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Abstract

Artificial intelligence (AI) often suffers from high energy consumption and complex de-
ployment in resource-constrained environments, leading to a structural mismatch between
capability and deployability. This review takes two representative scenarios—energy-
first and performance-first—as the main thread, systematically comparing cloud, edge,
and fog/cloudlet/mobile edge computing (MEC)/micro data center (MDC) architectures.
Based on a standardized literature search and screening process, three categories of minia-
turization strategies are distilled: redundancy compression (e.g., pruning, quantization,
and distillation), knowledge transfer (e.g., distillation and parameter-efficient fine-tuning),
and hardware-software co-design (e.g., neural architecture search (NAS), compiler-level,
and operator-level optimization). The purposes of this review are threefold: (1) to unify
the “architecture-strategy—implementation pathway” from a system-level perspective;
(2) to establish technology-budget mapping with verifiable quantitative indicators; and
(3) to summarize representative pathways for energy- and performance-prioritized sce-
narios, while highlighting current deficiencies in data disclosure and device-side valida-
tion. The findings indicate that, compared with single techniques, cross-layer combined
optimization better balances accuracy, latency, and power consumption. Therefore, Al
miniaturization should be regarded as a proactive method of structural reconfiguration for
large-scale deployment. Future efforts should advance cross-scenario empirical validation
and standardized benchmarking, while reinforcing hardware-software co-design. Com-
pared with existing reviews that mostly focus on a single dimension, this review proposes a
cross-level framework and design checklist, systematizing scattered optimization methods
into reusable engineering pathways.

Keywords: Al miniaturization; cloud computing; edge computing; energy efficiency;
embedded systems

1. Introduction
1.1. Background

Since its inception, artificial intelligence (AI) has been regarded as a transformative
force for human society [1]. From early theoretical exploration in the 20th century to
real-world deployment in the 21st century, Al has consistently embodied the pursuit of
“machine intelligence” [2]. The public release of OpenAl’s large language model, ChatGPT
(developed by OpenAl, based on the Generative Pre-trained Transformer, GPT, architecture
launched in November 2022) [3], marked the entry of Al into a new era of interactivity and
sparked a global wave of technological enthusiasm [1].

Al has already achieved remarkable breakthroughs across multiple domains, including
visual recognition [4-6], natural language processing (NLP) [7,8], biomedical science [9],

Appl. Sci. 2025, 15, 10958

https://doi.org/10.3390/app152010958


https://doi.org/10.3390/app152010958
https://doi.org/10.3390/app152010958
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5166-1069
https://orcid.org/0000-0003-1130-7588
https://doi.org/10.3390/app152010958
https://www.mdpi.com/article/10.3390/app152010958?type=check_update&version=2

Appl. Sci. 2025, 15, 10958

2 of 24

and scientific computing [10]. However, these advances continue to be accompanied
by high resource requirements [10], high deployment costs [11], and increasing system
complexity [12], making Al more of an advanced tool for a privileged few, rather than
a foundational capability universally accessible to all [13]. Consequently, future priorities
should shift from merely improving performance toward lowering the barriers to diffusion
and enabling structural accessibility.

The successful deployment of Al depends not only on algorithmic capabilities but also
on the underlying infrastructure and computational frameworks [14]. In particular, within
the Internet of Things (IoT), more than ten billion devices have already been deployed
across smart cities [15,16], industrial automation [17], and healthcare monitoring [18],
requiring real-time sensing, analysis, and response [19]. Together, IoT and Al constitute the
two foundational pillars of intelligent systems [20].

Nevertheless, traditional centralized computing architectures have increasingly ex-
posed their limitations in terms of latency, bandwidth efficiency, and privacy [18]. Hybrid
cloud-edge computing has been proposed as a promising solution and has demonstrated
advantages in scenarios such as autonomous driving, smart cities, and intelligent man-
ufacturing [21]. Yet, current Al systems still lack structural adaptability to edge envi-
ronments [19]. On resource-constrained and power-sensitive devices, Al models often
struggle to achieve efficient, reliable, and sustainable on-device inference. This contradic-
tion highlights a core issue: today’s Al models exhibit widespread structural redundancy
and vulnerability when deployed in resource-limited scenarios.

1.2. Comparison with Existing Reviews

In recent years, a growing body of review studies have focused on the deployment
challenges and optimization strategies of Al in cloud and edge computing environments.
For example, Shi et al. [18] systematically reviewed the architecture and application scenar-
ios of edge intelligence; Gill et al. [22] concentrated on the integration of federated learning
and edge computing within 6G networks; Wang et al. [23] provided a comprehensive
survey covering device-side Al model optimization, hardware acceleration, and privacy
protection; Dantas et al. [24] summarized the applications of pruning, quantization, and
distillation techniques in machine learning; and Liu et al. [25] reviewed the evolution
of model compression technologies from early approaches to the large-model era, while
discussing future trends.

These works cover multiple levels—from system architecture and communication
networks to device-side optimization and model compression—and provide valuable ref-
erences for understanding Al deployment. However, most of them remain confined to a
single technical dimension, such as a specific compression technique or hardware optimiza-
tion strategy, and lack a holistic perspective that views Al miniaturization as a systemic
structural evolution. Moreover, existing reviews often evaluate Al systems primarily from
a performance perspective, with limited discussion of the structural contradictions between
performance, miniaturization, and deployability. Few distinguish between energy-first and
performance-first design trade-offs, and few offer a cross-level systemic viewpoint.

In contrast, this review not only summarizes existing methods but also proposes a
methodological framework and design checklist, thereby transforming fragmented op-
timization approaches into reusable engineering pathways to address the limitations of
prior reviews.

This review addresses the critical mismatch between Al capability and deployability,
particularly the unsustainable growth of model size, computational demand, and energy
cost. The central question is how Al miniaturization strategies can systematically trans-
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form this contradiction into actionable engineering pathways under both energy-first and
performance-first deployment scenarios.

To contextualize these contributions, Table 1 summarizes representative review studies
on Al miniaturization and related topics, highlighting their coverage, main contributions,

and limitations.

Table 1. Comparison of representative reviews on Al miniaturization and related topics.

Reference Source Coverage Theme Main Contribution Limitation
Edge intelligence =~ Systematic overview of edge .
Zhou et al., 2019 [19] Proc. IEEE architectures intelligence and L.m.nted.focgs on mod.el
I . miniaturization strategies
and applications deployment architectures
Federated learnin Analysis of collaborative Communication-oriented,
Duan et al., 2023 [22] IEEE COMST "Ng intelligence in 6G and little emphasis on
+ edge computing . o
edge networks Al miniaturization
Comprehensive review of
Wang et al., 2025 [23] ACM CSUR On-device deV1.cej51d.e model Lacks cross-layer/ .
Al models optimization and system-level perspective
hardware acceleration
. . . . Algorithm-level focused,
Dantas et al., 2024 [24] ApPlled Model compression Su‘mrr‘larlzefi pruning, limited discussion on
Intelligence review quantization, distillation, etc.

Liu et al., 2025 [25]

Deng et al., 2020 [26]

Frontiers in

Evolution of

Reviewed compression
methods from early CNNs to

system evolution

Insufficient analysis of
adaptability and

Robotics & Al model compression 7
large models energy efficiency
Proposed taxonomy of edge More conceptual, limited
IEEE ToT | Edge intelligence intelligence applications, discussion on energy

+ Al confluence

challenges, and

efficiency and

future directions deployment trade-offs

)

(ii)

(iii)

(iv)

The main contributions of this review can be summarized as follows:

Systematic comparison of representative computing architectures. We summarize
and compare cloud computing, edge computing, fog computing, cloudlet, and MDCs,
analyzing their respective advantages and limitations in terms of latency, energy
efficiency, cost, and structural adaptability. This provides insights into deployment
constraints under different computing paradigms;

Distillation of three core miniaturization strategies. We categorize existing scattered
research into three strategic approaches—redundancy compression, knowledge trans-
fer, and hardware—software co-design—and organize representative methods into a
unified classification framework;

Proposal of three structural design principles. Inspired by the development of
embedded systems, we propose three principles for Al miniaturization: reducing
the execution burden on end devices, enhancing native computational capability
through hardware-software co-design, and balancing local intelligence with central-
ized Al This emphasizes that miniaturization is not merely model compression but
structural reconfiguration;

Construction of a practice-oriented design framework. Building on the architectural
comparison, strategic pathways, and structural principles, we propose a practice-
oriented framework for Al miniaturization, offering methodological references for
deployment under both energy-first and performance-first scenarios.



Appl. Sci. 2025, 15, 10958

40f24

1.3. Methodology

To ensure the systematicity and reproducibility of this review, the study follows
the general protocols of systematic reviews. Regarding database selection, the relevant
literature was retrieved from Scopus, IEEE Xplore, ACM Digital Library, and Web of Science
within the time frame of 2015 to June 2025.

Scope of the review. In total, 120 publications (2015-2025) were systematically re-
viewed, including 35 on model compression, 28 on hardware-software co-design, 22 on
knowledge transfer, and 15 on deployment case studies. This quantitative coverage high-
lights both the breadth and the focus of the present review.

The search keywords included the following: “Al miniaturization,

s

edge intelligence,”
“model compression,” “low-power Al,” “deployment,” and “embedded systems.”

The following inclusion and exclusion criteria are applied.

Inclusion criteria were as follows:

(i) publications written in English;

(i) works closely related to Al miniaturization, deployment architectures, or energy
efficiency optimization;

(iii) review papers or high-quality (frequently cited) research articles.
Exclusion criteria were as follows:

(i) non-English publications;

(ii) works without full-text availability;

(iii) papers weakly related to the topic.

The screening workflow is documented in the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) diagram as shown in Figure A1l in Appendix A.1.

1.4. Organization of This Review

Section 2 reviews the developmental trajectory of Al, systematically compares rep-
resentative computing architectures, and analyzes their differences in latency, energy
efficiency, cost, and structural adaptability. Section 3 focuses on the necessity of Al minia-
turization and proposes structural design principles and a practice-oriented framework
accordingly. Section 4 concludes the paper.

2. Existing Work
2.1. Exponentially Increasing Demands on Software and Hardware Resources for Al

Al is commonly defined as the use of machines to solve problems that would oth-
erwise require human intelligence [1]. This intrinsic association with “replacing human
capabilities” has, since its inception, endowed Al with seemingly limitless application
potential [27]. As a general-purpose technology [2], Al has indeed achieved remarkable
success across numerous domains, and its applications are now expanding to almost all
sectors of the economy.

One important indicator of Al’s technological progress is the exponential growth
in the parameter counts of leading Al models over the past two decades. As shown in
Figure 1, from 2003 to 2024 [28], model sizes developed under the leadership of different
entities—academia, industry, government institutions, and research consortia—have grown
significantly, with industry-led models displaying a particularly accelerated expansion
trend. This phenomenon aligns closely with the power—law relationship highlighted by the
Scaling Laws for Neural Language Models (2020), which shows an approximate power-law
correlation among model size, dataset volume, and performance.
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Figure 1. Number of parameters of notable AI models by sector, 2003—2024.

However, Al's remarkable capabilities come at a substantial cost, namely the continu-
ous growth of model size and energy consumption. Performance gains are fundamentally
underpinned by ever-increasing demands for computational power [3,10]. Taking two
high-impact subfields (natural language processing [4] and computer vision (CV) [6]) as an
example, as illustrated in Figure 2, the computation load of Al models has increased signif-
icantly over time. Early convolutional networks such as AlexNet [29] and ResNet-50 [4]
contained only millions of parameters and required only a few giga floating point opera-
tions (GFLOPs) per inference. With the introduction of transformer-based architectures,
model sizes and computational costs expanded rapidly, as seen in BERT [7], GPT-2 [30],
ViT-L/16 [6], and GPT-3 [31]. When GPT-4 [3] was released, its parameters were not offi-
cially disclosed. Therefore, our analysis focuses on compute and cost figures reported in
neutral sources [32] rather than speculative parameter estimates.

This exponential expansion highlights the urgency of model miniaturization strategies.
When Al models are concerned, the historical growth in graphics processing unit (GPU)
requirements for training major systems is summarized in Table 2, which illustrates the
rapid increase in computational demands from AlexNet to GPT-4. The table complements
Figure 2 by providing the corresponding training hardware and GPU-equivalent estimates,
thereby linking parameter scaling with infrastructure requirements.

As further examples, both computation load and computational resource requirements
have risen sharply, as quantitatively validated in multiple studies, such as OpenAl’s Al and
compute tracking reports (2023) and Patterson et al.’s systematic analysis of deep learning
energy consumption [10]. At the model-training level, GPU requirements for major Al
models have also increased dramatically over time [31]. The trajectory from AlexNet to
GPT-4, as summarized in Table 2, clearly illustrates this escalation. The rising GPU usage
and compute requirements reported in the table are consistent with the floating point
operation (FLOP) scaling trends highlighted by OpenAl’s Al and compute reports (2023)
and further corroborate the industry’s heavy reliance on massive computational resources
for training large-scale language models and multimodal systems in recent years.

Taken together, Figure 1 and Table 2 underscore a critical challenge: performance
improvements in Al have been achieved at the expense of continuous resource expansion,
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resulting in sharply rising energy consumption, hardware costs, and environmental bur-
dens. Consequently, optimizing computational efficiency while maintaining performance
has become one of the core scientific challenges in Al development [3,10,33]. This estab-
lishes the central contradiction between performance expansion and unsustainable energy
and deployment costs and sets the logical starting point for the subsequent discussion on
cloud-edge trade-offs and miniaturization strategies.
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n ViT-L/16 100 Q
% 1000 _ o
= et GPT-4 o
C 100 e <
o 100 ResNet-50 ..o a
= |  ResNets0 10 &
'CE 10 . o. eoe®’® : i
% AlexNet ... BERT-Base &
-8 1 e - 1 wn
v 2010 2512 2014 2016 2Q18 2020 2022 2024 %
£ 01 -
© L
© 0.01 0.1
& U .
Year
Figure 2. Growth of parameters and compute requirements of notable Al models, 2012-2024. Data
sources: Stanford Al Index 2024 /2025 and model technical reports [34—40].
Table 2. Training resources of representative Al models, 2012-2024. Sources: Stanford AI Index
2024 /2025 and OpenAl technical reports [34—40].
Model Name Parameter Size (B) Training Hardware Used Estimated Equivalent A100 GPUs
AlexNet (2012) 0.06 GTX 580 x 2 ~0.01 A100-equivalent
BERT-Large (2018) 0.34 Tensor Processing Unit v3 x 64 ~4 A100 GPUs
GPT-2 (2019) 15 V100 x hundreds ~50 A100 GPUs
GPT-3 (2020) 175 V100 x 3640 ~2000 A100 GPUs
GPT-4 (2023) Not disclosed; A100 x 25,000+ ~25,000 A100 GPUs

Not disclosed; energy-first
deployment (OpenAl, 2024)

Not disclosed, but energy-first

GPT-4 Turbo (2024) deployment (undisclosed)

H100/A100 hybrid deployment

2.2. Cloud and Edge Computing Form a Trade-Off Solution for Existing Al Systems
2.2.1. Cloud Computing

The massive computational requirements of modern Al models often exceed the
capacity of individuals or small-to-medium enterprises. As a result, cloud computing has
become the mainstream platform for Al services, and any meaningful discussion of Al
development and deployment must involve cloud computing [34]. With its pay-as-you-go
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model and remote accessibility, cloud computing effectively addresses this challenge [35]
and serves as the backbone for training and deploying large-scale Al models.

According to application scenarios, cloud computing can be categorized into the
following types:

(i) Public Clouds. Platforms such as Amazon Web Services (AWS), Azure, and Google
Cloud require no local infrastructure, provide elastic scalability, and adopt a pay-as-
you-go model. These platforms form the foundation of large-scale Al deployment,
supporting services such as GPT-4 and Google Bard. However, they suffer from
limited data privacy [36], latency issues, and reduced customization due to shared
infrastructure. This classification and definition were formally provided by National
Institute of Standards and Technology (NIST) [41];

(if) Private Clouds. Represented by IBM Cloud Private and OpenStack, private clouds
offer enhanced security and customization, making them suitable for sensitive sectors
such as finance, healthcare, and government. Typical applications include medical
image analysis and banking risk models. However, they involve high construction
and maintenance costs [37];

(iii) Hybrid Clouds. Solutions such as Azure Stack and Amazon Outposts enable flexible
switching between local and cloud environments. These architectures are often
used in “cloud-based training and on-premises deployment” models, particularly for
industrial Al and autonomous driving. Yet, their management complexity remains a
major challenge;

(iv) Community Clouds. Typically used in consortia involving healthcare, research, or
public institutions, community clouds support resource sharing and cost distribution
across multiple organizations. Representative applications include federated diag-
nostic model training within healthcare alliances or GPU sharing among universities.
However, their user scope is limited, and governance issues remain significant [38];

(v) Edge Clouds. Platforms such as NVIDIA Edge Computing Platform (EGX), Huawei
Cloud Edge, and edge clouds operated by telecom carriers emphasize local processing
to reduce backhaul bandwidth consumption, thereby achieving low latency [12]. This
concept has already been incorporated into discussions of edge intelligence [19,42].

Overall, cloud computing provides the computational backbone for large-scale raw
data processing and Al model training. However, its strength in absorbing and processing
vast heterogeneous datasets also imposes tremendous pressure on centralized infrastruc-
tures, particularly when facing increasingly complex and diversified data streams [43].
According to NIST’s classical definition, cloud computing is characterized as a model of
on-demand self-service, measured service, resource pooling, rapid elasticity, and broad
network access [41]. Its proliferation has enabled highly efficient yet energy-intensive
support for Al

2.2.2. Edge Computing

The high centralization of cloud computing limits its ability to support real-time
applications, since tasks are executed in remote data centers that must be shared by large
numbers of users, with resource allocation often guided by economic efficiency. In this
context, edge computing has gradually emerged as a standard approach to alleviating
the computational burden on the cloud, particularly for data-intensive and real-time Al
applications [26]. Targeting Internet of Things (IoT) and smart device scenarios, edge
computing preprocesses raw data locally, thereby reducing transmission latency and cloud-
side load [44].
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In recent practice, edge computing has evolved into multiple architectural forms
designed to optimize performance in specific application scenarios. The four most repre-
sentative categories include the following:

(i) Fog Computing. Proposed and formalized by Cisco, fog computing emphasizes
pushing computation and storage downward to network-layer nodes closer to the
data source, thereby achieving lower latency and higher reliability [45];

(ii) Cloudlet Computing. Introduced by Satyanarayanan, this concept involves deploying
small-scale virtualized data centers near wireless access points, enabling mobile
devices to access low-latency computational support over wireless connections [46];

(iii) Mobile Edge Computing. Standardized by the European Telecommunications Stan-
dards Institute (ETSI), MEC features deep integration with telecommunication access
networks. Typical applications include vehicular networks, emergency response
systems, and the industrial IoT [47] (ETSI MEC White Paper, 2014/2019/2022);

(iv) Micro Data Centers (MDCs). Designed to replicate full data center functionality at the
edge, MDCs are suitable for high-investment scenarios such as industrial automation
and remote environmental monitoring [42].

Overall, edge computing is not a replacement for cloud computing but rather a
strategic complement, especially for latency-critical and privacy-sensitive applications [22].
Research in edge intelligence suggests that only through a rational partitioning of the cloud-
edge boundary can system-level trade-offs between performance and energy consumption
be achieved [19].

2.3. Al Miniaturization Strategies and Technical Pathways

With the widespread adoption of Al, the demand for computational power has risen
sharply, primarily driven by the exponential growth in model size. Kaplan et al. (2020)
revealed a power—law relationship among model scale, dataset volume, and performance,
explaining why accuracy improvements often require exponential increases in computa-
tional resources [33]. Recent surveys indicate that redundancy reduction (e.g., pruning,
quantization, and distillation), device-side optimization, and cross-layer compiler/operator-
level co-optimization have gradually formed a systematic methodology [23-25,48].
These studies provide the methodological starting point for the three core strategies
discussed below.

As shown in Figure 3 [28,32], since 2019, the number of chips used for large-scale
training has expanded dramatically, with associated hardware costs and energy consump-
tion also escalating sharply, as documented in the Stanford Al Index 2024 /2025. If such
trends persist, computational and energy requirements may continue to rise beyond sus-
tainable limits [49]. Together with Figure 2, which depicts the exponential scaling of model
parameters and FLOPs, and Table 3, which summarizes the escalating training costs and
diminishing marginal gains across frontier Al models, these results highlight that perfor-
mance improvements achieved by hardware stacking entail unsustainable growth in energy
and financial overhead. With power consumption emerging as a hard constraint on further
Al development, miniaturization is a necessary and irreversible trend [50].
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Figure 3. The unchecked expansion of Al systems is unsustainable. This conclusion has been echoed
in multiple studies [10].

Table 3. Training costs and performance gaps of frontier AI models, based on data from Stanford Al
Index Reports 2024 [3,32].

Year Model Training Cost (USD) log10(Cost) Metric (Elo Ranking) Value (%)
2017 Transformer ~670 2.83 - -
2019 RoBERTa Large ~160,000 52 - -
2023 GPT-4 ~79,000,000 7.9 Top-1 vs. Top-10 gap 11.9
2023 GPT-4 ~79,000,000 7.9 Top-1 vs. Top-2 gap 49
2024 Llama 3.1-405B ~170,000,000 8.23 Top-1 vs. Top-2 gap 0.7

In summary, since power consumption has become a hard constraint on Al develop-
ment [51], miniaturization is not only a necessity but also an irreversible trend.

2.3.1. Major Strategies for Al Miniaturization

The development of Al fundamentally depends on three key elements: models,
data [33], and computational resources. Therefore, efforts toward miniaturization must
simultaneously target all three dimensions, giving rise to three core strategies: redundancy
reduction, knowledge transfer, and hardware-software co-design [52-54].

(1) Redundancy Reduction

The central idea of this strategy is to simplify model structures by removing unneces-
sary complexity. Several representative techniques include the following:

(i) Model Pruning [52]. By removing unimportant neurons or connections, pruning
reduces model size. Han et al. introduced a three-step approach consisting of prun-
ing, quantization, and entropy coding, achieving up to a 49 x compression ratio on
CNNs. However, pruning remains challenging in large-scale transformer models.
Recently, movement pruning was proposed to adaptively select sparsity patterns dur-
ing fine-tuning based on gradient migration strength, achieving significantly greater
sparsity while maintaining a comparable level of accuracy. This method has become
representative of adaptive pruning [55];

(ii) Quantization. Reducing the parameter precision from 32 bit to 8 bit or lower can signif-
icantly decrease storage and computational overhead [56]. Representative approaches
include INT8 quantization combined with quantization-aware training (QAT), which
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(iii)
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(iii)

(4)

maintains accuracy while achieving acceleration and compression [56]. More recently,
FP8 formats have been adopted for training and inference, reducing bandwidth and
memory usage while improving throughput [57]. Even more aggressive 4-bit methods
such as SmoothQuant (2023), Activation-aware Weight Quantization (AWQ) [58], and
GPTQ [59] further compress parameters while preserving robustness, making the
deployment of language models (LLMs) on consumer-grade GPUs feasible;
Low-Rank Decomposition [60]. This technique approximates weight tensors through
matrix factorization, thereby reducing computational complexity. It is commonly
applied to compress fully connected layers or attention weights;

Lightweight Architecture Design [61]. Models such as MobileNet and ShuffleNet,
which are based on depthwise separable convolutions or channel shuffling, are specif-
ically designed for mobile deployment.

Knowledge Transfer

Knowledge Distillation [53]. Small models are trained to mimic the outputs of larger models.
Hinton et al. first proposed the use of “soft labels” to transfer knowledge effectively;
Parameter Sharing [62]. Sharing weights across related tasks reduces the total number
of parameters, thereby improving efficiency;

Transfer Learning. Cross-domain applications are enabled by fine-tuning pretrained
models or extracting transferable features;

Parameter-Efficient Fine-Tuning. Recent methods such as Low-Rank Adaptation
(LoRA) [63] freeze the base model weights while introducing only low-rank adapta-
tion matrices, significantly reducing the number of trainable parameters. Building on
this, Quantized Low-Rank Adaptation (QLoRA) [64] combines four-bit weight quan-
tization with the LoRA paradigm, enabling the efficient fine-tuning of large models
even in single-GPU or low-memory environments. These approaches have become
critical techniques for adapting large models to resource-constrained platforms.
Hardware-Software Co-Design

Neural Architecture Search [65]. NAS automates the design of model architec-
tures under hardware constraints. For example, EfficientNet employs a compound
scaling strategy to balance depth, width, and resolution, achieving both efficiency
and accuracy.

Computation Graph Compilation Optimization [48]. At the framework level, Tensor
Virtual Machine (TVM) [48] enables end-to-end operator generation and tuning; Open
Neural Network Exchange (ONNX) Runtime [55] and Accelerated Linear Algebra
(XLA) [66] accelerate inference through graph fusion and cross-hardware optimization;
and NVIDIA TensorRT (TensorRT) further leverages operator-level optimizations on
GPUs to deliver low latency and high throughput.

Deployment-Specific Optimizations [54]. These include caching strategies, batch-
size tuning, and operator fusion. More recently, research has proposed KV cache
compression and quantization methods. For instance, ZipCache [67] employs saliency-
based selection to reduce redundant cache entries, significantly lowering memory
footprint while preserving accuracy in long-context inference.

Integration of Strategies.

It should be emphasized that these three categories of strategies are not mutually

exclusive but rather interdependent and complementary. They are often combined into

practical hybrid optimization pipelines [25,68,69].

2.3.2. Major Directions/Scenarios for AI Miniaturization

The application scenarios of Al miniaturization can be broadly categorized into

two deployment priorities: energy-first systems and performance-first systems. Each
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emphasizes different optimization strategies under specific constraints, and representative
cases have already emerged in practice.

(1) Energy-First Systems

Energy-first systems are typically deployed in resource-constrained environments
such as wearable devices, sensor networks, and low-power edge nodes. Their primary
objective is to extend system lifetime under limited battery supply.

The following representative optimization strategies are commonly considered.

(i) Early Exit. Terminates inference once a target confidence level is reached to avoid
redundant computation [70];

(if) Cascade Detectors. Use lightweight models for initial screening, followed by more
complex models only when necessary [25];

(iii) Adaptive Sampling and Hierarchical Pipelines. Reduce transmission frequency and
bandwidth consumption by structuring layered processing [19];

(iv) Dynamic Voltage and Frequency Scaling (DVFS)-aware Scheduling. Dynamically
adjusts voltage and frequency to reduce power consumption [42];

(v)  Small Context Windows. Restrict context length in language tasks to reduce memory
and computational overhead [64].

The following cases are commonly found in energy-first systems.

Case 1: Wearable Perception Agents.

In human activity recognition (HAR) tasks on wearable devices, lightweight neural
networks combined with early exit strategies have been shown to reduce inference latency
and energy consumption while maintaining high recognition accuracy [71,72].

Case 2: Embedded Vision and IoT Camera.

In embedded vision and IoT camera applications, optimized lightweight real-time
detection networks have been proposed to balance speed and accuracy while reducing
resource consumption [73].

Case 3: Industrial Material Inspection.

In resource-constrained construction scenarios, lightweight hybrid models have also
been explored. For example, an Ultrasonic-Al Hybrid eXtreme Gradient Boosting (XGBoost)
approach has been applied for material defect detection, demonstrating the poten-
tial of combining traditional machine learning with efficient sensing under limited
energy budgets [74].

(2) Performance-First Systems

Performance-first systems are mainly designed for complex perception tasks and
large-scale language understanding tasks. Their primary objective is to maintain high
accuracy and low latency while achieving the maximal compression of model size.

Representative optimization strategies:

(i) Split Computing. Partitions the model so that the early layers are deployed on the
device side, while subsequent layers are executed in the cloud [23];

(i) Near-End Refinement. Edge devices perform low-precision inference, while cloud
servers provide high-precision correction [75];

(iii) Speculative Decoding. Makes parallel predictions of multiple candidate outputs to
reduce response latency [76];

(iv) Key-Value (KV) Cache Reuse. Reduces redundant computation in large LLMs during
long-context tasks [67];

(v) Micro-Batching. Improves throughput and hardware utilization by running small-
batch parallel workloads. While widely adopted in cloud-based GPU scenarios, its
application to resource-constrained edge devices requires further exploration.
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(vi) Performance-first systems can be found in the following cases.

Case 1: In-Vehicle Perception Systems [77].

In autonomous driving perception tasks, split computing has been applied by de-
ploying feature extraction on the vehicle side while delegating complex inference to edge
servers. Empirical studies show that this paradigm reduces end-to-end latency while
maintaining high perception accuracy [78].

Case 2: Mobile LLM Inference.

For large language model inference on mobile devices, researchers have proposed
combining parameter-efficient fine-tuning (e.g., LoRA) with KV cache reuse to improve
inference efficiency and responsiveness. For example, MobiLoRA [79] leverages context-
aware cache optimization to significantly improve latency and throughput performance in
mobile LLM inference.

Case 3: Infrastructure Monitoring Robots.

In performance-critical construction monitoring, a 3D Vision Crack Robot has been
developed to enable real-time crack detection, combining 3D vision technologies with
edge inference to illustrate how Al-driven perception can be deployed in robotics under
stringent accuracy and latency requirements [80].

Taken together, the application scenarios of Al miniaturization reveal two polarized
deployment priorities: energy-first systems and performance-first systems. These scenarios
demonstrate that the three core strategies (redundancy reduction, knowledge transfer,
and hardware—software co-design) cannot be applied in isolation but must be flexibly
combined according to deployment demands. Looking ahead, case-driven research and
standardized practices will be critical to enabling the widespread adoption of low-power,
high-performance Al To concretize these insights, Table 4 summarizes how the strate-
gies presented in Section 2.3.1 are manifested in different combinations across these two
deployment types.

Table 4. Al miniaturization strategies across deployment scenarios.

Application Scenario Type Core Principle Applied Techniques
Redundancy Pruning, Quantization
Huawei Watch GT Series Energy-First Compression MindSpore Lite Optimization
HW-SW Co-Design Platform Adaptation
Pruning, Quantization
Redundancy Lightweight Architecture
NVIDIA Jetson Nano Energy-First Compression (e.g., MobileNet, ShuffleNet)
HW-SW Co-Design TensorRT Fusion
Deployment Optimization
NAS
Redundancy Lightweight Architecture
YOLOv5-Nano/v8-Nano Performance-First Compression Quantization (e.g., INTS8, FP16)
HW-SW Co-Design Custom Mobile Structure

MobileNetV3

DistilBERT / TinyBERT

Once-for-All (OFA)

Inference Engine Integration
Knowledge Distillation

Performance-First Knowledge Transfer (e.g., DistilBERT, TinyBERT)
Redundancy Transfer Parameter Sharing
Pruning
Knowledge Distillation
Performance-First Knowledge Transfer Weight Reduction

HW-SW Co-Design Structure Simplification

Supernetwork Distillation
Submodel Transfer
NAS + Multi-Platform Generation

Knowledge Transfer

Performance-First .
erto cemtrs Redundancy Compression
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3. Discussion and Recommendations
3.1. AI Miniaturization as a Key Step in Al Development

It is widely recognized that Al and its computational infrastructure have developed
rapidly. Al models continue to push performance boundaries, permeating the diverse
domains of daily life, work, and industry, giving the impression of entering an “Al for every-
thing” era. Yet behind this apparent prosperity lies a critical reality: the enormous resource
consumption of Al In terms of chip count, computational demand, energy consumption,
and model scale, Al development has exhibited exponential growth. This “resource hunger”
poses a severe constraint on the sustainable advancement of Al

Although the path of “unconstrained expansion” has yielded notable performance
gains, it has also introduced problems of high energy consumption, high costs, and high
deployment barriers. In the future, computational and energy resources cannot increase
without bound, and cost constraints may risk reducing Al from a technology that em-
powers the many to a privilege serving only a few. As a core technology entrusted with
driving societal transformation, Al should aim not merely for “peak performance” but for
“universal accessibility.” This echoes the “productivity paradox” identified by Brynjolfsson
et al. [2]: highly capable Al systems have not consistently translated into broad economic
productivity, largely due to barriers in deployment, accessibility, and integration.

Against this backdrop, a clearer developmental direction emerges: Al must evolve
toward miniaturization, low power consumption, and efficiency. Only in this way can Al
overcome excessive dependence on resources, integrate into a wider range of everyday
devices and practical scenarios, and become deployable, sustainable, and universally
accessible intelligent infrastructure.

3.2. Al Miniaturization: A Natural Evolution Rather than a Mere Compromise

When discussing the future of Al under the hard constraints of computational capacity,
cost, and energy, the concept of miniaturization frequently arises. However, Al miniatur-
ization should not be seen merely as a passive response to limitations; rather, it represents
an inherent and rational trajectory within the evolution of Al technologies. To regard it
solely as a supplementary deployment strategy to large models would underestimate both
its technological potential and its long-term significance. In fact, Al miniaturization can be
viewed as a natural evolutionary direction, rather than a temporary compromise.

While in high-precision, multi-task, cloud-centric applications, miniaturized models
may not match large models in absolute accuracy or overall performance, they demon-
strate remarkable adaptability in low-power and real-time edge deployment scenarios.
This explains why miniaturized models are often positioned as “fallback options” under
constrained conditions. Yet such a perception, though practically reasonable, does not
adequately capture their deeper role in the structural evolution of AL

Fundamentally, Al miniaturization seeks to realize rich intelligent functions within
limited resource budgets through optimal system architectures. This involves eliminating
redundancy, compressing computation, and controlling energy consumption to achieve
structural efficiency. Its foundation lies in understanding the boundaries of Al capability: large
models explore the limits of intelligence and sketch the blueprint, while miniaturization
translates that blueprint into deployable systems. Together, they form a complementary
relationship of “vision and realization.”

3.3. Trends in Al Miniaturization: Insights from the Evolution of Embedded Systems

As Al systems evolve toward efficiency, compactness, and ubiquity, the structural
trade-off between performance and scale becomes increasingly critical. In this context, the
historical evolution of embedded systems offers instructive reference. Embedded systems
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have advanced from cabinet-sized hardware to millimeter-scale chips, a trajectory enabled
by structural reconfiguration and high levels of integration.

By analogy, Al miniaturization should not be understood merely as compressing
models, but as a process of architectural reconfiguration, representational redesign, and
computational optimization aimed at improving energy efficiency. This broader ap-
proach can ultimately achieve a higher computational density and greater scalability in
real-world applications.

3.4. Reflections on Al Miniaturization, Productization, and Implementation Pathways

The functional drivers of Al can be broadly categorized into consumer-driven and
production-driven motivations. The release of ChatGPT by OpenAl is widely regarded as a
critical turning point that reignited the global wave of Al enthusiasm. Before this, although
Al technologies had been applied at length in key domains such as finance, industry, and
healthcare, they remained largely “invisible” to the public. ChatGPT, as the first highly
interactive and general-purpose application to capture public attention, marked a milestone
in the productization of AL With Al now attracting significant public interest, its role in
shaping both the economy and everyday life must be considered, and miniaturization and
its implementation pathways are particularly important.

3.4.1. The Expanding Role of Al Through Miniaturization

Although Al has achieved broad public recognition and been applied across multiple
fields, in terms of actual deployment structures, most applications still concentrate on
production-oriented domains such as industrial chains, supply chains, and infrastructure
services. This distribution suggests that while consumer-facing Al products enjoy high
visibility and user engagement, they primarily act as accelerators of technological diffusion
rather than the core engine of Al democratization.

Drawing from the experience of past industrial revolutions, the transformative power
of Al lies not only in technological breakthroughs but also in the deep restructuring of
production relations and value chains. From this perspective, Al should be considered
as an integral component of a new industrial revolution, with its core value being the
reconfiguration of productivity, rather than mere sensationalism at the level of perception.

Accordingly, the conceptual pathway of Al miniaturization should not be confined
to superficial goals such as “shrinking physical size” or “embedded deployment,” nor
should it merely cater to the limited computational capacities of consumer devices. The
recent consumer demand for miniaturized models is, to a large extent, a reactive response
to the large-model wave triggered by ChatGPT—essentially, the idea that “even low-end
devices must appear intelligent.” Such thinking is overly shaped by short-term economic
incentives, while overlooking the fundamental value of AL

A more constructive pathway for Al miniaturization should focus on enhancing
productivity while also ensuring deployability. From this standpoint, revisiting the devel-
opmental trajectory of embedded systems is particularly instructive. The miniaturization of
embedded systems was not simply a physical downsizing of general-purpose computers;
rather, it entailed systematic optimization of tasks, structures, and energy efficiency. This
process enabled autonomous decision-making and enhanced system responsiveness at the
device level. Such historical success provides crucial structural insights for the future of
Al miniaturization.

3.4.2. Not Just Making Al Smaller, but Making Al-Driven Devices Lighter

For Al systems, adaptability to the target environment is more important than merely
shrinking their size. The essence of miniaturization should not be understood as “making
Al systems smaller,” but as “reducing the execution burden on end devices.” Consequently,
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the design of Al systems should consistently account for task complexity, power bud-
gets, and inference pathways, shifting the design logic from “Can it run?” to “Can it run
efficiently and economically?”

The evolution of embedded systems reinforces this logic: their goal was never to
forcibly embed the full functionality of PCs, but rather to restructure tasks so that de-
vices could effectively assume them. This represents precisely the kind of embedded
mindset that Al miniaturization should draw upon: one centered on task definition, stream-
lining, standardization, and hardware-software co-design, rather than assumptions of
unlimited resources.

3.4.3. Co-Evolution of AI Chips and Models: Computation as an Endogenous
Structural Resource

In real-time applications with low to moderate computational complexity, Al should be
regarded as an endogenous component of device architecture rather than an external add-
on module. This requires the co-evolution of model structures and hardware architectures,
forming a co-design workflow.

Drawing from the co-development paradigm of embedded systems, Al miniaturiza-
tion should facilitate the migration of decision-making capabilities into the functional units
of devices. Instead of relying solely on a centralized Al system (e.g., cloud computing),
lightweight task-specific submodels can be distributed across device layers to enhance
responsiveness and deployment flexibility.

3.4.4. Ecological Symbiosis of AI Models: Integrating Local Intelligence with
Global Optimization

Future Al deployments will increasingly exhibit structural decentralization, multi-
node collaboration, and high real-time responsiveness. This trend points to an “ecological
symbiosis” architecture: each device integrates localized intelligent units or algorithms
tailored to its task requirements, enabling autonomous decision-making and collaborative
sensing. This shift parallels the evolution of embedded systems from purely logical control
to localized intelligent processing.

At the same time, centralized Al should transition from being the sole decision-maker
to serving as a coordinator and capability orchestrator, balancing local anomaly handling
with global optimization. Such a paradigm not only enhances system resilience and
resource efficiency but also alleviates the burden on centralized infrastructures.

3.5. Methodological Framework and Implementation Pathways

The preceding discussion indicates that Al miniaturization is not only a natural
trajectory of technological development but also exhibits differentiated demands across
application scenarios, typically categorized into energy-first and performance-first systems.
However, how to translate these technical pathways into actionable engineering processes
remains insufficiently systematized.

To address this gap, and building upon the methodological synthesis presented in
Section 2, this review proposes a general four-stage framework:

(i)  Profiling (Performance and Energy Characterization). Establishes quantitative profiles
of performance, latency, energy consumption, and memory footprint;

(ii) Partitioning (Computation and Communication Allocation). Divides computational
tasks and communication loads across cloud, edge, and device layers according to
system constraints;

(iii) Optimization (Constraint-Driven Combinatorial Tuning). Applies joint optimization
under multi-dimensional constraints, balancing accuracy, latency, energy efficiency,
and memory usage;
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Profiling

(iv) Validation (Standardized Verification). Conducts standardized evaluation and bench-
marking to ensure replicability, reliability, and fairness across deployment environments.

This framework aims to guarantee accuracy while simultaneously meeting constraints
on latency, energy, and memory, thereby providing a reusable implementation pathway
for Al miniaturization across diverse deployment scenarios. To provide a clearer view,
the overall workflow of the proposed framework is illustrated in Figure 4, where the four
stages are complemented by feedback loops and deliverables.

Optimization Validation
Pruning Accuracy
Quantization # Latency
T DVEFS Energy
artitionaing Cache reuse Memory Deliverables
| Device-Edge-Cloud Checklists
Cost Estimation Scripts
No

Reports

Figure 4. Practical design framework for Al miniaturization.

3.5.1. Profiling (Performance and Energy Characterization)

In Figure 4, the first step is to profile the performance and energy characteristics of
the existing model in order to identify the primary bottlenecks in system execution. Key
metrics to be measured include the following:

(i) Computational Overhead. The computational load and inference latency of individual
layers or operators;

(i) Memory Footprint. Peak memory usage of model weights and intermediate activations;

(iii) Communication Performance. Uplink and downlink bandwidth, as well as round-trip
latency;

(iv) Energy Distribution. Power consumption and runtime of different modules.

The total energy consumption can be expressed as follows:
Etotal = )_ Piti 1)
i

where P; denotes the power consumption of module 7, and £; is its execution time.
The outcome of this step is a bottleneck inventory and an intuitive performance profile,
providing decision support for subsequent stages.

3.5.2. Partitioning (Computation and Communication Allocation)

The second step is to determine how computation and data transmission should be
partitioned across devices, edge nodes, and the cloud.
Common strategies include the following:

(i) Device—Cloud Split Computing. Partitioning model layers between local devices and
the cloud;

(ii) Cascade/Two-Stage Filtering. Lightweight local models perform preliminary screen-
ing before invoking more complex remote models;

(iii) Edge-Side Refinement. Performing low-precision inference at the edge, with cloud
servers providing high-precision correction;

(iv) Streaming or Batch Transmission. Selecting transmission modes depending on band-
width and latency constraints.
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The end-to-end latency can be expressed as follows:

ttotal = tdevice + tnetwork + tcloud (2)

where {4evice denotes the processing latency at the device side, t,otwork the transmission
delay, and t 4,4 the processing latency at the cloud side.

If the actual latency or energy consumption exceeds predefined constraints, the parti-
tioning must be reconsidered or passed to the optimization stage.

3.5.3. Optimization (Method Mapping and Combination)

The third step is to map the identified bottlenecks to appropriate optimization methods.
Common approaches can be grouped into the following categories:

(i) Latency Reduction. Compiler and runtime optimizations [81], operator fusion, specu-
lative decoding, and parallel or pipelined execution;

(i) Energy Reduction. Early exiting, adaptive sampling and hierarchical pipelines, DVFS
scheduling, and compressed or pruned data transmission;

(iii) Memory Footprint Reduction. Low-bit quantization (INTS8, FP8, four-bit), cache
compression or quantization, and activation checkpointing;

(iv) Model Size Reduction. Structured or movement pruning, knowledge distilla-
tion, low-rank decomposition, and parameter-efficient fine-tuning methods such
as LoRA/QLoRA;

(v) Collaborative Optimization. Device-cloud partitioning, near-end refinement, and
cache reuse.

The guiding principle during optimization is to prioritize lossless or near-lossless
techniques; methods with minor accuracy degradation can be considered next; and only as
a last resort should techniques involving noticeable performance trade-offs be applied in
exchange for gains in energy efficiency or latency.

3.5.4. Validation (Verification and Regression)

The final step is to conduct a standardized validation of the optimized system to
ensure that the solution is reliable and practical under real-world operating conditions.
Key evaluation metrics typically include the following:

(i) Model Accuracy. Metrics such as classification accuracy and detection precision;
(ii) Latency. Not only mean latency but also tail latency measures such as P95;

(iii) Energy Consumption per Inference. The energy required for an inference pass;
(iv) Peak Memory Usage. Maximum memory footprint during execution;

(v) Stability. Indicators such as thermal behavior, throttling events, and error rates;
(vi) Cost. Both hardware acquisition and operational expenses.

If the results fail to meet the predefined requirements, the process should revert to the
previous step for adjustment. It is recommended that the entire workflow be implemented
as standardized scripts and reporting templates, enabling repeated execution under varying
hardware and network conditions to ensure reproducibility and comparability.

3.6. Design Checklist

The proposed methodological framework provides a complete workflow from analysis
to optimization. However, for practical deployment, a concise design checklist is also
required to guide decisions under different objectives. To this end, we further distill the
framework into a comparative summary of the differentiated requirements of energy-first
and performance-first systems.
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As shown in Table 5, the checklist covers objectives, constraints, method selection,
trade-off outcomes, and validation, serving as a practical reference tool for system deploy-
ment and evaluation.

Table 5. Design checklist for Al miniaturization under energy- and performance-first priorities.

Dimension Energy-First Systems Performance-First Systems
. Maximize battery lifetime; reduce overall Minimize end-to-end latency;
Objective ) .
energy consumption increase throughput
. Limited memory capacity and strict Accuracy floor must be satisfied; higher
Constraints
energy budget hardware or network cost acceptable
Early exit (e.g., multl-branF: h netw01jks), Split computing, near-end refinement,
Methods cascaded detectors, adaptive sampling, speculative decodine. cache reuse
DVFS-based scheduling p &
Energy saving and longer device lifetime, but ~ Lower latency and higher throughput, but
Trade-offs possible minor accuracy or increased power consumption and
latency degradation deployment cost
N Focus on power profiling, runtime stability, Focus on latency distribution, throughput,
Validation o s
and reproducibility across hardware and system scalability across workloads

This checklist not only contrasts the objectives and constraints of energy-first versus
performance-first systems but also clarifies the trade-offs resulting from different method
selections. By directly linking design decisions with validation standards, the checklist
functions as a “bridge” between the strategic review in Section 2 and the methodological
framework in Section 3, thereby offering more actionable guidance for practical deployment.

4. Conclusions

This review provided a systematic review of the key bottlenecks in Al related to energy
consumption, computational demand, and deployment efficiency. It summarized three
core strategies for Al miniaturization: redundancy reduction, knowledge transfer, and
hardware—software co-design. Based on the differentiated requirements of energy-first and
performance-first application scenarios, this review proposed a four-stage methodological
framework (profiling — partitioning — optimization — validation) together with a design
checklist. These tools offer a unified and process-oriented approach for system design
under varying objectives.

From a developmental perspective, Al miniaturization is shifting from isolated point-
level optimizations toward cross-layer integration: pruning, quantization, and distillation
at the model level continue to enhance deployability, while split computing, speculative
decoding, and runtime optimization at the system level significantly improve end-to-end
performance. Compared with existing surveys, the distinctive contribution of this work
lies not only in synthesizing methodological strategies but also in introducing framework-
and checklist-based tools that translate fragmented optimization techniques into reusable
engineering pathways.

Future research should further expand cross-scenario empirical validation and stan-
dardized benchmarking, while reinforcing hardware—software co-design, in order to ad-
vance Al systems toward greater efficiency, sustainability, and accessibility. Although
the number of case studies included here remains limited, the proposed framework and
checklist provide actionable tools for subsequent research and practice, helping to address
the gap left by prior surveys that have often focused on a single dimension.
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Abbreviations

The following abbreviations are used in this manuscript:

Al Artificial Intelligence

AWQ Activation-aware Weight Quantization
AWS Amazon Web Services

CcvV Computer Vision

DVEFS Dynamic Voltage and Frequency Scaling
EGX NVIDIA Edge Computing Platform
ETSI European Telecommunications Standards Institute
FLOPs Floating-Point Operations

FP16 16-bit Floating Point

FP8 8-bit Floating Point

GFLOPs Giga Floating-Point Operations

GPU Graphics Processing Unit

GPT Generative Pre-trained Transformer
HAR Human Activity Recognition

INTS8 8-bit Integer

TIoT Internet of Things

KV Cache Key-Value Cache

LLM Large Language Model

LoRA Low-Rank Adaptation

QLoRA Quantized Low-Rank Adaptation

MDC Micro Data Center

MEC Mobile Edge Computing

NAS Neural Architecture Search

NIST National Institute of Standards and Technology
NLP Natural Language Processing

OFA Once-for-All

ONNX Open Neural Network Exchange
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses

QAT Quantization-Aware Training
TensorRT  NVIDIA TensorRT

VM Tensor Virtual Machine
XGBoost eXtreme Gradient Boosting
XLA Accelerated Linear Algebra
YOLO You Only Look Once
Appendix A

Appendix A.1. PRISMA Flow Diagram

The PRISMA flow diagram shows the systematic screening and selection process in
full detail.
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Figure A1l. PRISMA flow diagram illustrating the literature identification, screening, eligibility
assessment, and final inclusion process of this review.

Appendix A.2. Data and Normalization Disclosure

This appendix consolidates the data sources, normalization methods, and limitations
for all figures and tables (Figures 1-3; Tables 2—4) as well as representative case studies
cited in this review.

(1) Data Sources

Figure 1 (Model parameters by actor, 2003-2024): Data obtained from Stanford Al
Index 2024 /2025 and OpenAl Al and Compute reports. Models were classified as Academia,
Industry, or Collaboration based on the primary affiliation of the lead institution reported in
the Al Index. Specifically, models led by universities or research institutes were categorized
as Academia; those led by companies as Industry; and joint efforts as Collaboration. Only
milestone models with parameter counts verifiable from neutral sources were included.
GPT-4 data are excluded from Figures 2 and 3 due to lack of disclosure.

Figure 2 (Model parameters and compute, 2012-2024): Representative models with
references available in the bibliography were retained as follows.

AlexNet (2012): Krizhevsky [29]

GPT-2 (2019): OpenAl GPT-2 technical report.

GPT-3 (2020): Brown et al. [31]

Other milestones (e.g., ResNet-50, BERT, ViT, GPT-4) were excluded to maintain
consistency with the reference list.

Table 2 (Training hardware and GPU-equivalents): Hardware counts taken from
Stanford Al Index 2024/2025 and model technical reports. GPU-equivalents (A100-
equivalent) are reported only when provided by neutral sources; no speculative conversions
were introduced.

Figure 3 (Hardware scaling and energy/cost trends, 2019-2025): Compiled from
Stanford Al Index 2024/2025 and neutral analyses [10]. Reported values are indicative
trends, not precise year-by-year measurements.

Table 3 (Training costs and performance gaps): Costs derived from Stanford Al Index
2024/2025 (R&D section). Performance metrics (Top-1 vs. Top-k differences) taken from Al
Index benchmark datasets.

Table 4 (Strategy—Scenario summary): Examples (Huawei Watch GT, Jetson Nano, You
Only Look Oncev5-Nano (YOLO), MobileNetV3, DistilBERT, Once-for-All) collected from
published papers, official documentation, and review surveys.
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References

(2) Definitions and Normalization

Parameters (B): number of trainable parameters in billions.

Compute (FLOPs): training floating-point operations FLOPs; measured when avail-
able, otherwise estimated.

Estimation formula (for transformers):

FLOPs =2 x N x T, T = 200 (A1)

where N is parameter size (in billions) and T is sequence length (default 200 tokens).
CNN FLOPs: AlexNet, GPT-2, and GPT-3 FLOPs taken as measured inference FLOPs
at standard input size.
GPU-equivalent (A100-eq): normalization applied only if provided by neutral sources.
Training cost (USD): reported expenditure at time of publication; no inflation adjustment.
Energy (E): Energy figures, when mentioned, are quoted directly from neutral reports
without any site-level normalization, PUE-based adjustment, or secondary computation.

(3) Estimation vs. Reported Values

Figure 2: FLOPs are estimated for transformers using Equation (A1) but measured
for AlexNet.

Table 2: Hardware counts were reported by the literature.

Figure 3: Presents trend indicators only, not tied to individual model training runs.

Table 3: Costs and performance gaps reported directly by Stanford Al Index, without
secondary estimation.

(4) Uncertainty and Caveats

Undisclosed data (e.g., GPT-4 parameters) are excluded from quantitative comparison
and are noted only in background discussions.

Community estimates: not included in figures/tables and cited separately as context.

Comparability limits: efficiency varies with datasets, optimizers, and precision. The
results are directional instead of forensic.

Mixed hardware deployments: Retained in original form (e.g., A100/H100 hybrid)
without conversion.

Revision risk: Later reports may update costs or chip counts, and this appendix reflects
sources available up to June 2025.
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