summarized as follows:

• We present a robust, crop-specific yet generalizable framework that performs effec-
tively across lemon, mango, and pomegranate leaves.

• Integration of transfer learning and classical machine learning: pretrained mod-
els (DenseNet201, ResNet50, MobileNetV2, EfficientNet-B0) are integrated with
SVM, ensemble bagged trees, kNN, and neural network classifiers for efficient
disease detection.

• Feature selection via mRMR ensures compact, discriminative, and non-redundant
representations that enhance classifier performance.

• Stratified 10-fold cross-validation with per-fold feature selection is applied to eliminate
information leakage and improve statistical reliability.

• Class-wise confusion matrices, imbalance-aware metrics (balanced accuracy, MCC,
Cohen’s κ), and end-to-end latency measurements are reported (see Section 4, Table 5).

• High accuracy is achieved with DenseNet201 + SVM, reaching 94.1% for lemon, 100%
for mango, and 98.7% for pomegranate.

• Lightweight models, such as EfficientNet-B0 and MobileNetV2, demonstrate superior
speed and low computational cost, supporting practical field deployment.

• The study contributes an externally validated, reproducible, and efficient pipeline
applicable to multiple crop types.

These contributions demonstrate that the proposed method not only delivers high
diagnostic accuracy but also extends its utility beyond a single plant species, offering a
reproducible and computationally efficient tool for precision agriculture. The following
sections of the study are organized as follows: Section 2 presents a review of the related
literature, Section 3 describes the materials and methods, Section 4 discusses experimental
results, Section 5 provides an extended discussion, and Section 6 concludes the study.

2. Literature Review
Classifying plant leaves and detecting diseases is crucial for enhancing agricultural

productivity and preventing crop losses. Traditional methods are often time-consuming,
costly, and heavily dependent on expert knowledge. In recent years, deep learning and
machine learning techniques have emerged as powerful tools in agricultural data analytics,
providing innovative solutions to these challenges. Numerous studies have demonstrated
that transfer learning and pretrained models are highly effective for accurately diagnosing
plant leaf diseases. The literature thus reflects a growing trend toward hybrid frameworks
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that combine deep feature extraction with classical classifiers to improve both accuracy
and interpretability.

Yaman and Tuncer (2022) [4] achieved an accuracy of 99.58% in detecting diseases on
walnut leaves using deep feature extraction and machine learning. Features were extracted
with DarkNet53 and ResNet101 and classified using support vector machines (SVMs).
Similarly, Doğan and Türkoğlu (2018) compared several deep learning models—including
AlexNet, VGG16, VGG19, ResNet50, and GoogleNet—on approximately 7600 leaf images
and obtained the highest performance with AlexNet (99.72%) [5]. Esen and Onan (2022)
reviewed various deep learning-based plant disease detection techniques and emphasized
the transformative role of computer vision in precision agriculture [6].

Solanki et al. applied GoogleNet, ResNet, and SqueezeNet to detect and classify
lemon leaf diseases, achieving 97.66% accuracy with ResNet on a 609-image dataset [7].
Sujatha et al. developed an AI-based system for citrus disease classification using SVM,
random forest (RF), stochastic gradient descent (SGD), and deep CNNs such as Inception-
v3, VGG-16, and VGG-19, where VGG-16 reached 89.5% accuracy [8].

Idress et al. [9] focused on maize leaf disease detection by segmenting 600 PlantVillage
images with K-means and classifying statistical GLCM texture features using SVM and
ANN, achieving up to 92.7% accuracy. Irmak et al. [10] proposed a hybrid model that
combined local binary pattern (LBP) features with SVMs, kNNs, and extreme learning
machines, alongside a custom CNN for tomato leaves. Their CNN achieved superior
accuracies—99.5%, 98.5%, and 97.0%—in binary, six-class, and ten-class classification tasks,
demonstrating the robustness of CNN-based agricultural diagnosis systems.

Geetharamani and Arun Pandian [11] developed a nine-layer CNN for automatic dis-
ease classification across multiple crops, achieving 96.46% accuracy, while Milke et al. [12]
attained 97.9% accuracy in coffee wilt disease detection. Yu et al. [13] improved soybean
leaf classification (96.5%) by embedding attention mechanisms into ResNet18, illustrat-
ing the effectiveness of attention-based transfer learning. Momeny et al. [14] introduced
a “learning-to-augment” CNN for orange leaf disease and fruit maturity classification,
reaching 99.5% accuracy, and Faisal et al. [15] employed EfficientNetB3 for citrus diseases,
achieving 99.58%.

Other studies explored diverse plant species to validate model generalization.
Dhingra et al. [16] used neutrosophic segmentation and CNNs to detect basil leaf diseases
with 98.4% accuracy. Srivastava [17] evaluated five deep CNNs (VGG16, MobileNetV2,
Xception, InceptionV3, DenseNet121) across mango, guava, and other species, obtaining
up to 98.9% accuracy. Sofuoğlu et al. [18] designed a CNN architecture for potato leaf
disease detection that achieved 98.28% on real-world data. Lanjewar et al. [19] achieved
98% accuracy and a 0.99 ROC–AUC using ResNet152V2, InceptionResNetV2, DenseNet121,
and DenseNet201 on citrus datasets, while Kukadiya et al. [20] achieved 70% test accuracy
for castor oil plant disease detection using a CNN.

Overall, these studies highlight the potential of transfer learning and hybrid ap-
proaches for high-accuracy plant disease classification. However, most research has been
limited to single-species datasets without external validation, which constrains real-world
applicability. The present study addresses this limitation by evaluating the proposed frame-
work across lemon, mango, and pomegranate leaves. By validating on multiple species, this
work contributes to understanding cross-crop generalization and enhances the robustness
of AI-based agricultural disease detection systems.

3. Materials and Methods
In this study, we used datasets of healthy and diseased leaf images from the Healthy vs.

Diseased Leaf Image Dataset [21] available on the Kaggle platform. This publicly accessible
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collection contains approximately 3000 high-resolution (6000 × 4000) images from multiple
plant species. To evaluate both crop-specific performance and cross-domain generalization,
we utilized three subsets corresponding to lemon, mango, and pomegranate leaves.

The lemon subset comprises 236 images—159 healthy and 77 diseased leaves. Healthy
lemon leaves typically exhibit a vivid green color with smooth, shiny surfaces, while
diseased ones display yellowish spots, necrotic regions, and deformation. The mango
subset includes 435 images in total, with 265 diseased and 170 healthy samples. Mango
leaf diseases are visually characterized by brown lesions, curling, and chlorotic patches,
contrasting with the uniform green appearance of healthy samples. The pomegranate
subset contains 559 images, consisting of 272 diseased and 287 healthy leaves. Diseased
pomegranate leaves often show irregular yellowing, wilting, and scattered dark spots.
All images were preprocessed through resizing, normalization, and light augmentation
(illumination, hue, and blur perturbations) applied exclusively to the training folds during
stratified 10-fold cross-validation. This ensured a realistic assessment of model robustness
while avoiding data leakage between folds. Figure 1 illustrates the overall workflow
adopted for the plant leaf disease classification framework developed in this study.

 

Figure 1. Flow diagram of the applied model for lemon leaf disease classification. The diagram
shows the sequential steps: input images → resizing and normalization → feature extraction with
pretrained CNN backbones (EfficientNet-B0, DenseNet201, MobileNetV2, ResNet50) → mRMR
feature selection → classification with SVM, kNN, ensemble bagged trees, or neural network.

3.1. Feature Extraction

In the feature extraction phase, four deep learning-based models—EfficientNet-B0,
DenseNet201, MobileNetV2, and ResNet50—were employed:

• EfficientNet-B0 scales width, depth, and resolution in a balanced way to enhance
model efficiency [22]. It comprises 5.3 million parameters with an input size of
224 × 224 and uses MBConv blocks (based on MobileNetV2), achieving both low
memory consumption and high accuracy.
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• DenseNet201 is based on dense connections, allowing each layer to reuse outputs
from all preceding layers [23]. With 201 layers and 20 million parameters, this design
improves parameter efficiency and gradient propagation.

• MobileNetV2 is optimized for resource-constrained platforms such as mobile devices [24].
With only 3.4 million parameters, it employs inverted residual blocks and depthwise
separable convolutions to reduce computational cost while maintaining accuracy.

• ResNet50 [25] uses residual connections to mitigate the vanishing gradient problem.
It has 50 layers and approximately 25.6 million parameters with an input size of
224 × 224, and it is widely used for high-accuracy applications.

Table 1 summarizes the technical characteristics of these models.

Table 1. Transfer learning models’ parameters (the symbol ‘#’ denotes the number of items).

Model # of Layers # of Total Parameters Resolution

EfficientNet-B0 7–8 5.3 million 224 × 224

DenseNet201 201 20 million 224 × 224

MobileNetV2 53 3.4 million 224 × 224

ResNet50 50 25.6 million 224 × 224

Feature extraction with these models yielded multiple feature sets from the leaf images.
We then applied the minimum redundancy maximum relevance (mRMR) method to select
the most informative, least redundant features.

All images were resized to 224× 224 and normalized using ImageNet mean/std; unless ex-
plicitly stated, the primary experiments used no augmentation (CONFIG.AUGMENT = “none”).
The pipeline extracts backbone features with the classifier head removed and applies global
average pooling when needed; the resulting feature sizes are EfficientNet-B0: 1280, Mo-
bileNetV2: 1280, DenseNet201: 1920, and ResNet50: 2048. Feature vectors are standardized
with StandardScaler before selection/classification.

mRMR is applied with a fixed target dimensionality of k = 256 features (CON-
FIG.NUM_FEATURES = 256) rather than an inner search. For completeness, the
code evaluates both settings—with feature selection (FS) and without (NFS)—for every
backbone–classifier pair. Although the code supports a light augmentation mode (bright-
ness/contrast/hue jitter, Gaussian blur, horizontal flip), it is disabled in this configuration;
robustness analyses can be enabled by setting CONFIG[“AUGMENT”] = “light”.

3.2. Feature Selection with mRMR Method

mRMR is a method used to select the most informative feature set by examining
the relationships of features in a given dataset with target classes. mRMR is designed to
provide both minimum redundancy and maximum relevance.

The pseudocode format of mRMR is provided in Table 2 below.
In our experiments, all preprocessing (standardization) and mRMR selection are

performed inside each training fold only; validation/test folds are never used for fitting
scalers or selectors. Stratified 10-fold CV is used. Unlike earlier drafts, the current code
does not run an inner hyperparameter search for k or SVM; instead, it uses fixed settings
(see Section 3.3). Metrics are reported as mean ± SD across the 10 outer folds.



Appl. Sci. 2025, 15, 10988 6 of 19

Table 2. Pseudocode of mRMR method.

Algorithm mRMR
Input:
D = dataset with features and target variable
k = number of features to select
Output:
S = selected feature set
1. Initialize S as an empty set
2. Calculate relevance for each feature f_i in D with respect to target C:

for each feature f_i in D:
relevances[f_i] = calculate_mutual_information(f_i, C)

3. While |S| < k:
a. For each feature f_j in D\S:

- Calculate the redundancy of f_j with respect to the features already in S:
redundancy[f_j] = average(mutual_information(f_j, f_i)) for all f_i in S

b. Select feature f* that maximizes the mRMR criterion:
f* = argmax_{f_j} (relevances[f_j]—redundancy[f_j])

c. Add f* to the selected feature set S:
S = S ∪ {f*}

4. Return S

3.3. Classification Methods

After feature selection, the resulting features were classified using k-nearest neighbors
(kNNs), support vector machines (SVMs), random forest (as the “Ensemble” baseline), and
a feedforward neural network (MLP):

• kNN [26]: Euclidean kNN with k = 7 and distance weighting (weights = “distance”).
• SVM [27]: RBF kernel with fixed hyperparameters C = 2.0, gamma = “scale”, and

probability outputs enabled.
• Ensemble = random forest [28]: n_estimators = 300, max_features = “sqrt”, n_jobs = −1.
• Neural network (MLP) [29]: two hidden layers (256, 64), ReLU activations,

alpha = 1 × 10−3 max_iter = 200, early_stopping = True.

All classifiers are trained on standardized features; each backbone–classifier is run
with and without mRMR (FS/NFS). Note that decision trees are not used in this code path.

3.4. Performance Metrics

Various performance metrics are used to evaluate the success of the model. These
metrics show how effective the classification model is and the reliability of its results. In
our study, accuracy, precision, recall and F1 score metrics were used. TP: true positive, TN:
true negative, FP: false positive, FN: false negative in the metric formulas [30,31].

Accuracy =
TP + TN

(TP + TN + FP + FN)
× 100 (1)

Precision =
TP

(TP + FP)
× 100 (2)

Recall =
TP

(TP + FN)
× 100 (3)

f1 − Score =
Precision × Recall
(Precision + Recall)

× 100 (4)

Accuracy is a performance metric that shows how accurately the model predicts in
classification problems. It expresses the ratio of correctly classified examples to the total
number of examples. Precision shows how many of the examples the model predicted
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as positive were actually positive. High precision shows that the model minimizes false
positive predictions. Recall shows how many of the true positive examples were correctly
predicted as positive. High recall shows the model’s ability to catch true positives. F1
score [32] aims to provide a balance between precision and recall. It is an effective metric
especially in imbalanced datasets. In addition, the code computes balanced accuracy,
Matthews correlation coefficient (MCC), and Cohen’s κ, as well as ROC-AUC and class-
wise AUPRC; fold-wise scores are averaged (mean ± SD).

For visualization and operating point analysis, the code plots ROC curves for both
classes (diseased and healthy) and marks the Youden-J optimum (TPR—FPR) for each;
pooled confusion matrices are also produced by concatenating predictions across folds for
the top-performing configurations.

Evaluation protocol: we use stratified 10-fold cross-validation. For each fold,
scalers/selectors/classifiers are fit on the training split only, predictions are made on
the held-out split, and metrics are recorded. Final results are reported as mean ± SD across
folds. The primary configuration uses no augmentation; an optional light-augmentation
mode can be enabled for robustness checks without altering the evaluation protocol.

4. Results
In this study, the features extracted from four different deep learning models were

refined using the mRMR feature selection method and then classified with multiple al-
gorithms to obtain performance metrics. Table 3 presents the comparative results for
EfficientNet-B0, DenseNet201, ResNet50, and MobileNetV2, evaluated both with feature
selection (FS) and without feature selection (NFS) across four key performance indicators:
accuracy, precision, recall, and F1 score.

The results indicate that all models achieved consistently high performance, showing
no statistically significant drop between architectures. However, applying feature selection
(FS) generally led to slight yet consistent improvements across all metrics, confirming that
eliminating redundant or less informative features enhances overall model generalization
and computational efficiency. In particular, higher accuracy and F1 score values under FS
conditions demonstrate that the models achieve better balance between correct classification
and precision–recall trade-off.

The close similarity between precision and recall metrics further indicates a well-
balanced classification behavior and absence of class imbalance issues. Moreover, the
parallel trend observed in F1 score supports that both positive class detection (recall) and
false positive control (precision) were maintained effectively.

Overall, all models yielded high-accuracy results (typically within the 80–100% range),
with EfficientNet-B0 showing the most consistent and stable performance under FS. These
findings confirm that mRMR-based feature selection provides a valuable preprocessing
step that improves both accuracy and generalization capability in deep learning-based leaf
disease detection pipelines.

Figure 2 summarizes the comparative results of all classifiers and feature extractors.
The findings show that applying feature selection (FS) generally improves classification sta-
bility and accuracy across most models. Among all configurations, the DenseNet201 + SVM
(NFS) achieved the highest overall performance, with accuracy = 94.1%, precision = 94.5%,
recall = 93.4%, and F1 score = 93.2%. This confirms the strong synergy between the
SVM’s discriminative capability and the DenseNet201 architecture’s ability to extract
rich and distinctive features. The DenseNet201 + SVM (FS) model followed closely with
slightly lower but still high results (accuracy = 91.6%, F1 = 90.4%), showing that fea-
ture selection may slightly reduce performance when the extracted features are already
highly discriminative. For EfficientNet-B0, the SVM classifier with FS achieved compet-
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itive results (accuracy = 86.9%, F1 = 85.4%), demonstrating that compact and efficient
models can also perform robustly with appropriate feature selection. Among lighter
models, MobileNetV2 + SVM (FS) achieved accuracy = 87.0% and F1 = 85.2%, confirming
its effectiveness under limited computational cost. The ResNet50 + KNN (NFS) config-
uration yielded the lowest accuracy (72.5%), whereas applying FS improved its accu-
racy to 81.0%, illustrating the importance of eliminating redundant or irrelevant features.
Overall, DenseNet201 and EfficientNet-B0 emerged as the most reliable feature extrac-
tors. These findings highlight that combining deep feature extraction with an appropriate
classifier—particularly SVM—significantly enhances performance and that feature selec-
tion provides additional benefits in cases with redundant information.

Figure 2. Average performance metrics (accuracy, precision, recall, and F1 score) across 10-fold
cross-validation for all feature extractors and classifiers. Higher bars indicate better performance;
FS = feature selection applied, NFS = no feature selection.

Table 3. Performance metric results according to the methods that achieved the highest success in
each classifier (No augmentation).

Classifier Feature Extraction Method Feature Selection Accuracy Precision Recall F1 Score

Ensemble DenseNet201 Yes 89.0 ± 7.4 89.6 ± 8.8 85.7 ± 9.0 86.9 ± 8.7

KNN DenseNet201 Yes 87.0 ± 8.6 90.7 ± 8.4 80.6 ± 12.3 82.4 ± 12.9

NN DenseNet201 Yes 90.7 ± 7.8 90.0 ± 8.5 89.3 ± 9.6 89.3 ± 9.0

SVM DenseNet201 No 94.1 ± 4.9 94.5 ± 5.2 93.4 ± 6.0 93.2 ± 5.7

Figure 3 visualizes the performance metrics that show the highest success achieved by
each classifier. This graph, created based on the data presented in Table 3, facilitates the com-
parison of different classifiers in terms of accuracy, precision, recall, and F1 score metrics.

When Table 3 and Figure 3 are evaluated together, the SVM classifier without feature
selection (NFS) stands out as the model achieving the highest overall performance, with an
accuracy of 94.1%, precision of 94.5%, recall of 93.4%, and F1 score of 93.2%.

This demonstrates the strong discriminative capability of SVM when combined
with the rich feature representations extracted by DenseNet201. Among the other clas-
sifiers, the neural network (FS) configuration also achieved a competitive performance
(accuracy = 90.7%), followed by the ensemble (FS) and kNN (FS) models, which obtained
89% and 87% accuracy, respectively. These results reveal that while feature selection (indi-
cated as “Yes” in Table 3) often enhances performance consistency, in some cases—such as
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DenseNet201 + SVM—the exclusion of feature selection can yield slightly superior results
due to the inherently discriminative nature of the extracted features.

Figure 3. Comparison of the highest performance metrics achieved by each classifier.(kNN, SVM,
ensemble bagged trees, neural network) using the optimal feature extractor/selection combination
identified in the study.

Overall, the findings indicate that the compatibility between the classifier type and
the feature extraction method plays a decisive role in optimizing model performance and
achieving balanced outcomes across different evaluation metrics.

Table 4 and Figure 4 summarize the performance metrics (accuracy, precision, recall,
and F1 score) achieved by the best-performing classifiers for each feature extraction method
(DenseNet201, EfficientNet-B0, MobileNetV2, and ResNet50). The results also illustrate
the influence of feature selection (FS) on classification performance. The SVM classifier
with DenseNet201 features (NFS) achieved the highest overall performance among all
configurations, with accuracy = 94.1 ± 4.9%, precision = 94.5 ± 5.2%, recall = 93.4 ± 6.0%,
and F1 score = 93.2 ± 5.7%. This confirms the strong synergy between the discriminative
nature of SVM and the high-quality, deeply extracted features of DenseNet201. The SVM
with EfficientNet-B0 features (NFS) followed, showing competitive performance (accuracy
= 88.2 ± 5.4%, F1 = 86.7 ± 6.1%) and highlighting EfficientNet-B0’s efficiency with fewer
parameters. Similarly, the SVM with MobileNetV2 features (FS) achieved robust yet
moderate results (accuracy = 87.0 ± 7.7%, F1 = 85.2 ± 8.6%), indicating that feature selection
can enhance compact models’ performance stability. The ensemble classifier with ResNet50
features (FS) also performed well (accuracy = 86.9 ± 7.0%, F1 = 83.7 ± 9.3%), suggesting that
feature selection supports ensemble learning in handling diverse representations. Overall,
DenseNet201 (NFS) provided the highest accuracy and consistency, while EfficientNet-B0
(NFS) and MobileNetV2 (FS) offered a balance between performance and efficiency. Feature
selection (FS) generally improved classification stability and helped maintain balanced
performance across precision, recall, and F1 metrics. These findings emphasize that the
choice of feature extractor and the use of FS must be tailored to the classifier type—as the
combination of DenseNet201 and SVM achieved the highest performance, while lightweight
extractors like EfficientNet-B0 and MobileNetV2 offered competitive results with smaller
computational demands.

Beyond the primary no-augmentation evaluation, we also performed a matched anal-
ysis with realistic train-fold augmentations (illumination, hue, mild blur) to approximate
field conditions.
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Table 4. Classifiers achieving the highest performance for each feature extraction method.

Classifier Feature Extraction Method Feature Selection Accuracy Precision Recall F1 Score

SVM DenseNet201 No 94.1 ± 4.9 94.5 ± 5.2 93.4 ± 6.0 93.2 ± 5.7

SVM EfficientNet_B0 No 88.2 ± 5.4 86.9 ± 6.6 86.9 ± 5.6 86.7 ± 6.1

SVM MobileNet_V2 Yes 87.0 ± 7.7 86.4 ± 9.5 84.8 ± 8.1 85.2 ± 8.6

Ensemble ResNet50 Yes 86.9 ± 7.0 87.7 ± 7.8 82.5 ± 9.9 83.7 ± 9.3

 

Figure 4. Highest performance values (accuracy, precision, recall, and F1 score) obtained for each
feature extraction model (EfficientNet-B0, DenseNet201, ResNet50, MobileNetV2) when combined
with the best-performing classifier and feature selection settings.

Figure 5 depicts the ROC curves for the top configuration, showing the trade-off
between true positive rate (sensitivity) and false positive rate. Both classes achieve
AUC = 0.9721, placing the operating points near the upper-left region—i.e., high sensi-
tivity at low false positive rates. These results are consistent with Tables 3 and 4, where
DenseNet201 + SVM (NFS) yields the highest overall accuracy and F1 score. Notably,
while feature selection often stabilizes performance for lighter extractors, the best model
here did not use feature selection, suggesting DenseNet201 features are already highly
discriminative and well exploited by SVM. Overall, the ROC shape and high AUC confirm
the reliability of this pipeline for disease/health classification.

Table 5 reports the end-to-end latency, including both feature extraction and clas-
sification, measured on a single workstation equipped with Windows 11, Intel i9 CPU
(2.00 GHz), NVIDIA RTX A4000 GPU, and 128 GB RAM. All timings represent the average
over ten cross-validation folds with fixed random seeds. The results clearly demonstrate the
influence of backbone architecture and classifier type on computational efficiency. Among
all tested combinations, EfficientNet-B0 paired with an MLP classifier achieved the highest
throughput, exceeding 133 k observations per second with a training time of approximately
0.05 s, followed closely by ResNet50 and DenseNet201 under the same configuration. These
results highlight the remarkable inference efficiency of lightweight convolutional backbones
when combined with GPU-accelerated matrix operations in PyTorch 2.2.1. In contrast, SVM-
based models—particularly with DenseNet201 and EfficientNet-B0—exhibited strong pre-
dictive stability but lower throughput (≈50 k obs/s), reflecting the inherently CPU-bound
nature of kernel methods. KNN classifiers achieved minimal training cost (≈0.0005 s) but
had slower prediction rates due to distance computations over high-dimensional features.
Ensemble methods (bagged trees) produced the slowest inference speeds (<1 k obs/s),
indicating that their complexity and multiple estimators make them less suitable for real-
time applications.
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Figure 5. Receiver operating characteristic (ROC) curve of the best-performing pipeline (DenseNet201
feature extraction + SVM classifier, without feature selection). Curves for the healthy and dis-
eased classes are shown; the area under the curve (AUC = 0.9721 for both classes) indicates
excellent discrimination.

Overall, EfficientNet-B0 and MobileNetV2 emerge as the most computationally ef-
ficient feature extractors, offering an excellent balance between accuracy, latency, and
scalability. For lightweight or embedded deployments, these models are recommended.
DenseNet201 and ResNet50, while slower, provide higher representational capacity and
are thus better suited for offline or research-intensive analysis. These findings reinforce that
optimal model selection should consider both predictive performance and computational
efficiency in practical precision agriculture applications.

Table 6 presents the confusion matrices corresponding to the best-performing models.
These matrices illustrate the detailed distribution of true and false predictions between the
healthy and diseased leaf classes, providing an interpretable comparison of classification
behavior. Among all models, SVM with DenseNet201 (without feature selection) achieved
the highest overall accuracy, correctly classifying 70 out of 77 diseased and 152 out of
159 healthy samples. The feature selection variant (SVM + DenseNet201_FS) showed
slightly lower performance, correctly identifying 68 diseased and 150 healthy instances,
indicating that the mRMR-based selection slightly reduced discriminative capacity for this
model. The Neural Network + DenseNet201_FS model demonstrated competitive results,
correctly classifying 149 healthy and 65 diseased samples, showing moderate confusion
between the two classes. Meanwhile, the Ensemble + DenseNet201_FS configuration
exhibited the lowest precision for diseased samples (19 misclassified cases), reflecting the
relatively weaker generalization ability of ensemble methods under limited data conditions.
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Table 5. Prediction speeds and training times of the methods.

Classifier Feature Extraction Method Prediction Speed (obs/s) Training Time (s)

NN EfficientNet_B0 133,334.5 0.047989

NN ResNet50 117,738.9 0.06018

NN DenseNet201 115,762.5 0.054778

NN MobileNet_V2 100,924.8 0.059917

SVM DenseNet201 52,932.03 0.011532

SVM EfficientNet_B0 48,966.56 0.011261

SVM ResNet50 48,877.45 0.011763

NN MobileNet_V2 46,441.04 0.186943

NN EfficientNet_B0 46,128.47 0.220321

SVM MobileNet_V2 41,268.41 0.013854

NN DenseNet201 34,523.95 0.280985

NN ResNet50 32,995.01 0.291544

KNN ResNet50 30,419.99 0.000512

KNN MobileNet_V2 27,830.25 0.000534

KNN DenseNet201 26,987.18 0.000526

SVM MobileNet_V2 12,456.73 0.053279

SVM EfficientNet_B0 12,082.26 0.043895

KNN EfficientNet_B0 9961.752 0.000441

SVM DenseNet201 8788.179 0.080483

KNN MobileNet_V2 8542.679 0.000632

KNN ResNet50 6348.785 0.000769

KNN DenseNet201 6328.447 0.000569

SVM ResNet50 5953.234 0.095553

Ensemble ResNet50 724.9433 0.276739

Ensemble ResNet50 634.3139 0.316513

Table 6. Confusion matrices of the best-performing results.

SVM DenseNet201_NFS SVM DenseNet201_FS

Predicted Class

Healthy Diseased Healthy Diseased

Actual Class
Diseased 70 7

Actual Class
Healthy 68 9

Healthy 7 152 Diseased 9 150

Neural Network DenseNet201_FS Ensemble DenseNet201_FS

Predicted Class

Healthy Diseased Healthy Diseased

Actual Class
Healthy 65 12

Actual Class
Healthy 58 19

Diseased 10 149 Diseased 7 152

Overall, these results confirm that SVM combined with DenseNet201 without feature
selection offers the most reliable balance between sensitivity and specificity, making it
the preferred choice for accurate disease detection. Neural networks provide a robust
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alternative, while ensemble-based approaches may require further optimization or larger
datasets to reach comparable consistency.

Table 7 summarizes the average performance metrics (mean ± SD across 10 folds)
obtained from the augmented lemon-leaf dataset, including both standard and imbalance-
aware indices. Along with accuracy, precision, recall, and F1 score, it also reports balanced
accuracy, Matthews correlation coefficient (MCC), and Cohen’s κ, offering a comprehensive
evaluation of classifier reliability under class imbalance. Across all models, DenseNet201
combined with SVM achieved the best overall performance, yielding 94.1 ± 4.9% accuracy,
94.5 ± 5.2% precision, and 93.4 ± 6.0% recall, together with the highest MCC (0.878 ± 0.10)
and κ (0.866 ± 0.11). This configuration demonstrates exceptional robustness and consis-
tency across folds, confirming the effectiveness of DenseNet201’s deep feature representa-
tion and SVM’s discriminative decision boundaries. The DenseNet201 + NN (FS) model
followed closely, showing high accuracy (90.7 ± 7.8%) and balanced performance across all
metrics, indicating that mRMR-based feature selection can slightly enhance generalization
for neural classifiers. In contrast, EfficientNet-B0 and MobileNetV2 yielded lower but more
computationally efficient results (≈85–88% accuracy), making them suitable for lightweight,
real-time applications. ResNet50-based models performed moderately, showing increased
variability across folds—particularly for KNN and NN combinations—suggesting sensitiv-
ity to data imbalance and augmentation diversity.

Table 7. Mean across 10 folds for each backbone–classifier combination. In addition to accuracy,
precision, recall, and F1 score, we report imbalance-aware indices: balanced accuracy, Matthews
correlation coefficient (MCC), and Cohen’s κ computed from fold-aggregated confusion matrices.
Bold values indicate the best performance per column.

Model Classifier Feature
Selected

Accuracy
(%)

Precision
(%) Recall (%) F1 (%) Balanced

Accuracy MCC Cohen’s κ

DenseNet201 Ensemble No 87.8 ± 7.8 88.4 ± 9.3 83.8 ± 10.2 85.0 ± 10.0 83.8 ± 10.2 0.719 ± 0.189 0.704 ± 0.194

DenseNet201 Ensemble Yes 89.0 ± 7.4 89.6 ± 8.8 85.7 ± 9.0 86.9 ± 8.7 85.7 ± 9.0 0.751 ± 0.173 0.740 ± 0.173

DenseNet201 KNN No 83.6 ± 7.6 90.0 ± 3.6 75.6 ± 11.5 76.9 ± 12.3 75.6 ± 11.5 0.629 ± 0.173 0.566 ± 0.220

DenseNet201 KNN Yes 87.0 ± 8.6 90.7 ± 8.4 80.6 ± 12.3 82.4 ± 12.9 80.6 ± 12.3 0.700 ± 0.213 0.663 ± 0.238

DenseNet201 NN No 87.3 ± 7.7 87.5 ± 8.8 85.6 ± 9.4 85.2 ± 9.1 85.6 ± 9.4 0.729 ± 0.173 0.710 ± 0.180

DenseNet201 NN Yes 90.7 ± 7.8 90.0 ± 8.5 89.3 ± 9.6 89.3 ± 9.0 89.3 ± 9.6 0.792 ± 0.178 0.786 ± 0.180

DenseNet201 SVM No 94.1 ± 4.9 94.5 ± 5.2 93.4 ± 6.0 93.2 ± 5.7 93.4 ± 6.0 0.878 ± 0.101 0.866 ± 0.112

DenseNet201 SVM Yes 92.4 ± 8.7 91.8 ± 9.5 91.6 ± 10.0 91.4 ± 9.7 91.6 ± 10.0 0.833 ± 0.193 0.829 ± 0.193

EfficientNet_B0 Ensemble No 82.7 ± 6.3 83.6 ± 7.7 77.5 ± 8.3 78.5 ± 8.1 77.5 ± 8.3 0.603 ± 0.143 0.578 ± 0.154

EfficientNet_B0 Ensemble Yes 84.4 ± 7.0 84.9 ± 8.0 80.2 ± 8.1 81.1 ± 8.4 80.2 ± 8.1 0.647 ± 0.153 0.629 ± 0.161

EfficientNet_B0 KNN No 78.5 ± 7.6 83.2 ± 10.8 68.4 ± 11.1 68.8 ± 13.0 68.4 ± 11.1 0.482 ± 0.209 0.416 ± 0.229

EfficientNet_B0 KNN Yes 84.4 ± 4.2 87.8 ± 4.8 77.6 ± 6.3 79.7 ± 6.0 77.6 ± 6.3 0.643 ± 0.099 0.605 ± 0.113

EfficientNet_B0 NN No 85.1 ± 8.5 82.6 ± 12.3 82.4 ± 12.6 82.0 ± 12.9 82.4 ± 12.6 0.649 ± 0.247 0.644 ± 0.246

EfficientNet_B0 NN Yes 85.2 ± 7.3 85.3 ± 9.0 81.3 ± 9.7 82.1 ± 9.2 81.3 ± 9.7 0.663 ± 0.178 0.647 ± 0.180

EfficientNet_B0 SVM No 88.2 ± 5.4 86.9 ± 6.6 86.9 ± 5.6 86.7 ± 6.1 86.9 ± 5.6 0.738 ± 0.121 0.735 ± 0.121

EfficientNet_B0 SVM Yes 88.2 ± 7.2 87.7 ± 8.6 86.6 ± 7.7 86.7 ± 7.7 86.6 ± 7.7 0.742 ± 0.157 0.734 ± 0.155

MobileNet_V2 Ensemble No 84.8 ± 4.7 86.8 ± 6.3 79.3 ± 6.5 81.0 ± 6.0 79.3 ± 6.5 0.655 ± 0.113 0.627 ± 0.117

MobileNet_V2 Ensemble Yes 86.1 ± 7.3 87.2 ± 9.2 81.9 ± 8.3 83.3 ± 8.4 81.9 ± 8.3 0.687 ± 0.166 0.670 ± 0.166

MobileNet_V2 KNN No 78.5 ± 7.1 85.9 ± 6.3 67.8 ± 10.6 67.8 ± 13.4 67.8 ± 10.6 0.487 ± 0.186 0.408 ± 0.224

MobileNet_V2 KNN Yes 80.1 ± 7.1 87.7 ± 5.0 69.9 ± 10.9 70.5 ± 13.1 69.9 ± 10.9 0.532 ± 0.183 0.454 ± 0.224

MobileNet_V2 NN No 83.2 ± 6.4 82.0 ± 7.0 79.4 ± 8.7 79.8 ± 8.3 79.4 ± 8.7 0.612 ± 0.154 0.601 ± 0.161

MobileNet_V2 NN Yes 82.3 ± 6.7 81.6 ± 7.1 78.4 ± 9.4 78.7 ± 8.6 78.4 ± 9.4 0.595 ± 0.155 0.580 ± 0.165

MobileNet_V2 SVM No 85.6 ± 5.6 84.9 ± 7.0 83.3 ± 7.1 83.3 ± 6.6 83.3 ± 7.1 0.680 ± 0.132 0.669 ± 0.130

MobileNet_V2 SVM Yes 87.0 ± 7.7 86.4 ± 9.5 84.8 ± 8.1 85.2 ± 8.6 84.8 ± 8.1 0.711 ± 0.173 0.704 ± 0.171
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Table 7. Cont.

Model Classifier Feature
Selected

Accuracy
(%)

Precision
(%) Recall (%) F1 (%) Balanced

Accuracy MCC Cohen’s κ

ResNet50 Ensemble No 84.8 ± 8.9 87.9 ± 9.4 78.4 ± 12.7 79.8 ± 12.6 78.4 ± 12.7 0.650 ± 0.217 0.611 ± 0.238

ResNet50 Ensemble Yes 86.9 ± 7.0 87.7 ± 7.8 82.5 ± 9.9 83.7 ± 9.3 82.5 ± 9.9 0.697 ± 0.172 0.679 ± 0.181

ResNet50 KNN No 72.5 ± 7.1 63.6 ± 26.3 59.1 ± 11.3 55.0 ± 15.9 59.1 ± 11.3 0.250 ± 0.278 0.207 ± 0.248

ResNet50 KNN Yes 80.6 ± 8.5 79.2 ± 18.6 72.7 ± 12.4 72.9 ± 15.2 72.7 ± 12.4 0.525 ± 0.255 0.492 ± 0.253

ResNet50 NN No 78.8 ± 8.1 78.2 ± 10.2 73.8 ± 9.6 74.4 ± 9.3 73.8 ± 9.6 0.515 ± 0.186 0.496 ± 0.183

ResNet50 NN Yes 85.7 ± 9.1 86.8 ± 9.4 80.6 ± 12.4 81.7 ± 12.5 80.6 ± 12.4 0.666 ± 0.217 0.644 ± 0.237

ResNet50 SVM No 78.8 ± 5.9 77.1 ± 5.9 79.4 ± 6.3 77.2 ± 6.2 79.4 ± 6.3 0.564 ± 0.120 0.550 ± 0.121

ResNet50 SVM Yes 80.5 ± 8.0 78.2 ± 8.6 79.0 ± 9.8 78.1 ± 9.2 79.0 ± 9.8 0.571 ± 0.183 0.565 ± 0.183

In line with Tables 3 and 7, augmentation tended to increase recall with only minor
changes to overall ranking and throughput trends (EfficientNet-B0/MobileNetV2 > ResNet50/
DenseNet201 in speed). This supports the deployment-oriented choice of lighter backbones
when latency or energy budgets are tight, while DenseNet201 + SVM remains the accuracy
leader in our setting (accuracy, 94.1%; precision, 94.5%; recall, 93.4%; F1 score, 93.2% under
no augmentation and no feature selection).

In Figure 6, each triplet shows the original image (left), model decision (middle), and
the overlaid activation map (right). Top row: correctly classified diseased and healthy
leaves; bottom row: typical failure cases (false positive and false negative). The model
consistently attends to symptomatic regions (chlorotic/necrotic patches and vein-bounded
lesions) rather than the background. Misses usually occur under low-contrast lesions
or strong illumination heterogeneity. Figure 6 shows that the model focuses its decision
making on symptom areas on the leaf: lesion peripheries, interveinal chlorosis, and irregular
color changes are marked by high activation. In correctly classified samples, activations
coincide with the symptom, while in misclassifications, most activations shift to low-
contrast lesions, reflections, or areas of heterogeneous illumination. This observation
qualitatively supports the contribution of field condition variations (illumination, tone,
light blur) to errors discussed in Section 5.

Figure 6. Representative feature activation heatmaps from the DenseNet201 + mRMR + SVM pipeline.
The ✓symbol denotes correctly classified samples (TP, TN), whereas arrows (→) indicate the direction
of errors (FP, FN).
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Overall, these findings reinforce the advantage of DenseNet201 + SVM as the most
accurate and imbalance-resilient combination, while EfficientNet-B0 and MobileNetV2
remain preferable for low-latency, resource-constrained implementations. The use of light
augmentations generally improved recall—especially for diseased leaves—by enhancing ro-
bustness to illumination and blur variations, with only minor precision trade-offs observed
in lighter backbones.

External/Cross-Dataset Validation

To quantitatively assess generalization under domain shift, we replicated our pipeline
on two additional leaf datasets (mango and pomegranate) using the same 10-fold CV
protocol. When we fix the configuration to DenseNet201 + SVM (no feature selection) across
all datasets, performance remains consistently high (Table 8a): 94.1 ± 4.9%/93.2 ± 5.7%
F1 on lemon, 100.0 ± 0.0% on mango, and 98.7 ± 1.5% on pomegranate. The per-dataset
best configurations (Table 8b) confirm that DenseNet201 + SVM is also the top performer
in mango and pomegranate. These results indicate that our feature-extraction-plus-SVM
pipeline generalizes beyond a single species/source and is robust to moderate appearance
changes (texture, hue, illumination) encountered across datasets.

Table 8. (a). Cross-dataset replication with a fixed configuration. Configuration: DenseNet201 + SVM
(feature selection: no). Values are mean ± SD over 10 folds. (b). Best per-dataset configuration.
Configurations providing the highest F1 (or equivalent) in each dataset. Mean ± SD (10-fold).

(a)

Dataset Accuracy (%) Precision
(%) Recall (%) F1 (%) Balanced

Accuracy (%) MCC κ

Lemon 94.1 ± 4.9 94.5 ± 5.2 93.4 ± 6.0 93.2 ± 5.7 93.4 ± 6.0 0.878 ± 0.101 0.866 ± 0.112

Mango 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 1.000 ± 0.000 1.000 ± 0.000

Pomegranate 98.7 ± 1.5 98.8 ± 1.4 98.7 ± 1.5 98.7 ± 1.5 98.7 ± 1.5 0.976 ± 0.029 0.975 ± 0.029

(b)

Dataset Accuracy (%) Precision
(%) Recall (%) F1 (%) Balanced

Accuracy (%) MCC κ

Lemon DenseNet201 + SVM (No FS) 94.1 ± 4.9 93.2 ± 5.7 93.4 ± 6.0 0.878 ± 0.101 0.866 ± 0.112 Lemon

Mango DenseNet201 + SVM (No FS)
(=also Ensemble/KNN ~100%) 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 1.000 ± 0.000 1.000 ± 0.000 Mango

Pomegranate DenseNet201 + SVM (No FS) 98.7 ± 1.5 98.7 ± 1.5 98.7 ± 1.5 0.976 ± 0.029 0.975 ± 0.029 Pomegranate

5. Discussion
The findings of this study confirm the effectiveness of integrating transfer learning-

based feature extractors with classical machine learning classifiers for accurate and compu-
tationally efficient plant disease detection. Using pretrained CNN backbones (DenseNet201,
ResNet50, MobileNetV2, and EfficientNet-B0) combined with mRMR feature selection and
traditional classifiers (SVM, NN, kNN, ensemble), the proposed framework achieved strong
and reproducible results in distinguishing healthy and diseased lemon leaves. Among all
configurations, DenseNet201 + SVM demonstrated the best overall performance, reaching
94.1 ± 4.9% accuracy, 93.4 ± 6.0% recall, and the highest MCC (0.878) and Cohen’s κ

(0.866). This highlights the complementary strengths of DenseNet201’s deep hierarchi-
cal representations and SVM’s discriminative capacity. The DenseNet201 + NN (with
FS) model also achieved a competitive accuracy of 90.7 ± 7.8%, confirming that mRMR-
based feature reduction can improve generalization while maintaining high sensitivity.
Lightweight models, such as EfficientNet-B0 and MobileNetV2, achieved balanced perfor-
mance (≈85–88%) with much higher prediction throughput, making them promising for
real-time, resource-limited agricultural systems.
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Visualization results (Figure 6) show that the model bases its decisions primarily on
symptom-focused regions and avoids background texture. Bright spots/reflections are
prominent in false positive cases, while low saturation and homogeneous color transitions
are prominent in false negative cases. These findings support the role of subtle data
augmentations (lighting/hue/blur) in reducing error-prone situations and suggest that
illumination standardization or simple photometric corrections will be beneficial when
transitioning to outdoor validation.

All experiments were conducted on a Windows 11 workstation (Intel i9 CPU @
2.00 GHz, NVIDIA RTX A4000 GPU, 128 GB RAM) using PyTorch and scikit-learn. End-
to-end latency analysis (Table 5) shows that EfficientNet-B0 and MobileNetV2 can exceed
100,000 observations per second, whereas DenseNet201 and ResNet50, despite higher
computational cost, provide superior accuracy. This demonstrates a clear trade-off be-
tween model complexity and throughput that practitioners can exploit depending on
deployment constraints.

Compared with previous research summarized in Table 9, the proposed pipeline
achieves accuracy comparable to or slightly lower than the highest results reported for
broader plant datasets (e.g., [5] 99.72%, [14]. 99.5%), while remaining methodologically
more rigorous through strict fold-internal preprocessing, feature selection, and stratified
10-fold cross-validation to prevent information leakage. In contrast to many generic mul-
tispecies studies, this work focuses exclusively on lemon leaves, allowing task-specific
optimization of preprocessing and classifier design. This specialization yields a practi-
cal balance between performance and efficiency—an essential requirement for precision
agriculture decision support systems deployed in the field.

Table 9. Studies on plant leaf classification in the literature.

Author (s) Method (s) Plant Type (s) Accuracy (%)

[4] DarkNet53, ResNet101,
SVM Walnut 99.58

[5] AlexNet General leaves 99.72

[7] ResNet Lemon 97.66

[8] VGG-16 Citrus 89.5

[11] CNN Various (apple, grape, etc.) 96.46

[12] CNN Coffee 97.9

[13] ResNet18 + attention
mechanism Soybean 96.5

[14] CNN with data
augmentation Orange 99.5

[15] EfficientNetB3 Citrus 99.58

[16] Neutrosophic segmentation
+ CNN Basil 98.4

[17] MobileNetV2, DenseNet121 Mango, guava 98.9

[19] DenseNet201, ResNet152V2 Citrus 98.0

[20] CNN Castor oil plant 70.0

This study Transfer learning, mRMR,
SVM, etc. Lemon 94.1

Furthermore, realistic data augmentation—incorporating illumination, hue/saturation,
and mild blur perturbations—improved the model’s robustness to environmental variabil-
ity. As shown in Table 7, augmentation particularly enhanced recall for diseased samples,
with only minor precision drops in lighter backbones. This finding aligns with field shift
expectations: slight visual perturbations increase the model’s ability to detect true positive
disease cases.

Although several works (e.g., [19], DenseNet201 + ResNet152V2 98%) report
marginally higher accuracy using deeper or ensemble architectures, such approaches
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require substantially greater computational power. The proposed framework, leveraging
transfer learning, mRMR, and classical classifiers, achieves competitive accuracy while
remaining computationally economical—ideal for edge-based agricultural monitoring.

For external validation or quantitative domain shift analysis, we evaluated the same
model on mango and pomegranate leaves. The DenseNet201 + SVM (no FS) setting
achieved 94.1% F1 on lemon, 100% on mango, and 98.7% on pomegranate, with simi-
larly strong MCC/κ (Table 8a). This cross-dataset replication suggests that the proposed
pipeline is not overspecialized to lemon and retains high accuracy under cross-species
shifts. The small residual gap between lemon and pomegranate can plausibly stem from
dataset-specific capture conditions and class balance; nevertheless, the overall variance
(SD) remains low, supporting stable generalization. Practically, these findings argue for
DenseNet201 + SVM as a strong default when portability across citrus varieties is re-
quired, while lighter backbones (e.g., EfficientNet-B0, MobileNetV2) remain attractive for
resource-constrained deployments due to their throughput advantage.

Future work will extend this approach to mango and pomegranate leaves and to
independent citrus datasets acquired under varying lighting conditions and devices, en-
abling assessment of cross-domain generalization. In summary, the study provides a robust,
transparent, and replicable baseline for plant disease classification that balances accuracy,
interpretability, and computational efficiency.

6. Conclusions
This work shows that a transfer learning + classical ML pipeline can reliably classify

citrus leaves as healthy vs. diseased using compact, discriminative features extracted
from pretrained CNN backbones. We evaluated EfficientNet-B0, MobileNetV2, ResNet50,
and DenseNet201 feature extractors, optionally followed by mRMR feature selection, and
trained multiple shallow classifiers under stratified 10-fold CV with leakage-safe prepro-
cessing. On the lemon dataset, the strongest configuration is DenseNet201 + SVM (no
FS), with 94.1 ± 4.9% accuracy and 93.2 ± 5.7% F1, together with high imbalance-aware
scores (balanced accuracy, 93.4 ± 6.0%; MCC, 0.878 ± 0.101; κ, 0.866 ± 0.112; Table 7).
While mRMR sometimes improves stability for certain backbone–classifier pairs, it is not
strictly required for the top lemon result with SVM. To address external validation concerns,
we replicated the identical pipeline on mango and pomegranate leaves. The same fixed
model (DenseNet201 + SVM, no FS) achieves 100.0 ± 0.0% on mango and 98.7 ± 1.5%
on pomegranate (Table 8a), indicating strong cross-dataset generalization rather than
lemon-specific overfitting. Considering deployment, Table 5 shows that light backbones
(EfficientNet-B0, MobileNetV2) deliver substantially higher throughput with short training
times on our workstation (Intel Core i9 @ 2.00 GHz, NVIDIA RTX A4000, 128 GB RAM),
offering attractive speed–accuracy trade-offs for resource-constrained field use. For highest
accuracy and robustness across citrus varieties, DenseNet201 features with an SVM head are
a strong default. For real-time or embedded scenarios, EfficientNet-B0/MobileNetV2 paired
with a shallow classifier provides much faster inference with only a modest drop in accu-
racy. Reporting balanced accuracy, MCC, and κ alongside accuracy/precision/recall/F1
and measuring end-to-end latency yields a more faithful view of fitness-for-deployment
than single-metric comparisons.

Our CV-based validation and cross-dataset replication already quantify robustness to
moderate domain shifts; however, truly independent temporal/source holds-out and
in-the-wild acquisition would further stress-test generalization. Future studies will
(i) evaluate the pipeline on broader citrus datasets spanning devices, cultivars, and lighting;
(ii) analyze perturbation sensitivity (illumination, color casts, blur) more systematically; and
(iii) explore lightweight distillation/quantization to push accuracy–throughput further on
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edge hardware. Overall, the proposed pipeline is accurate, efficient, and portable, provid-
ing a solid and reproducible baseline for citrus disease detection that balances performance
with practical deployment constraints.
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