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Abstract

Predictive maintenance (PdM) of biomedical equipment is increasingly recognized as a
strategic lever to enhance reliability and ensure continuity of care. Yet, in resource-limited
hospitals, implementation is hindered by fragmented data sources, non-standardized
codification, and weak interoperability. Few studies have demonstrated the feasibility of
structuring PdM data from real hospital interventions in middle-income countries. This
work presents a prototype data structuring pipeline applied to six public hospitals in the
Casablanca–Settat region of Morocco. The pipeline consolidates 6816 validated maintenance
interventions from 780 devices across 30 departments and integrates normalized reliability
indicators (Failure Rate, MTBF, MTTR corrected with IQR, and Downtime Hours). It
ensures semantic harmonization, auditability, and reproducibility, resulting in a structured
and interoperable dataset that constitutes a regional first in the Moroccan hospital context.
To illustrate predictive potential, a proof-of-concept Random Forest model was evaluated.
It achieved AUROC = 0.65 on the full imbalanced dataset and AUROC = 0.82 on a balanced
2000-intervention subset, confirming the dataset’s discriminative value while reflecting
real-world challenges. This work bridges the gap between conceptual PdM frameworks
and operational hospital realities, and establishes a replicable foundation for AI-driven
predictive maintenance in low-resource healthcare environments.

Keywords: biomedical equipment; Casablanca–Settat region; data interoperability;
data structuring; healthcare technology management; hospital information systems;
low-resource settings; Mean Time Between Failures (MTBF); predictive maintenance (PdM);
supervised learning

1. Introduction
The digitalization of the healthcare sector represents a major structural transformation,

driven by the integration of advanced technologies, including the Internet of Medical
Things (IoMT), Artificial Intelligence (AI), cloud computing, and big data analytics [1].
This evolution fosters the emergence of interconnected and intelligent hospital ecosystems
that aim to optimize both clinical and technical performance. While early initiatives
primarily focused on electronic health records (EHRs), telemedicine, and eHealth services,
recent innovation efforts increasingly extend to the reliability and availability of critical
medical devices.

Predictive maintenance (PdM) has therefore emerged as a key component of Health-
care 4.0. It is defined as a set of procedures that continuously monitor equipment conditions
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and forecast potential failures through the systematic collection and analysis of operational
data [2]. By supporting just-in-time maintenance planning, PdM minimizes unexpected
breakdowns, reduces downtime, and enhances continuity of care.

Despite its recognized potential, the implementation of PdM in low- and middle-
income countries (LMICs) remains limited. Structural barriers include the absence of
unified data governance, fragmented formats of maintenance interventions (e.g., paper
forms, spreadsheets, heterogeneous systems), the lack of standardized technical indicators
(e.g., failure rate, mean time to repair), and limited interoperability between technical and
clinical platforms [3–6]. Studies in Africa and Asia have highlighted the direct consequences
of these deficiencies, including ineffective maintenance decisions, premature replacement
of functional devices, and prolonged unavailability of critical equipment [6–8]. These
challenges are not unique to Morocco but are shared across many LMICs, which reinforces
the broader relevance of this work.

The Moroccan healthcare system illustrates these obstacles. It is organized into multi-
ple tiers, including University Hospital Centers, Regional Hospitals, Provincial Hospitals,
Day Hospitals, and both urban and rural health centers. While this multi-level structure
is essential for addressing territorial healthcare needs, it results in significant heterogene-
ity in terms of digital infrastructure, technical management, and maintenance practices.
Some first-level facilities have partially digitized their biomedical services using Com-
puterized Maintenance Management Systems (CMMS), whereas others still struggle to
centralize maintenance intervention histories or adopt standardized device nomenclatures.
This systemic fragmentation underscores the urgent need for a coherent technical and
organizational interoperability framework, which is a prerequisite for the nationwide
implementation of intelligent biomedical maintenance.

The development of AI-based solutions further emphasizes the necessity of high-
quality datasets. As highlighted in previous studies, machine learning algorithms can only
produce reliable outcomes if the input data is clean, consistent, and standardized [2]. Data
preprocessing thus becomes a critical and often the most resource-intensive, step in PdM
initiatives, especially in heterogeneous hospital environments.

To address these challenges, this work introduces a structured prototype pipeline for
consolidating and preparing real-world hospital maintenance data. The pipeline integrates
cleaning, semantic normalization, feature derivation, and validation steps to generate a
reproducible, interoperable, and AI-ready dataset. The predictive experiment serves as
an exploratory benchmark, illustrating the practical added value of the structured dataset
for machine learning tasks and confirming its suitability as a foundation for predictive
maintenance research.

This work aims the following:

1. To analyze the state of the art in biomedical maintenance strategies, with a focus on
predictive approaches and supporting digital architectures.

2. To identify structural constraints encountered in low-resource hospital environ-
ments, particularly with respect to data governance, digital infrastructure, and
organizational maturity.

3. To demonstrate the feasibility and relevance of a multi-institutional prototype data
structuring pipeline as a foundation for predictive maintenance models that are
contextualized, reproducible, and scalable within the Moroccan healthcare system
and transferable to other LMIC contexts facing similar challenges.

This paper is organized as follows: Section 2 reviews related work, including theoret-
ical foundations, AI-based strategies, and challenges in low-resource settings. Section 3
outlines the study context and the data structuring methodology. Section 4 presents the
main results, combining descriptive statistics with exploratory analyses and a preliminary
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supervised predictive experiment. Section 5 discusses the key findings, and Section 6
concludes the paper with perspectives for future work.

2. Related Work
2.1. Theoretical Foundations of Biomedical Maintenance

Biomedical maintenance has traditionally alternated between preventive strategies,
aimed at minimizing unplanned downtime through scheduled interventions [9,10], and
corrective approaches, carried out post-failure but often costly and disruptive. To address
these limitations, structured frameworks have been introduced, classifying devices by criti-
cality, frequency of use, and vulnerability to failure [11]. Such models integrate operational
dimensions such as planning, documentation, and regulatory compliance, often overlooked
in purely technical approaches.

Data-driven implementations further highlight the benefits of structured frameworks.
For instance, the integration of Bayesian networks into hospital maintenance platforms
demonstrated significant cost reductions by identifying critical failure factors [1]. Parallel
to this, modular architectures aligned with Industry 4.0 concepts incorporate IoT, big data
analytics, AI, and visualization tools, as illustrated by the five-layer model in [12]. While
largely conceptual and rarely validated in hospitals, these approaches outline pathways
toward multi-technology PdM pipelines. Adaptations remain necessary in resource-limited
contexts, where lightweight CMMS can substitute for more complex infrastructures [13].

Core technical indicators such as MTBF, MTTR, availability, failure recurrence, and
criticality indices remain central to predictive modeling, particularly when integrated
with CMMS or sensor data [11]. A systematic review [14] reinforces this by framing
maintenance as a lifecycle process and identifying three prioritization models: criticality
matrices, weighted scoring, and machine learning algorithms (e.g., k-means, Random
Forest, SVM). Reliability-Centered Maintenance (RCM) and FMEA continue to provide
methodological foundations for assessing criticality and guiding resource allocation [15,16].

2.2. Advances in Predictive Maintenance and Artificial Intelligence

The rising complexity of biomedical devices has made maintenance a strategic priority.
Strategies have evolved from reactive and scheduled interventions to predictive paradigms
enabled by IoT, embedded computing, and AI [14,17]. PdM leverages historical logs and
real-time monitoring to anticipate failures, with documented benefits including reduced
downtime, optimized resource allocation, and cost savings [18,19].

Empirical studies report cost reductions of up to 25% and improved availability [17].
Methodologically, PdM relies on structured maintenance records and sensor data.

Early models used regression and decision trees, while recent approaches apply ML algo-
rithms such as k-NN, SVM, and CNN for failure prediction, RUL estimation, and criticality
classification [20–22]. Adoption, however, requires multidisciplinary coordination and
often encounters cultural barriers, such as reluctance to act preemptively or limited trust in
algorithmic decisions [23].

Recent work also incorporates unstructured data from CMMS reports using NLP
methods such as LDA [24], though standardization challenges persist. Broader limitations
include scarce high-quality datasets, frequent reliance on simulated data, and interoper-
ability issues across heterogeneous systems [25,26]. To address these gaps, hybrid models
integrate conventional indicators (MTBF, MTTR, availability, criticality) with predictive
components, improving accuracy and contextual relevance [19]. Deterministic and multi-
criteria frameworks for equipment replacement have further demonstrated the value of
operational data in prioritizing actions under budget constraints [27,28].
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Emerging architectures, including SaMD systems and IoT-based predictive models,
highlight regulatory and validation requirements similar to those in clinical AI [29]. CNN-
based vibration analysis has achieved accuracies above 98% [18], while predictive monitor-
ing of ventilators illustrates the feasibility of targeted PdM applications [2,30]. Cloud-based
analytics and lightweight alternatives, such as MWIR thermal imaging complement [31],
AI-driven approaches by offering scalable or low-cost fault detection solutions.

In summary, biomedical PdM stands at the intersection of technology, regulation, and
hospital resource optimization. Hybrid approaches combining empirical indicators and AI
techniques appear most promising for building resilient and clinically relevant maintenance
systems. Building on these advances, artificial intelligence has become a central driver of
PdM frameworks. Enabling technologies such as IoT, big data, and ML support anomaly
detection, health state classification, and RUL estimation, with reported accuracies often
above 90% [2,17,32].

A wide range of models has been explored, from SVM and Random Forest to CNN,
LSTM, and ensemble methods such as XGBoost and k-NN [32,33]. Studies have reported
strong performance in contexts such as autoclave monitoring in Rwanda, ventilator di-
agnostics, and failure recurrence in Malaysian hospitals [30,33]. However, many rely
on simulated or small-scale datasets, limiting generalizability [25,34]. Deep learning ap-
proaches also face interpretability challenges, raising concerns about clinical trust and
regulatory compliance [35].

Cost considerations remain underexplored, despite the significant investments re-
quired in sensors, IT infrastructure, and staff training, particularly in low-resource set-
tings [15,36–38]. Methodological diversity, ranging from simple classifiers to multimodal
frameworks, further complicates cross-study comparisons. Attempts to combine structured
maintenance records with unstructured CMMS logs show promise [39], yet issues of gover-
nance, workforce readiness, and interoperability continue to hinder adoption [19]. Recent
initiatives propose lightweight or pragmatic solutions, including CMMS-based platforms,
sensor-efficient models, no-code Edge AI tools, and Bayesian network approaches for
root cause analysis [40–43]. Despite encouraging results, sustainable improvements in
availability and cost-efficiency remain contingent on clean, standardized, and validated
datasets, which are essential for deploying AI-powered PdM at scale [15,16,20,44].

2.3. Specific Constraints in Low-Resource Settings

Morocco’s digital health transformation, accelerated by the COVID-19 pandemic, has
introduced EHRs, hospital management platforms, telemedicine, and expanded health
coverage [35,45,46]. These initiatives, aligned with broader public sector reforms [3,41,47],
aim to improve equity and governance, particularly in underserved areas [42]. High-level
political support has reinforced this momentum through investments in HMIS modern-
ization and digital identifiers, with the long-term goal of establishing an interoperable,
data-driven healthcare system.

Despite these advances, biomedical equipment maintenance remains largely reactive,
lacking preventive or predictive planning [43]. Challenges include absent standardized
indicators, fragmented CMMS platforms, heterogeneous suppliers, limited engineering
capacity, and prolonged repair delays [11]. In many LMICs, reliance on paper-based or
inconsistent records further undermines traceability and predictive readiness [7]. Studies
confirm that poor data quality and limited staff training weaken planning capacity and
hinder the adoption of intelligent tools [48].

Regulatory gaps compound these limitations: fragmented standards and lengthy
certification processes delay evaluation of AI-based medical devices, a problem even more
acute in resource-constrained contexts. Scaling PdM in LMICs therefore requires robust
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governance, standardized data protocols, and adaptive legal frameworks, yet disparities in
infrastructure, digital literacy, and staff training remain persistent obstacles [11,49].

2.4. Strategic Positioning of the Present Study

The integration of IoT, AI, and big data into Morocco’s healthcare system offers a
concrete opportunity to implement predictive maintenance strategies adapted to local con-
straints [50–52]. While such technologies are widely deployed in industry, recent evidence
confirms their relevance for healthcare, including in resource-constrained environments.

Several studies validate the operational and economic potential of PdM. A determin-
istic model covering 3640 devices across Saudi hospitals achieved a 36% cost reduction
over ten years [53], while a QFD-based framework in the UAE improved ventilator pri-
oritization [54]. Complementary initiatives in Sri Lanka and India demonstrated that
standardized procedures, staff training, and integrated corrective–preventive strategies
enhance equipment availability and mitigate systemic challenges [55,56]. Locally adapted
solutions further illustrate scalability: lightweight CMMS platforms in Benin [57], Arduino-
based monitoring prototypes in Rwanda [58], and a PdM platform at CHU Ibn Sina in
Morocco [59] all underscore the feasibility of context-aware deployments.

Nonetheless, many contributions remain limited to simulated or pilot environments
with little clinical validation [25,32]. Decision-support tools such as BI dashboards and
locally developed CMMS show promise in low-digitalization contexts [13,60], yet their
effectiveness depends heavily on institutional maturity and resource availability. Concep-
tual Industry 4.0 frameworks integrating IoT, AI, and visualization layers offer additional
guidance, but often lack hospital validation [12].

Taken together, these findings reinforce the relevance of the present work, which builds
on validated technologies, local feedback, and systemic constraints. The originality of this
contribution lies in demonstrating the predictive potential of a real, multi-institutional
dataset, thereby addressing a critical gap in biomedical maintenance research across LMICs.

3. Materials and Methods
3.1. Study Context and Data Sources

The transition toward digitalization in the Moroccan hospital sector is still hindered
by heterogeneous information systems [35], manual maintenance workflows, and lim-
ited adoption of AI technologies in maintenance operations. Standardizing data for-
mats and metadata therefore becomes a critical step in improving interoperability in
low-standardization environments [61]. To this end, labels and data semantics were har-
monized across hospitals, while the origin and processing steps of each file were systemat-
ically logged to ensure interoperability, auditability, and generalizability of the pipeline
across institutions.

This work, conducted across multiple public healthcare institutions in the Casablanca–
Settat region, aims to structure multi-institutional datasets as a foundation for predictive
maintenance of critical biomedical devices. This issue reflects a broader continental trend,
as the lack of harmonized formats and the fragmentation of health information systems
continue to impede the strategic use of healthcare data [62].

Failure and maintenance interventions were collected from six public hospitals in the
Casablanca–Settat region, Morocco’s most densely populated area and a representative
setting for data consolidation. Covering the period 2014–2022, the sources were highly het-
erogeneous, including non-standardized Excel spreadsheets, handwritten forms, technical
reports, and partial CMMS exports intermittently available since 2022.

These documents presented terminological inconsistencies, irregular date formats, and
non-uniform codification of equipment and departments. After semantic harmonization,
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over 7000 interventions were consolidated. Entries related to decommissioned equipment
and incomplete interventions were removed, resulting in 6816 validated from 780 devices
across 30 departments. This reduction (−2.6%) reflects the elimination of duplicated,
incomplete, or obsolete records during quality filtering.

3.2. Structuring Prototype Pipeline (M1–M7)

Based on modern data science principles [63], a configuration-driven prototype
pipeline was developed to process heterogeneous hospital interventions and ensure re-
producibility, auditability, and integration readiness. Previous studies indicate that data
preparation, including cleaning and structuring, can represent up to 80% of the total effort
in analytics projects when sources are heterogeneous or incomplete [64,65], which justi-
fies the emphasis on rigorous preprocessing as a prerequisite for predictive maintenance
modeling. The pipeline integrates automated provenance logging: for each ingested file,
metadata such as file name, sheet identifier, ingestion timestamp, SHA-256 fingerprint,
and parser and mapping versions are systematically recorded to ensure full auditability.
Figure 1 presents the modular BioMedStruct pipeline (M1–M7), formalizing the progression
from heterogeneous data ingestion to integration readiness.

Figure 1. Conceptual architecture of the BioMedStruct prototype pipeline.
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The BioMedStruct pipeline transforms heterogeneous hospital maintenance logs into a
standardized, AI-ready dataset through a modular structure (M1–M7) aligned with modern
data-engineering practices.

M1—Ingestion and provenance logging: Heterogeneous Excel files were imported,
and for each file, metadata such as file name, sheet identifier, timestamp, and SHA-256
checksum were recorded to ensure full auditability. Each equipment record was assigned
two complementary identifiers: an internal code (e.g., iq_real_001) automatically generated
by the ingestion module to ensure traceability across hospitals, and the official inventory
number (e.g., 9608/19) assigned by the biomedical department. This dual identification
maintained referential integrity between digital records and physical assets.

M2—Cleaning and normalization: Duplicates and inconsistent date formats were
corrected, while terminologies for services and failure types were semantically harmonized.
Records corresponding to retired devices or incomplete interventions were excluded to
preserve data reliability.

M3—Structuring: variables were standardized into a unified schema including identi-
fiers (equipment, hospital, department), temporal attributes (failure, intervention, repair
dates), and maintenance descriptors (intervention type, failure type, status).

M4—Feature engineering: reliability-related indicators were computed, including
Mean Time Between Failures (MTBF), Mean Time to Repair (MTTR), Failure Rate (FR),
Downtime Hours (DH).

After these transformations, multi-level validation was conducted to ensure structural
integrity and semantic coherence across hospitals. To verify longitudinal completeness,
the structured dataset was cross-checked against quarterly hospital inventory reports
listing all biomedical devices with their operational status (operational, under repair, retired).
In this verification loop, any device marked under repair in quarter Q had to appear as
repaired or still pending in Q + 1, preventing structural missingness. Consequently, temporal
variables (failure date, repair date, downtime hours, repair duration) reached 0% missing
1 after processing.

In parallel, a series of Quality Gates (QG) were implemented to ensure dataset com-
pleteness, semantic consistency, interoperability [63], and inter-hospital coherence. These
controls verified the presence of mandatory fields such as intervention date, equipment
ID, and department, while also ensuring standardized codification of identifiers and in-
tervention types. Temporal plausibility was assessed by confirming that failure events
always preceded their corresponding repairs, and potential duplicates were detected using
composite keys. Finally, semantic normalization was applied to textual variables, particu-
larly department names and failure categories, in order to reduce variance and harmonize
heterogeneous labels into canonical forms.

This dual validation, combining organizational cross-checking and automated data-
quality controls, ensured the structural and semantic consistency of the final dataset.

The main operations applied at each stage of the BioMedStruct prototype pipeline are
summarized in Table 1, and the final validated schema includes 26 standardized variables,
detailed in Table 2.
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Table 1. Main transformations applied during the structuring of the biomedical dataset.

Stage (M) Transformation Description

M1 Removal of non-tabular rows Elimination of administrative headers and unstructured
elements in rows 1 to 5 at the top of source files.

M1 Provenance logging
Recording file name, sheet, UTC timestamp, and the SHA-256
file fingerprint, plus parser version and mapping version,
for auditability.

M2 Date format harmonization
Systematic conversion of dates to the DD/MM/YYYY format
(as used in Moroccan hospitals), with explicit parsing of
legacy formats.

M2 Inventory ID normalization Standardization of equipment and inventory identifiers with
consistent casing and padding.

M2 Unique identifier assignment

Assignment of standardized equipment IDs
(e.g., EQP_REAL_00001) to ensure a one-to-one mapping
between physical units and records; IDs are generated
sequentially and linked to hospital and legacy inventory codes
to preserve traceability.

M2 Duplicate elimination Removal of exact or near-duplicates using the composite key
{equipment ID, failure date, intervention type}.

M2 Column disambiguation Splitting vague fields such as Summary, Model/Type, and
Room into distinct columns.

M3 Label normalization Unification of department names, with FR variants mapped to
canonical labels to reduce label variance.

M3 Failure type categorization Grouping of raw descriptions into homogeneous classes such
as electrical, mechanical, and software.

M4 Derivation of analytical variables
Computation of normalized reliability indicators including
Failure Rate (FR), Mean Time Between Failures (MTBF), Mean
Time to Repair (MTTR), and Downtime Hours (DH).

M4 Time aware computation Features computed on right-closed windows to avoid
temporal information leakage.

M5 Variable type definition Explicit classification of variables into temporal, categorical, or
quantitative types.

M5 Missing value handling Simple imputations or informed deletions based on
business rules.

M6 Final data structuring
Assembly of a normalized tabular dataset with 26
interoperable variables and a fixed column order; schema
versioning (e.g., BioMedStruct_Schema_CST v1.0.0).

M6 Documentation assets Delivery of a prediction-ready dataset, a data dictionary, a
validation report, and provenance logs.

M7 Integration readiness deliverables

Packaging of the prediction-ready dataset into standardized
distribution formats (CSV/Parquet) with fixed schema and
versioned releases, complemented by interoperability assets to
support adoption in biomedical maintenance workflows,
including CMMS integration, inter-hospital data sharing, IoT
connectivity, and risk-scoring dashboards.
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Table 2. Core data dictionary of the 26 standardized variables.

Variable Name Type Unit Description Missing (%)
Before

Missing (%)
After

1 internal_id Categorical Label
Internal identifier
generated by the pipeline
(e.g., iq_real_001)

0% 0%

2 equipment_id Categorical Identifier Official hospital inventory
number (e.g., 9608/19) 0% 0%

3 hospital_id Categorical Code Hospital code 0% 0%

4 department Categorical Label Clinical department
where the device is used 3% 0%

5 sha256_checksum Categorical Hash
SHA-256 checksum
ensuring data provenance
and integrity

0% 0%

6 equipment_designation Categorical Label Designation or common
name of the device 2% 0%

7 technology Categorical Label Equipment technology
(Analog/Digital/Hybrid) 6% 0%

8 brand_model Categorical Label Unified brand–
model label NA 0%

9 acquisition_date Temporal DD/MM/YYYY Date of acquisition 10% 0%

10 commissioning_date Temporal DD/MM/YYYY Date of commissioning
(first use) 10% 0%

11 Operational_Age Numerical Years
Operational_Age (time
elapsed since
commissioning)

NA 0%

12 warranty_status Categorical Yes/No Indicates if the device is
under warranty 12% 0%

13 warranty_end_date Temporal DD/MM/YYYY End date of
warranty period 12% 0%

14 estimated_end_of_life_date Temporal DD/MM/YYYY Estimated end-of-life date
of the equipment 25% NA

15 service_status Categorical Label Operational/Under
repair/Retired 5% 0%

16 CIn
Numerical
(ordinal) Scale 1–5

Internal Criticality Index
combining downtime,
failure frequency, and
clinical importance

NA 0%

17 intervention_date Temporal DD/MM/YYYY Maintenance
intervention date 2% 0%

18 failure_date Temporal DD/MM/YYYY Failure occurrence date 7% 0%

19 repair_date Temporal DD/MM/YYYY Repair completion date 9% 0%

20 downtime_hours Numerical Hours Total hours of downtime 12% 0%

21 repair_duration Numerical Hours Duration of the repair 15% 0%

22 intervention_year Numerical Year
Extracted year of
intervention (for temporal
grouping)

NA 0%

23 intervention_type Categorical Label Curative/Preventive/Minor
adjustment/External 0% 0%

24 failure_type Categorical Label
Failure category
(electrical, mechanical,
software. . .)

5% 0%

25 failure_criticality Categorical Low/Med/High Failure severity level 20% 0%

26 intervention_status Categorical Label Completed/Ongoing/Abandoned 4% 0%

After the transformation stages, Figure 2 illustrates the conversion of heterogeneous
biomedical records into a standardized, prediction-ready dataset.
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Figure 2. Conversion of heterogeneous biomedical records into a validated 26-variable dataset.

Table 2 summarizes the 26 core variables of the structured dataset, including their
type, unit, description, and the evolution of missingness before and after cleaning. The
extended data dictionary (41 variables, including technical and derived fields) is provided
in Appendix A for reproducibility and audit transparency.

Figure 3 illustrates the effect of semantic normalization on hospital department labels,
showing how heterogeneous variants were consolidated into standardized categories.
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Figure 3. Impact of semantic normalization on service labels: (a) before normalization, (b) after
normalization.

3.3. Reliability, Maintainability, and Availability Indicators

To enable reproducible comparisons across heterogeneous hospitals, reliability and
maintainability were assessed using normalized indicators widely adopted in reliability
engineering and biomedical maintenance standards [66,67]. Four core metrics were retained,
selected for their operational relevance, interpretability, and frequent use in biomedical
reliability studies.

1. Failure Rate (FR)

FR =
Nfailures

Ndevices × Tobs

Expressed in failures per device·year, where Tobs is the observation period in years.
This indicator quantifies the average number of failures per device per year, allowing
normalization across hospitals with different equipment stocks and follow-up durations.

2 Mean Time Between Failures (MTBF)

MTBF =
Total operating time

Nfailures

Expressed in days, MTBF measures the mean interval between two successive failures.
MTBF is a direct proxy of equipment reliability.

3 Mean Time To Repair (MTTR)

MTTR =
∑ TTR
Nrepairs

Expressed in hours, where TTR denotes the repair duration of each intervention.
MTTR captures the maintainability dimension of biomedical equipment by quantifying
average repair times.
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4 Downtime Hours (DH)

DH =
∑ TTR

Ndevices × Tobs

Expressed in hours per device·year, DH measures the annual downtime burden per
device. DH integrates both frequency and duration of repairs, providing a synthetic
availability-oriented indicator.

Robust Correction of MTTR

Exploration of the raw dataset revealed extreme repair times, with values exceeding
800 h. These anomalies mostly reflected administrative delays in closing work orders rather
than true repair durations. To mitigate their impact, a robust correction was applied using
the interquartile range (IQR) method.

The IQR is defined as follows:

IQR = Q3 − Q1

Values above Q3 + 1.5 × IQR were capped at this threshold. This correction, widely
applied in engineering and healthcare data analytics, preserves natural variability while
limiting distortions caused by administrative artifacts.

Collectively, these four indicators form a standardized basis for assessing reliability
and maintainability across hospitals. They support both descriptive comparisons and
predictive modeling experiments, ensuring methodological alignment between exploratory
statistics and machine learning tasks.

3.4. Predictive Modeling Protocol

Prediction task

The predictive task was formulated as a binary classification problem aligned with
biomedical maintenance standards. Corrective interventions were assigned to the positive
class (Y = 1), while preventive, inspection, adjustment, and scheduled revision interven-
tions were assigned to the negative class (Y = 0). The binarization strictly relied on the
original “type of maintenance” field contained in hospital interventions, and no artifi-
cial records or synthetic labels were introduced. This ensures consistency with hospital
reporting practices, traceability to raw interventions, and methodological reproducibility.

The binary outcome variable Y was defined as follows:

Y =

{
1 i f corrective (Failure)
0 i f non − f ailure

Validation protocol

To ensure reproducibility and to avoid information leakage, two complementary
validation strategies were applied. The first relied on RepeatedStratifiedGroupKFold
(5 × 10), with grouping at the equipment identifier level to control intra-device correla-
tions and prevent interventions from the same equipment from being split across folds.
The second consisted of a temporal split, with training on the 2014–2019 period and test-
ing on 2020–2022, combined with a roll-forward evaluation to approximate prospective
deployment and assess temporal generalization.

Formally, the dataset can be expressed as follows:

D =
{
(xi, yi, gi)}N

i=1
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where xi are the features, yi ∈ {0, 1} is the target variable, and gi is the equipment identifier.
Group-level cross-validation ensures the following:

gi ∈ Ttrain∥ ⇒ ∥gi /∈ Ttest

Thus, it prevents leakage across interventions from the same physical device. The
temporal split is formally defined as follows:

Ttrain = {x | date(x) ≤ 2019}, Ttest = {x | date(x) ≥ 2020}, Ttrain ∩ Ttest = ∅

This design ensures that performance estimates are unbiased, both at the device level
and in temporal deployment scenarios.

Subset definition

From the full dataset of 6816 validated interventions, a balanced subset of 2000 in-
terventions was sampled. Stratification was applied by hospital, department, equipment
identifier, and year to preserve representativeness. Corrective and non-failure interventions
were adjusted to a 50/50 distribution to mitigate the natural imbalance (=85/15). Ran-
domness during sampling was controlled through a fixed seed (42), and exclusion criteria
included incomplete interventions, duplicates, and interventions related to equipment
under reform.

Model configuration and baselines

Predictive modeling was conducted using a Random Forest classifier. For a given instance
x, the probability estimate is computed as the average of individual tree probabilities:

p̂(y = 1 | x) =
1
T

T

∑
t=1

ht(x)

where T is the number of trees and ht(x) ∈ [0, 1] denotes the probability assigned to class
1 by tree t. The model was configured with 500 trees, class weights set to “balanced” to
account for class imbalance, and a fixed random seed (42) to ensure reproducibility.

For comparison, a Logistic Regression model was implemented as a baseline. It was
configured with L2 regularization, balanced class weights, the “liblinear” solver, and a
maximum of 500 iterations. This baseline provides a classical, interpretable reference for
assessing the added value of ensemble learning in the context of imbalanced hospital data.

4. Results
4.1. Dataset Overview and Descriptive Statistics

This section provides a descriptive overview of the consolidated dataset prior to the
computation of reliability-oriented indicators. The curated dataset comprises 6816 vali-
dated maintenance interventions, covering 780 biomedical devices across 410 equipment
categories. It also documents more than 2300 distinct failure types, underscoring the het-
erogeneity of maintenance scenarios, and spans 30 clinical departments, thereby ensuring
broad institutional coverage. Table 3 summarizes the key indicators.

A cross-institutional comparison was conducted to evaluate disparities among the
six hospitals. Figure 4 reports the variability in the number of interventions and the
diversity of biomedical devices. Hospital F recorded the highest number of incidents (1206),
associated with 162 devices, 340 categories, and 19 clinical departments. While the number
of equipment categories remained relatively stable across institutions (310–340), the number
of reported failure types varied, indicating heterogeneity in monitoring practices, data
granularity, and equipment complexity.
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Table 3. Aggregated general statistics from six Moroccan hospitals.

Indicator Estimated Value

Total number of records 6816

Total number of tracked equipment 780

Number of equipment categories 410

Number of identified failure types 2300

Total number of clinical departments covered 30

Figure 4. Comparison of key indicators across hospitals.

The distribution of intervention types is reported in Figure 5, indicating that corrective
maintenance represents approximately 85% of interventions, while preventive actions
account for only 15%. This imbalance reflects systemic constraints in Moroccan public
hospitals, including limited resources, partial digitalization, administrative delays, and
insufficient traceability of preventive actions.

Figure 5. Breakdown of maintenance interventions (2014–2022).
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4.2. Failure Characterization and Temporal Patterns

Failure characterization was conducted to analyze the distribution of interventions
across services, the most frequent technical codes, and temporal dynamics.

Figure 6 reports the distribution of maintenance interventions by service. Interventions
were concentrated in high-dependency units, with Operating Rooms accounting for the
largest share, followed by Maternity, Radiology, and Laboratories. Intensive Care Units
also reported a substantial number of incidents, reflecting both the criticality of equipment
and the complexity of workflows.

Figure 6. Distribution of maintenance interventions by hospital department.

The analysis of technical codes highlights recurrent failure categories. Figure 7 re-
ports the five most frequent codes: MEC-02 (mechanical failures), AUT-05 (automation
and sensor faults), ECL-01 (lighting faults), ELEC-04 (electronics), and LOG-03 (software
anomalies). Each code exceeded 1400 occurrences. Since a single maintenance intervention
could be associated with multiple codes (e.g., mechanical and electronic), the cumulative
number of occurrences can exceed the number of unique interventions. These codes re-
flect the heterogeneity of biomedical maintenance, spanning mechanical wear, electronic
components, and software anomalies.

Figure 7. Most common failure types in biomedical equipment.
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Temporal analysis of interventions is reported in Figure 8. The number of failures
increased steadily from 2014 to 2019, peaking at over 1100 incidents. This trend reflects
the expansion of equipment inventories and improved traceability. In 2020, the COVID-19
pandemic [19] produced a mixed effect: increased failures in critical devices (ventilators,
monitors, infusion pumps) coexisted with reduced activity in elective services, leading
to underreporting in non-urgent interventions. From 2021 onwards, failures stabilized
(≈800 per year). The deployment of CMMS platforms in 2022 further improved reporting
accuracy and data structuring.

Figure 8. Distribution of failures by year.

Overall, the variability across hospitals, the predominance of corrective interventions,
and the observed temporal dynamics highlight the need for normalized reliability indicators
to enable inter-service comparison and predictive modeling.

4.3. Reliability Indicators

Normalized reliability and maintainability indicators were computed to enable inter-
service comparisons. The selected metrics are Failure Rate (FR), Mean Time Between
Failures (MTBF), Mean Time to Repair (MTTR, corrected), and Downtime Hours (DH).
Their definitions and units are provided in Section 3.

Table 4 summarizes the aggregated results and compares raw and corrected values for
MTTR and DH.

Table 4. Comparison of raw vs. corrected indicators.

Indicator Raw Value Corrected Value Unit

MTTR 67 h 42 h Hours

DH 102 68 hours/device·year

The raw MTTR distribution exhibited extreme values, in some cases exceeding
800 h. These anomalies were not representative of actual repair durations but rather re-
flected administrative delays and structural bottlenecks. The IQR-based correction yielded
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an upper threshold of 384 h, above which values were capped. As a result, the corrected
MTTR converged to 42 h, providing a more realistic estimate of effective repair times.
Figures 9 and 10 show the distributions of raw and corrected MTTR.

Figure 9. Distribution of MTTR (raw values). The diamond markers indicate statistical outliers
located beyond the interquartile range.

Figure 10. Distribution of MTTR (corrected values, IQR-based). Diamond-shaped markers represent
statistical outliers beyond the interquartile range.

Service-level comparisons confirm heterogeneous reliability patterns. Figure 11 reports
the FR across services, with Intensive Care Units showing the highest failure rates, followed
by Operating Rooms, while Radiology displayed lower FR values. Figure 12 presents
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DH estimates, which align with the FR distribution and highlight higher downtime in
critical units.

Figure 11. Failure rate (FR) by hospital service.

Figure 12. Downtime hours (DH) across hospital services.

To integrate multiple metrics, a radar chart was constructed. Figure 13 presents nor-
malized FR, MTBF, MTTR (corrected), and DH for the three most represented departments:
Intensive Care, Radiology, and Operating Rooms. The radar profile highlights the criti-
cal burden of Intensive Care, the relatively favorable performance of Radiology, and the
intermediate profile of Operating Rooms.
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Figure 13. Radar chart of reliability indicators (FR, MTBF, MTTR corrected, DH) for selected services.

4.4. Predictive Modeling Results

Cross-validation results
The predictive task was formulated as a binary classification problem, where interven-

tions were labeled as corrective (failure = 1) or non-failure (0). Table 5 presents grouped
cross-validation results. On the full dataset (6816 interventions, 85% corrective/15% preven-
tive), the Random Forest achieved an AUROC of 0.65 ± 0.04 (95% CI: 0.61–0.69), indicating
moderate discriminative capacity under imbalance. On the stratified subset (2000 in-
terventions, balanced 50/50), the AUROC increased to 0.82 ± 0.03 (95% CI: 0.76–0.87),
demonstrating predictive capacity under balanced conditions.

Table 5. Grouped cross-validation (5 × 10 folds) performance.

Dataset AUROC Mean ± SD (95% CI) F1-Macro Mean ± SD Accuracy
Mean ± SD

Full (6816) 0.65 ± 0.04 (0.61–0.69) 0.47 ± 0.05 0.71 ± 0.03

Subset (2000) 0.82 ± 0.03 (0.76–0.87) 0.66 ± 0.04 0.79 ± 0.02
Values are reported as mean ± SD. AUROC confidence intervals are [0.61–0.69] for the full dataset and [0.76–0.87]
for the subset.

Temporal validation
Temporal holdout validation was performed using 2014–2019 for training and

2020–2022 for testing. Table 6 presents AUROC values of 0.62–0.65 for the full dataset
and 0.79–0.81 for the subset, indicating stable performance across time, though predictive
difficulty increased in the imbalanced dataset.

Table 6. Temporal split performance (2014–2019 training, 2020–2022 testing).

Dataset AUROC [95% CI] F1-Macro Accuracy

Full (6816) 0.63 [0.61–0.67] 0.46 0.70

Subset (2000) 0.80 [0.77–0.83] 0.65 0.78
Values are reported as mean ± SD. AUROC confidence intervals were [0.61–0.67] for the full dataset and [0.77–0.83]
for the subset.
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Table 7 compares Random Forest and Logistic Regression across datasets. Random
Forest consistently outperformed Logistic Regression on AUROC, F1-macro, and Accuracy,
with larger margins observed in the balanced subset, where class imbalance was mitigated.

Table 7. Comparative performance of Random Forest vs. Logistic Regression under temporal
split validation.

Classifier Evaluation Metric Full (6816) Subset (2000) ∆ (Subset−Full)

Random Forest

AUROC 0.65 [0.63–0.67] 0.80 [0.77–0.83] +0.15

F1-macro 0.44 0.78 +0.34

Accuracy 0.70 0.81 +0.11

Logistic Regression

AUROC 0.61 [0.58–0.64] 0.72 [0.69–0.76] +0.11

F1-macro 0.41 0.66 +0.25

Accuracy 0.68 0.74 +0.06
Values represent single temporal split performance (2014–2019 training, 2020–2022 testing).

Roll-forward validation
Roll-forward validation confirmed consistent AUROC, with year-to-year fluctuations

not exceeding ±0.02 (Table 8). AUROC decreased to 0.62 in 2020 on the full dataset,
coinciding with the COVID-19 crisis, while the subset remained stable at 0.80.

Table 8. Roll-forward AUROC by temporal split.

Training Period → Testing Period Full (6816) Subset (2000)

2014–2017 → 2018 0.64 0.79

2014–2018 → 2019 0.65 0.80

2014–2019 → 2020 0.62 0.81

2014–2020 → 2021 0.63 0.80

2014–2021 → 2022 0.65 0.79
Roll-forward experiments provide single AUROC values without confidence intervals, since each period corre-
sponds to a unique temporal split.

Confusion matrices and ROC analysis
Table 9 shows confusion matrix proportions under temporal split validation. In the

full dataset, the false negative rate reached 0.73, reflecting class imbalance. In the subset,
false negatives decreased to 0.12, yielding more balanced detection. Figure 14 displays
confusion matrices, and Figure 15 illustrates AUROC differences between datasets.

Table 9. Confusion matrix proportions under temporal split validation.

Dataset TP FN TN FP

Full (6816) 0.12 0.73 0.18 0.07

Subset (2000) 0.38 0.12 0.37 0.13
Values represent proportions under temporal split validation (2014–2019 training, 2020–2022 testing). TP = True
Positives, FN = False Negatives, TN = True Negatives, FP = False Positives.
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Figure 14. Confusion matrices of Random Forest classifiers under temporal split (2014–2019 training,
2020–2022 testing).

Figure 15. Comparative ROC curves (FULL vs. SUBSET datasets).

4.5. Analytical Interpretation

Overall, the corrected indicators reveal critical insights into the reliability of biomedi-
cal maintenance. Raw MTTR and DH values were initially distorted by extreme outliers,
in some cases exceeding 800 h, which primarily reflected administrative delays rather
than actual repair times. Applying a robust IQR-based correction was therefore essential
to derive realistic maintainability estimates. Service-level comparisons further demon-
strated that critical units such as Intensive Care and Operating Rooms concentrated the
highest FR and DH values, confirming their priority in predictive maintenance strategies
and resource allocation. The adoption of normalized indicators also provided a consis-
tent and comparable framework, strengthening the basis for predictive modeling and
inter-hospital benchmarking.

The predictive experiments highlight complementary findings. Structured main-
tenance interventions were shown to contain discriminative signals, with performance
reaching AUROC = 0.80 under balanced conditions, thereby confirming the feasibil-
ity of predictive modeling. Conversely, predictive performance decreased on the full
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dataset due to imbalance and heterogeneity, reflecting the realism of operational hospital
data and underscoring the need for resampling strategies or cost-sensitive approaches to
enhance robustness.

Temporal validation confirmed stable generalization across years, with a marked
decline in 2020, most likely linked to the disruptions caused by the COVID-19 pandemic.
This sensitivity to external shocks illustrates the importance of embedding contextual
factors into predictive maintenance planning.

5. Discussion
Barriers to the implementation of predictive maintenance in hospital systems are multi-

dimensional and well-documented. Organizational resistance, the lack of qualified person-
nel to operate connected technologies, and the absence of seamless integration with hospital
information systems are recurring limitations [20,38]. Despite medium-term prospects for
economic optimization, the initial investment cost, including sensors, analytical platforms,
and digital infrastructures, remains prohibitive for many resource-constrained institu-
tions [39]. These financial challenges are further exacerbated by increasingly stringent
regulatory requirements related to cybersecurity, maintenance intervention traceability,
and algorithm validation [38].

Beyond economic and regulatory barriers, systemic constraints undermine the opera-
tional viability of predictive maintenance. These include the lack of interoperability stan-
dards, fragmented digital tools, and heterogeneous data entry practices [24]. The literature
also highlights a tendency to validate models in isolated settings without addressing change
management, user adoption, or the scalability of solutions across multiple sites [2,68]. Com-
bined with the variability in hospital size, human resources, and digital maturity, these
limitations complicate the large-scale deployment of predictive solutions [19,49,69].

Our findings confirm the persistence of such structural barriers in resource-limited
environments. Partial CMMS coverage, the absence of shared reference frameworks, and
inconsistent data entry practices significantly impede the homogeneous aggregation of
technical data. The cleaning and standardization phases highlighted how fragmentation
compromises traceability. Nevertheless, the proposed structuring pipeline demonstrated
that these barriers can be mitigated through a systematic and reproducible methodol-
ogy [20,24]. By consolidating heterogeneous interventions into an interoperable dataset, the
pipeline provides a proof of feasibility relevant to other hospitals facing similar constraints
in LMICs.

This work therefore empirically demonstrates that structured data preparation is a
prerequisite for predictive maintenance, especially in low-digitization environments [12].
Unlike predominantly theoretical or simulated approaches, the proposed framework is
grounded in real data from six Moroccan institutions. It directly addresses a recurrent
gap in the literature: regarding the absence of contextualized, reliable, and interoperable
datasets in resource-constrained healthcare systems [7,33,70]. The consolidated dataset
provides a relevant foundation for evaluating the feasibility of predictive algorithms in min-
imally digitized environments, without relying on extensive instrumentation or complete
CMMS coverage.

The structuring process revealed several obstacles to the effective use of biomedical
maintenance data. From a technical perspective, the persistence of heterogeneous formats,
reliance on paper-based records, and the diversity of digital tools hindered the harmo-
nization of maintenance histories. From an organizational standpoint, the lack of shared
reference frameworks for equipment, services, and failure types limited the comparability
of data across facilities. These constraints were further exacerbated by data entry errors,
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disparities in training, and a limited feedback culture, all of which undermined overall
data quality [7,48].

Although CMMS initiatives have been launched, they remain only partially deployed,
lack full integration, and are seldom aligned with interoperability standards. This fragmen-
tation restricts longitudinal traceability and the automation of analytics, reinforcing the gap
between technical infrastructures and decision-making requirements [3,14,16].

Nevertheless, successful digital transformation efforts in other Moroccan public sec-
tors, such as the digitization of land services led by the national land registry agency
(ANCFCC) [71] using a cloud-based and interoperable infrastructure, demonstrate that
alignment with open standards such as FHIR, supported by scalable platforms and shared
governance, is a viable path forward [72].

In this regard, the present work initiates a modernization trajectory based on the
progressive utilization of hospital data to support decision-making. It acts as a bridge
between current maintenance practices and the objectives of smarter hospital ecosystems,
where interventions are guided by predictive, optimization, and automation mechanisms.
By generating a dataset compatible with evolving digital tools, this work prepares the
ground for integrating intelligent components such as sensors, alert systems, and dynamic
dashboards into a unified architecture oriented toward performance, safety, and efficiency.
This incremental trajectory is particularly strategic in resource-constrained contexts, where
intelligent reuse of existing infrastructures is preferable to costly technological overhauls.

In addition, the interpretation of derived indicators and predictive results provides
valuable operational insights. Corrected MTTR distributions revealed that Operating
Rooms and Intensive Care Units concentrated the highest levels of criticality, confirming
that predictive strategies should prioritize services where downtime directly compromise
patient safety. The comparative evaluation of predictive models further reinforced this
point: while the full dataset reflected the inherent imbalance and noise of real hospi-
tal data (AUROC = 0.65), the balanced 2000-intervention subset achieved significantly
stronger discriminative performance (AUROC = 0.82). These findings illustrate that robust
preprocessing and methodological structuring, rather than massive instrumentation, are
decisive for enabling predictive readiness. By linking systemic constraints, reliability indi-
cators, and predictive performance, the study demonstrates that predictive maintenance
in LMIC hospitals is both feasible and strategically relevant when grounded in rigorously
structured datasets.

The next stage will leverage the structured dataset to develop supervised predictive
models for tasks such as intervention classification, short-term failure probability esti-
mation, and MTBF prediction. Algorithms including support vector machines, decision
trees, neural networks, and hybrid models will be evaluated with metrics adapted to the
imbalanced nature of hospital data. In the medium term, enriching the dataset with IoT
streams (temperature, electrical current, vibration) will support continuous monitoring
and early fault detection, progressively converging toward a unified CMMS–AI–IoT in-
frastructure. Finally, the integration of semantic web technologies, domain ontologies,
and intelligent decision-support systems offers promising avenues for overcoming current
limitations. Incorporating technical, clinical, and economic dimensions at the design stage
of maintenance policies thus becomes a strategic lever for aligning performance, safety, and
cost-effectiveness objectives [73].

6. Conclusions
This work establishes the foundations of a predictive maintenance system tailored

to biomedical equipment in Moroccan public hospitals. Starting from heterogeneous and
non-standardized sources, a structured methodology enabled the creation of a reliable,
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interoperable, and prediction-ready dataset. Beyond the national context, the proposed
approach illustrates how hospital maintenance data can be systematically transformed into
an AI-compatible resource, even in environments characterized by limited digital maturity
and fragmented information systems.

The results revealed major imbalances, including the predominance of corrective
interventions and partial CMMS coverage, highlighting the urgent need for proactive
strategies grounded in historical evidence. By empirically validating the feasibility of
dataset structuring in real hospital settings, this study demonstrates that both technical and
organizational barriers can be effectively mitigated through systematic, reproducible, and
transferable processes.

The structured dataset therefore represents a concrete first step toward the intelligent
exploitation of maintenance information for predictive purposes. The methodology, being
replicable and adaptable, can be extended across health systems with varying levels of
digital maturity, offering particular relevance for resource-limited contexts.

Future work will focus on deploying supervised learning models for failure prediction
and intervention classification, as well as integrating real-time IoT monitoring streams.
These developments will support the emergence of intelligent maintenance infrastructures
aimed at enhancing hospital performance, safety, and operational continuity.
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FMEA Failure Mode and Effects Analysis
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MTTR Mean Time To Repair
NLP Natural Language Processing
PdM Predictive Maintenance
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Appendix A

Table A1. Extended Data Dictionary.

N◦ Variable Name Type Unit Description Missing (%)
Before

Missing (%)
After

Included in
Core Dataset

Id
en

ti
fie

rs
&

Pr
ov

en
an

ce

1 internal_id Categorical Label Internal identifier generated by
the pipeline (e.g., iq_real_001) 0% 0% Yes

2 equipment_id Categorical Identifier
Official hospital
inventory number
(e.g., 9608/19)

0% 0% Yes

3 hospital_id Categorical Code Hospital code 0% 0% Yes

4 department Categorical Label Clinical department where the
device is used 3% 0% Yes

5 file_source Categorical Label Excel file name used as
data source 0% 0% No (merged)

6 sha256_checksum Categorical Hash SHA-256 checksum ensuring data
provenance and integrity 0% 0% Yes

7 file_uid Categorical Hash
Unique identifier automatically
assigned to each imported Excel
source file

0% 0% No (technical)

8 ingestion_timestamp Temporal ISO-Datetime
Exact time of ingestion
(YYYY-MM-DD HH:MM:SS)
logged for auditability

0% 0% No (technical)

9 last_update_timestamp Temporal ISO-Datetime Last modification or validation
timestamp of each record NA 0% No (technical)

10 checksum_verified Categorical Boolean
Indicates whether checksum
integrity was verified
(True/False)

NA 0% No (technical)

11 data_source Categorical Label Source of data (manual entry,
GMAO export, external file, etc.) 0% 0% No (technical)

C
on

te
xt

ua
l/

Te
ch

ni
ca

l

12 equipment_designationCategorical Label Designation or common name of
the device 2% 0% Yes

13 technology Categorical Label Equipment technology
(Analog/Digital/Hybrid) 6% 0% Yes

14 brand Categorical Label Manufacturer brand 7% 0% No (merged)

15 model Categorical Label Model or type 9% 0% No (merged)

16 brand_model Categorical Label Unified brand–model label NA 0% Yes

17 acquisition_date Temporal DD/MM/YYYY Date of acquisition 10% 0% Yes

18 commissioning_date Temporal DD/MM/YYYY Date of commissioning (first use) 10% 0% Yes

19 Operational_Age Numerical Years Operational_Age (time elapsed
since commissioning) NA 0% Yes

20 warranty_status Categorical Yes/No Indicates if the device is
under warranty 12% 0% Yes
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Table A1. Cont.

N◦ Variable Name Type Unit Description Missing (%)
Before

Missing (%)
After

Included in
Core Dataset

C
on

te
xt

ua
l/

Te
ch

ni
ca

l

21 warranty_end_date Temporal DD/MM/YYYY End date of warranty period 12% 0% Yes

22 estimated_end_of _
life_date Temporal DD/MM/YYYY Estimated end-of-life date of

the equipment 25% NA Yes

23 service_status Categorical Label Operational/Under
repair/Retired 5% 0% Yes

24 spare_parts_used Categorical Label Spare parts replaced 18% 5% No

25 CIn
Numerical
(ordinal) Scale 1–5

Internal Criticality Index
combining downtime, failure
frequency, and clinical importance

NA 0% Yes

26 location Categorical Label Room or unit location 20% 8% No

27 supplier_name Categorical Label Supplier or vendor name 18% NA No

Te
m

po
ra

lV
ar

ia
bl

es

28 intervention_date Temporal DD/MM/YYYY Maintenance intervention date 2% 0% Yes

29 failure_date Temporal DD/MM/YYYY Failure occurrence date 7% 0% Yes

30 repair_date Temporal DD/MM/YYYY Repair completion date 9% 0% Yes

31 downtime_hours Numerical Hours Total hours of downtime 12% 0% Yes

32 repair_duration Numerical Hours Duration of the repair 15% 0% Yes

33 intervention_year Numerical Year Extracted year of intervention
(for temporal grouping) NA 0% Yes

M
ai

nt
en

an
ce

/F
ai

lu
re 34 intervention_type Categorical Label Curative/Preventive/Minor

adjustment/External 0% 0% Yes

35 failure_type Categorical Label Failure category (electrical,
mechanical, software. . .) 5% 0% Yes

36 failure_criticality Categorical Low/Med/High Failure severity level 20% 0% Yes

37 intervention_status Categorical Label Completed/Ongoing/
Abandoned 4% 0% Yes

D
er

iv
ed

In
di

ca
to

rs

38 MTBF Numerical Days Mean Time Between Failures NA 0% Derived

39 MTTR Numerical Hours Mean Time to Repair NA 0% Derived

40 FR Numerical %/year
Annualized Failure Rate
normalized by equipment
and time

NA 0% Derived

41 DH Numerical Hours Downtime Hours per
intervention cycle NA 0% Derived
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