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Abstract

We investigate the quantum dynamics of entanglement and fidelity in the hyperfine struc-
ture of hydrogen atoms under dephasing noise, modeled via the Lindblad master equation.
The effective Hamiltonian captures the spin—spin interaction between the electron and
proton, with dephasing incorporated through local Lindblad operators. Analytical solu-
tions for the time-dependent density matrix are derived for various initial states, including
separable, partially entangled, and maximally entangled configurations. Entanglement is
quantified using the concurrence, while fidelity measures the similarity between the evolv-
ing state and the initial state. Numerical results demonstrate that entanglement exhibits
oscillatory decay modulated by the dephasing rate, with anti-parallel spin states displaying
greater robustness compared to parallel configurations, often leading to entanglement
sudden death. Fidelity dynamics reveal similar damped oscillations, underscoring the
interplay between coherent hyperfine evolution and environmental dephasing. These
insights elucidate strategies for preserving quantum correlations in atomic systems, with
implications for quantum information processing and metrology.

Keywords: quantum entanglement; fidelity; hydrogen atom; dephasing noise; lindblad
equation; hyperfine structure
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1. Introduction

In quantum mechanics, a comprehensive characterization of a composite system is
achievable, with the state of each subsystem defined by its quantum correlations with
others, leading to the formation of entangled states [1,2]. Quantum entanglement, dis-
tinguished by nonlocal correlations between separate physical systems [3-5], serves as a
foundational pillar of quantum technologies. The exploration of entanglement, the pri-
mary manifestation of quantum correlation, combined with the outcomes of quantum
measurement, has profoundly deepened our understanding and addressed numerous
physical problems [6,7]. Recent advances in quantum information processing (QIP) have
generated a wide array of insights, significantly expanding the literature on entangle-
ment and improving the performance of QIP and quantum metrology applications [8-13].
The pivotal role of entanglement in a wide range of applications has driven research into
higher-dimensional Hilbert spaces, revealing new facets of these correlations in multi-
particle quantum systems [14]. Furthermore, recent studies have demonstrated scalable
entanglement generation in trapped ion systems, enhancing the prospects for quantum
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computing [15], while investigations into entanglement swapping in photonic networks
have opened new avenues for quantum communication protocols [16]. In the study of
non-classical phenomena, the creation of such quantum correlations remains a central goal
in experimental quantum research.

Due to its remarkably straightforward configuration, the hydrogen atom has long
functioned as a fundamental basis for understanding quantum mechanics, yielding sig-
nificant revelations regarding electron-nucleus interactions in a broad range of physical,
chemical, and biological environments [17-20].

The hydrogen atom, while a cornerstone of quantum theory, also serves as a exemplary
model system within quantum information science due to its intrinsic bipartite quantum
structure. The coupled spin states of the electron and proton constitute a natural two-qubit
register, providing a well-defined Hilbert space for probing the dynamics of quantum
correlations [21]. The magnitude and character of these correlations, often measured via en-
tanglement monotones like concurrence and quantum coherence, are fixed by fundamental
physical constants—including the Planck constant, Boltzmann constant, and the electron
and proton gyromagnetic ratios—as well as atomic parameters such as the Bohr radius.

Within the hyperfine manifold, the ground-state sublevels manifest authentic quantum
entanglement at cryogenic temperatures. This non-classicality, however, is thermally
fragile; it decays with increasing temperature and is entirely extinguished above a critical
energy scale corresponding to E, ~ 5.35 x 107 eV. This phase transition is governed by
the thermal population redistribution among the hyperfine levels, where the interplay
between the hyperfine splitting energy and thermal fluctuations dictates the survival of
entanglement [22-24].

Recent investigations have identified nuclear-polarized states of hydrogen atoms
embedded in solid Hp matrices [22,25], revealing significant deviations from the Boltz-
mann distribution for the case of low temperature regimes [22-24], prompting intriguing
questions about quantum effects in these systems. Recent advancements in quantum re-
search have unveiled novel mechanisms governing entanglement and coherence within
hydrogen atomic systems. Notably, the cosmological expansion of the universe has been
demonstrated to trigger the onset of quantum entanglement in the hyperfine structure
of hydrogen atoms, leading to a phenomenon termed “entanglement sudden birth” over
extended cosmological timescales [26]. More recently, employing the Lindblad master
equation has elucidated the time-dependent decay of quantum coherence and purity in
hyperfine states, highlighting the impact of environmental dissipation on maintaining
quantum properties in these atomic systems [27].

This work undertakes a dynamical analysis of two key quantum information met-
rics—entanglement and state fidelity—within the hydrogen atom’s hyperfine-interacting
spin system. We focus specifically on its open-system evolution when coupled to a pure-
dephasing environment, a process formally described by a Lindblad-type master equation.
Our methodological approach centers on obtaining closed-form, time-dependent expres-
sions for the system’s density operator. These solutions, which span a spectrum of initial
conditions from product states to maximal entanglement, enable the systematic tracking
of quantum correlations via the concurrence and entanglement of formation measures.
Simultaneously, we employ fidelity as a metric to assess the proximity of the decohering
state to designated target states throughout its temporal trajectory. Our contributions
include elucidating the interplay between coherent spin-spin interactions and dissipa-
tive dephasing effects, demonstrating phenomena such as oscillatory entanglement decay;,
sudden death in specific subspaces, and differential robustness between anti-parallel and
parallel spin states. These findings offer valuable insights into mitigating decoherence in
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atomic quantum systems, with potential implications for enhancing the performance of
quantum information processing and metrology protocols.

The manuscript is organized as follows. Section 2 outlines the system Hamiltonian
and introduces the Lindblad formalism for modeling dephasing dynamics in the hyperfine
structure, including exact analytical solutions for key initial states. Section 3 presents the
measures of entanglement and fidelity, together with their formal expressions for the model
under consideration. Section 4 explores the time-resolved dynamics of entanglement and
fidelity in open quantum systems, supported by numerical results and illustrative figures.
Finally, in Section 5 we provide a summary of the key findings of the manuscript.

2. Hyperfine Coupling in Hydrogen and Lindblad Dynamics

The origin of the hyperfine structure in atomic hydrogen is the magnetic dipole-dipole
coupling between the electron and proton spins. For the ground state (1s), the orbital
angular momentum is zero ({ = 0), which precludes any orbital contribution to the
magnetic field at the nucleus. The resulting energy level splitting is, therefore, a direct
manifestation of the spin—spin interaction. Consequently, the hyperfine splitting originates
entirely from the spin-spin magnetic dipole coupling [20]. This interaction is responsible for
the celebrated 21 cm (1420 MHz) line, which has profound implications in radio astronomy
and precision spectroscopy [28].

A rigorous description can be formulated using first-order perturbation theory, where
the interaction Hamiltonian is proportional to the scalar product of the nuclear and electron
spin operators. When an external magnetic field is applied, the Hamiltonian generalizes to
include Zeeman-type contributions, producing tunable level splittings that are of immense
importance for quantum sensing and metrology applications [28-30].

2.1. Hyperfine Hamiltonian and Spin Basis

For the ground state, the effective hyperfine Hamiltonian can be expressed as

Hy=Boe op = B(U,EQ)UJEP) + 0}(,")@(’0) + @fe)az(p)), 1)

where B denotes the hyperfine coupling constant, and ¢, o are the Pauli vectors that act
on the spins of electrons and protons, respectively. The coupling constant is determined by
the magnetic moment densities at the nucleus and can be explicitly written as [28]:

B— P‘Ogegpezhz
127rm€mpa8 ’

(2)

where ji is the vacuum permeability, ¢ is the Bohr radius, g, and g, are the g-factors,
and m,, m, are the masses of the electron and proton. This formula encapsulates the
strength of the magnetic dipole-dipole interaction mediated by the electron probability
density at the nucleus.

The composite spin system is naturally described in a four-dimensional Hilbert space
with a computational basis:

B = {‘TeTp)l |Te¢p>r NeTp% |~Le¢p>}'

Diagonalizing Hy yields a non-degenerate singlet state:

) = =1 Tebp) = ey,
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with eigenenergy Es = —3B, and a triplet manifold:

1
V2

with degenerate energy ET = B. The energy gap AE = 4B ~ 5.88 1 eV corresponds to

T) = 11elp)r |To) = —=([Tedp) + [LeTp)),  [T-) = [Ledp),

the well-known 21 cm transition. Without an external field, the system’s ground state is
the entangled singlet; under an applied magnetic field, the triplet degeneracy is lifted,
yielding Zeeman splitting and controllable transitions [30]. This tunability underpins key
applications in quantum control and atomic clocks.

2.2. Decoherence Dynamics: Pure Dephasing Model

Decoherence is unavoidable in realistic quantum systems. In hydrogen’s hyperfine
manifold, one dominant noise channel is pure dephasing, whereby random phase fluctua-
tions degrade coherence while leaving populations unaltered. Such noise typically arises
from magnetic field fluctuations that couple differently to the electron and proton spins.

The time evolution of the density matrix p(t) is modeled using the Lindblad formalism:

d .
o = —ilHy, ) + Lo, )

where L[p] encodes the dissipative dynamics. For independent local dephasing, the Lind-
blad operators are

L= UZ(E) ® Ip/ Lp =L® Uz(p)/ 4)

with respective rates 7., 7,. The dissipator takes the form:

Lp] = ve(LepLe — ) +vp(LyppLy — p), (5)

where we exploited the property L? = L;Z7 = I. This framework is well-suited for analyzing
coherence decay in entangled spin systems. We note that the conventional Lindblad form
involves a prefactor of 1/2 in the dissipative terms. Here, since the dephasing operators L,
and L, are Hermitian, this factor has been absorbed into the definition of the decay rates 7,
and 7yp. This choice is purely conventional and does not affect the physical results, as the
effective decay strengths are given in terms of the coupling constants.

Dynamics of Density Matrix Components

Let A = B/h. In the computational basis, the evolution equations under pure dephas-

ing are
Populations:
p11 =0, (6)
P22 = —2iA(p23 — p32), 7)
P33 = 2iA(p23 — p32), (8)
pa4 = 0. )
Coherences:
p12 = —2iA(p12 — 013) — 27pP12, (10)
P13 = —2iA(p13 — p12) — 27ep13, (11)
P14 = —2(7e +7p)p14, (12)
P23 = —2iA(p2 — 033 + p23) — 2(7e + p)023, (13)

P24 = —2iA(024 — P34) — 2VepP24, (14)
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034 = —2iA(p24 — 034) — 27pp034, - (15)

with p;‘j = pji. These equations make explicit that while populations remain invariant,
off-diagonal coherences decay exponentially due to dephasing. The coupling between
022, p33, and pp3 shows that phase noise indirectly modulates population transfer within
the entangled manifold. We note here that the appearance of p,3 inside the parentheses of
Equation (13) is a direct consequence of the coherent part of the dynamics generated by
the hyperfine Hamiltonian. In particular, when evaluating the commutator [Hyy, p], cross
terms proportional to p3 emerge and combine with the population difference (p22 — p33)-

2.3. Exact Solutions for Key Initial States

We now provide closed-form solutions for physically relevant initial conditions. These
solutions allow for direct analysis of the interaction between coherent hyperfine coupling
and environmental dephasing.

Case I: Coherent Superposition in the Singlet-Triplet Subspace.

Consider:

[$(0)) = cosa| T6¢p> +sina | ieTp% (16)

a superposition of opposite spin states. This is not an eigenstate of Hys and thus exhibits
nontrivial dynamics. Define the following:

I = ')’e + ')/p, Q =V 16A2 - FZ. (17)

The elements of the non-zero density matrix are

pm(t) = 3 + 3 cos(20)e(f sin(0r) + cos(2), as)
paa(t) = 5 — %COS(ZW)eq(% sin(Qf) + COS(Qt))f (19)
p23(t) = % sin(2a) e 2t 4 21'% cos(2a)e T sin(Qt). (20)

We note here that the two decay factors in pp3(t) originate from different physical processes.
The term % sin(2a) e =2 represents the decay of the initial coherence between opposite-spin
states, which is affected by both electron and proton dephasing channels, giving a rate 2I".
In contrast, the oscillatory term 21'% cos(2a)e~T* sin(O)t) arises from coherent hyperfine-
induced oscillations, which are modulated by the combined but single-effective dephasing
rate I'. A detailed derivation is provided in Appendix A.

All other elements vanish. The dynamics reveal coherent oscillations at frequency
superimposed with exponential decoherence at rate I'. In particular, the dynamics remains
confined to the two-dimensional | T¢lp), | JeTp) subspace.

Case II: Entangled Aligned Spins.

For the initial Bell-like state:

|$(0)) = cosa | TeTp) +sina|lelp), (21)
The only nonzero components are

p11(t) = cos?a, (22)
p14(t) = pg1(t) = sin(a) cos(a) e 21", (23)
pas(t) = sin®a. (24)
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Here populations are stationary, while coherence decays exponentially with rate 2I'. Inter-
estingly, the Hamiltonian coupling A does not influence the evolution because this state
lies within an eigenspace of Hy¢. The decoherence is, therefore, purely environmental.
The coherence p14(t) decays purely as e 2! because it connects the states | 1.1,) and
| Ledp), which differ in both electron and proton spins. Consequently, dephasing acts on
both spins simultaneously, leading to a total decay rate of 2I' = 2(. + 7p), in contrast to
the single-spin-modulated decay observed in oscillatory terms such as those in pa3(t).
These results highlight the intricate interplay between coherent hyperfine dynamics
and dephasing. They illustrate how entanglement robustness depends sensitively on both
the initial state and the structure of environmental noise. In later sections, we analyze the
behavior of quantum correlations and entanglement measures under these dynamics.

3. Quantum Correlation Quantifiers: Entanglement and Fidelity

We undertake a systematic investigation of entanglement and fidelity within a rig-
orous resource-theoretic framework. Two distinct quantitative measures are introduced
and thoroughly analyzed, each defined through explicit formal expressions and critically
evaluated against well-established criteria to ensure their physical validity and opera-
tional significance.

3.1. Entanglement Quantification via Entanglement of Formation

In this section, we provide a rigorous quantification of quantum entanglement using
entanglement of formation (EoF), a well-established measure directly linked to the concur-
rence [31]. The EoF is particularly suitable for bipartite two-qubit systems, as it effectively
discriminates between separable, partially entangled, and maximally entangled states.

For a given two-qubit density matrix p, the entanglement of formation is defined as

Ee) = |3 (1+1/1-C0)], 25)

where H(f) denotes the binary entropy function [10,31-34]:

H(f) = —flog, f— (1 f)log,(1—f), (26)

and C(p) is the concurrence, given by [31,35-37]:

Clp) = max{0, v/ET — V&2 — V&5 — Vi), 7

where ¢; are the eigenvalues, arranged in decreasing order, of the matrix:

R=./op+p, (28)

with the spin-flipped density matrix defined as
p=(0y®0y)p" (0y ®y), (29)

and p* denoting the complex conjugate of p. The Pauli matrix 0, acts as the spin-flip
operator, playing a central role in quantifying entanglement symmetries.

The concurrence C(t) varies from 0 (completely separable states) to 1 (maximally
entangled states), with intermediate values describing partially entangled or mixed states.
Its direct relation to the EoF makes it a robust and operationally meaningful tool for tracking
the dynamics of entanglement, particularly in the presence of decoherence or nonunitary
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evolution. This framework allows for a precise assessment of how entanglement resources
degrade or persist under different physical conditions.

3.2. Fidelity as a Quantifier of Quantum State Similarity

Fidelity is a fundamental quantity in quantum information theory, widely employed
to characterize the similarity or closeness between two quantum states [38-41]. For two ar-
bitrary mixed states p and o, the fidelity is defined using the Uhlmann expression:

F(p, o) = (Tr\/m> iy (30)

This measure satisfies 0 < F(p,0) < 1, attaining F = 1l ifand only if p = 0, and F = 0
when the states are perfectly distinguishable (orthogonal).

In the special case where both states are pure, p = |§) ({| and o = |7) (7], the fidelity
reduces to the squared modulus of their inner product:

F(p,0) = [(Eln) %, (31)

providing a direct geometric interpretation of state overlap.

Fidelity serves as a key diagnostic tool for assessing the performance of quantum
operations, including the precision of quantum gate implementations, the reliability of
quantum channels, and the effectiveness of quantum error correction protocols. It is also
widely used in quantum state tomography, where an experimentally reconstructed state is
compared with an ideal or target state [5,42]. High-fidelity values signify strong similarity
between states, whereas lower values indicate deviations due to noise or decoherence.

In the context of the present work, fidelity is employed to analyze the temporal
evolution of the density matrix of the system p(#) under Lindblad dynamics by comparing it
with a reference state ¢. This approach offers a complementary perspective to entanglement
measures, revealing not only the amount of quantum correlations but also how faithfully
the evolving state approximates an idealized or maximally entangled target as decoherence
and dissipative effects take place.

For all cases considered in this study, the fidelity F(t) is calculated relative to the
corresponding initial state of the system, rather than with respect to an external target state,
such as a Bell state with a maximal entanglement. This ensures that F(t) directly quantifies
the similarity between the evolving state and its initial preparation.

4. Probing Entanglement and Fidelity Dynamics in Open
Quantum Systems

In this section, we investigate the time-dependent behavior of key quantum properties,
namely entanglement and fidelity, in the hyperfine states of the hydrogen atom. By em-
ploying the Lindblad formalism to model pure dephasing and other decoherence channels,
we analyze how the system’s quantum correlations evolve under environmental influences.
Entanglement provides a measure of nonclassical correlations between the electron and
nuclear spins, while fidelity quantifies the closeness of the evolving state to a desired
reference state. Together, these metrics offer complementary perspectives: Entanglement
captures the internal coherence of the system, whereas fidelity monitors the preservation
of specific target states. The following results highlight the interplay between coherent
dynamics driven by the hyperfine interaction and dissipative effects arising from external
noise, revealing the conditions under which quantum correlations are robust or fragile.

Figure 1 shows the concurrence dynamics for the initial separable states under the
hyperfine interaction in hydrogen with Lindblad dephasing. In panel (a), corresponding
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to the anti-parallel state |¥), the unitary hyperfine dynamics coherently mix |f¢],) and
|leTp), producing oscillations of the concurrence between 0 and nearly 1 when T' = 0,
with frequency 2A. The presence of dephasing (I' > 0) suppresses these oscillations,
as the off-diagonal terms decay as e 2!, yielding an entanglement envelope of the form
C(t) ~ e 2| sin(2At)|. Increasing I from 0 to 0.4A and 0.8A strongly damps both the
amplitude and duration of entanglement, with only a few weak peaks remaining when
I' 2 A/2. By contrast, panel (b), corresponding to the parallel state |¢), shows that
concurrence remains zero at all times regardless of T, since the states |1.1,) and |l.]p) are
eigenstates of the hyperfine Hamiltonian and are not coupled by its flip—flop term. Thus,
while entanglement generation is possible in the anti-parallel sector, it is entirely absent
in the parallel sector, and the robustness of the generated correlations is limited by the
strength of the dephasing process.

1.0}
0.8} )
0.6}
0.4}

Concurrence

0.2

0.0k

Time t (in units of 1/A)
(a)

1.0F
0.8f
0.6}
0.4}

Concurrence

0.2}

0.0k : ; : ; ;
0 2 4 6 8 10
Time t (in units of 1/A)
(b)

Figure 1. Evolution of the concurrence C(t) as a function of the time ¢ (in units of 1/A) for the
initial separable state (x = 0) under different dephasing rates I'. The curves correspond toI" = 0
(dashed), I' = 0.4A (solid), and I = 0.8A (dash-dotted). Panel (a) shows the dynamics for the
initial state [¥(0)) = | Telp), while panel (b) corresponds to |¢(0)) = | TeT,). Here A denotes
the hyperfine coupling constant, and I' = 7, + 7, is the total dephasing rate due to electron and
proton contributions.

Figure 2 shows the dynamics of the concurrence for the initially entangled state
|[¥) and |¢) with (x = 71/6) under a Lindblad dephasing model reveals a strong de-
pendence on the states’ symmetry relative to the noise. For the |'¥) state (panel a), in the
ideal case without dephasing (I' = 0, dashed curve), the concurrence displays periodic
oscillations between its initial value and unit, indicating that entanglement is preserved
by the coherent evolution of the system. When moderate dephasing is present (I' = 0.4A4,
solid curve), the oscillations are strongly damped and the concurrence decays monoton-
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ically, reflecting a progressive loss of entanglement. For stronger dephasing (I' = 0.8A4,
dash-dotted curve), this decay is further accelerated and leads to entanglement sudden
death, where the concurrence vanishes within a finite time. This behavior highlights that
entanglement persistence is governed not only by the decoherence rate but also by the
initial state’s inherent symmetry and its encoding within protected subspaces. In con-
trast, the |¢) state (panel b), which occupies the single-excitation subspace, in the ideal
case without dephasing (I' = 0, dashed curve), remains constant over all the time. For
the initial parallel-spin state |¢), the concurrence decays exponentially under dephasing
and approaches zero asymptotically, without vanishing at a finite time. Therefore, strict
entanglement sudden death (ESD) does not occur for this initial configuration, in contrast
to certain anti-parallel states where ESD is observed.

1.0F
0.8}
0.6} 1
0.4}

Concurrence

0.2

0.0L

Time t (in units of 1/A)
(a)

Concurrence

Time t (in units of 1/A)
(b)

Figure 2. Evolution of the concurrence C(t) as a function of the time ¢ (in units of 1/A) for the initial
entangled state (x = 7r/6) under different dephasing rates I'. The curves correspond to I' = 0 (dashed),
I' = 0.4A (solid), and I' = 0.8A (dash-dotted). Panel (a) shows the dynamics for the initial state
[¥(0)) = cos(Z)| Tedp) +sin(%)| leTp), while panel (b) corresponds to [¢(0)) = cos(Z)| Tetp)+
sin(%)] lelp). Here A denotes the hyperfine coupling constant, and T = 1, + 7 is the total
dephasing rate arising from electron and proton contributions.

The evolution of concurrence in Figure 3 shows that, for both initial states [¥) (panel a)
and |¢) (panel b), the behavior under dephasing noise is qualitatively identical. In both cases,
the concurrence decays monotonically without oscillations, with the rate of decay strongly
dependent on the dephasing strength. For I' = 0, the entanglement remains maximal, while
forT' = 04A and I' = 0.8A the entanglement rapidly diminishes, vanishing completely at
finite times in the stronger dephasing scenario. These results indicate that, unlike in situations
where state symmetry provides partial protection, here both classes of entangled states are
equally fragile under phase noise, leading to inevitable disentanglement.
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It is worth noting that the relative fragility of the two initial states depends on both
the degree of initial entanglement and the spin configuration. For separable or partially
entangled states (Figures 1 and 2), the parallel-spin state |¢) is more sensitive to dephasing,
since both electron and proton contributions act simultaneously on the coherence, leading
to faster decay of concurrence. In contrast, for the maximally entangled Bell state (x = 77/4)
shown in Figure 3, the population and coherence terms evolve symmetrically, resulting in
similar decay rates for both |'¥) and |¢). Consequently, the concurrence dynamics of the
two states become qualitatively similar, and the enhanced fragility of the parallel-spin state
is no longer observed.

e o 9
A o

Concurrence

o
[N

o
o

8 10
Time t (in units of 1/A)

Figure 3. Evolution of the concurrence over time for the initial Bell state (¢« = 71/4) with different
dephasing rates I': dashed (I' = 0), solid (I' = 0.4A), and dash-dotted (I' = 0.8A4). The obtained
results exhibit similar behavior for the two initial states, [¥) and |¢), respectively. Unlike the cases
shown in Figures 1 and 2, the parallel-spin state is not particularly more fragile here due to the
symmetric population and coherence dynamics of the maximally entangled state. The time is in units
of 1/A.

The Figure 4 illustrate the time evolution of the fidelity F(t) for two distinct initial
separable states of an electron—proton spin system under the influence of dephasing.
The fidelity measures how well the quantum state at time ¢ matches the initial state,
with F(t) = 1 indicating perfect preservation and F(t) = 0 signifying complete loss of
the initial information. The dynamics are governed by the hyperfine coupling A and the
total dephasing rate I' = <, + . The fidelity dynamics presented in Figure 4 reveal
distinct behaviors for the initial separable state (x = 0) depending on whether the system
is prepared in |¥) (panel a) or |¢) (panel b).

In Panel (a), the initial state is given by [¥(0)) = |1l p), which is not an eigenstate of
the hyperfine interaction Hamiltonian, S, - I,. Consequently, without dephasing (I' = 0,
dashed curve), the system experiences coherent Rabi-like oscillations. The fidelity varies
between 1 and a minimum value, indicating periodic spin polarization exchange between
the electron and proton. The oscillation frequency is controlled by the hyperfine coupling
constant 2A. When dephasing is introduced (I' > 0), two key effects are observed: the
coherent oscillations are damped, and the fidelity convergence. The solid (I' = 0.4A) and
dash-dotted (v = 0.8A) curves show a rapid decay in the amplitude of the fidelity oscil-
lations due to dephasing destroying the quantum coherence necessary for the oscillatory
dynamics. For times t > 1/T, the fidelity decays to an asymptotic value of F(c0) = 0.5.
This occurs as the system evolves into a statistical mixture with equal overlap with the
initial state and its orthogonal counterpart, leading to a steady state fidelity of 1/2, and a
higher dephasing rate I' causes this asymptotic value to be reached more quickly as is
shown in Appendix B.
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o o -
> o o

©o ©
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o

Time t (in units of 1/A)
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P R > o O
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0 2 4 6 8 10
Time t (in units of 1/A)
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Figure 4. Evolution of the fidelity F(t) as a function of the rescaled time At for the initial separable
state (« = 0) under different dephasing rates I'. The curves correspond to I' = 0 (dashed), I' = 0.4A
(solid), and T = 0.8A (dash-dotted). Panel (a) shows the dynamics for the initial state [¥(0)) = | Telp),
while panel (b) corresponds to |¢(0)) = | T.1,). Here A denotes the hyperfine coupling constant,
and I' = 7, + 1y is the total dephasing rate due to the electron and proton spins.

In Panel (b), the initial state is given by |1.1,), which is a triplet state and is an eigen-
state. This fundamental difference leads to dramatically different dynamics compared to
panel (a). In the coherent case (I' = 0), since the initial state is an eigenstate, it remains
stationary under coherent evolution. There is no energy exchange, and the fidelity remains
constant at F(t) = 1 for all times (dashed curve). More importantly, when decay is intro-
duced (I' > 0), this state is also immune to the specific dephasing mechanism considered.

The dephasing likely occurs on the basis O'Z(C) ® cTZ(p ), and since [1¢1,) is already a maximal
(

eigenstate of both (77@ and o,” ), the dephasing noise commutes with the state, leaving it
unaffected. The state does not acquire a random phase relative to itself and thus maintains
perfect fidelity. Thus, the comparison reveals a crucial principle for protecting the quantum
state. States that are not eigenstates (Panel a) suffer from both coherent evolution and de-
phasing, leading to fidelity loss. Certain eigenstates (Panel b) can be completely protected
against specific types of environmental noise when the noise operators commute with the
state. This makes |1.1,) a potentially valuable state for quantum memory applications in
this system. The complete immunity of |f.1,) to dephasing highlights the importance of
carefully selecting initial states and understanding the symmetry properties of both the
system Hamiltonian and the environmental coupling.

Figure 5 shows the dynamics of the fidelity for the initially entangled states [¥) and
|¢) with (« = 7t/6) under a Lindblad dephasing model, revealing a strong dependence on
the states’ symmetry relative to the noise.
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Figure 5. Evolution of the fidelity F(t) as a function of the time ¢ (in units of 1/A) for the ini-
tial entangled state (x = 7/6) under different dephasing rates I'. The curves correspond to
I' = 0 (dashed), I' = 0.4A (solid), and I' = 0.8A (dash-dotted). Panel (a) shows the dynamics
for the initial state [¥(0)) = cos(w/6)| Telp) +sin(/6)| letp), while panel (b) corresponds
to [¢(0)) = cos(71/6) | TTp) +sin(71/6) | lelp). Here A denotes the hyperfine coupling constant,
and I' = 7, + 7, is the total dephasing rate due to electron and proton spins.

The fidelity evolution for entangled initial states reveals distinct decoherence path-
ways depending on the state’s symmetry properties. For the initial Bell-like state
|¥(0)) = cos(t/6)| Telp) +sin(7t/6)| lety) in panel (a), which represents a superpo-
sition within the singlet-triplet manifold, the fidelity shows damped oscillations under
dephasing. The coherent oscillations present at I' = 0 are progressively suppressed with
increasing dephasing rates (I' = 0.4A and 0.8A), eventually decaying to a steady-state
value that reflects the competing effects of hyperfine-driven evolution and environmental
noise. In contrast, panel (b) demonstrates significantly enhanced robustness for the initial
state |p(0)) = cos(71/6)| TeTp) + sin(7w/6)| lelp), which maintains higher fidelity across
all dephasing rates. This improved protection stems from the alignment of the state with
the (Tz(e) ® (fz(p ) symmetry of the dephasing noise, since both the basis states | 1.1,) and
| lelp) are eigenstates of the dominant dephasing operators, thereby reducing the state’s
susceptibility to phase decoherence. The comparison highlights how entanglement struc-
ture combined with symmetry considerations can provide substantial protection against
specific decoherence channels in quantum systems. The long-time behavior of the fidelity
reveals that dephasing does not completely erase the memory of the initial state but instead
drives the system into mixed states with partial overlap with the starting configuration.
For the |¥) state, the fidelity saturates at 0.5, indicating that in the presence of strong
dephasing the system retains only half of its initial-state information, consistent with a
statistical mixture of orthogonal components generated by phase noise. In contrast, the |¢)
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state saturates at a higher value, reflecting a greater robustness of this configuration under
dephasing, as part of its structure remains aligned with a subspace less affected by phase
fluctuations. This difference highlights how the asymptotic fidelity strongly depends on
the symmetry of the initial state relative to the noise environment. This is consistent with
the analytic calculation presented in Appendix B.

Figure 6 illustrates the dynamics of fidelity for the initial entangled states [¥) and
|¢) with « = 71/4 under a Lindblad dephasing model. The results reveal no qualitative
distinction between the two states, as both exhibit identical behavior under dephasing
noise. In each case, the fidelity decays monotonically and eventually saturates at 0.5 when
the dephasing is present, indicating that strong dephasing drives the system into a maxi-
mally mixed state with equal probability of overlap with the initial configuration and its
orthogonal counterpart.

1.0F;
0.8} %
2 0.6}

Fidelit

0.4}

0.2}

0.0k . . . . R
0 2 4 6 8 10
Time t (in units of 1/A)

Figure 6. Evolution of the fidelity F(t) as a function of the time f (in units of 1/A) for the initial
maximally entangled Bell state (x = 71/4) under different dephasing rates I'. The curves correspond
toI’ = 0 (dashed), I' = 0.4A (solid), and I' = 0.8 A (dash-dotted). Results are shown for both classes
of initial states: [Y(0)) = %ﬂ Telp) + 1 detp)) and [¢(0)) = %ﬂ TeTp) + 1 dedp)). The fidelity

dynamics for these two states exhibit qualitatively similar behavior. Here A denotes the hyperfine
coupling constant, and I' = 7, + 7 is the total dephasing rate.

It is interesting to note that, in certain thermal noise environments, entanglement and
fidelity can exhibit non-monotonic behavior: thermal backgrounds may enhance quantum
entanglement [43] or improve the fidelity of quantum teleportation [44]. In contrast, our
study considers pure dephasing noise modeled via local Lindblad operators acting on the
hyperfine spin states of hydrogen. We find that entanglement and fidelity exhibit damped
oscillatory decay, with anti-parallel spin states showing greater robustness than parallel
configurations. This comparison underscores that the type and nature of the environmental
noise critically influence quantum correlations, highlighting the relevance of our analytical
treatment for understanding and preserving entanglement and fidelity in atomic systems.

5. Conclusions

In this work, we have provided a comprehensive analysis of the quantum dynamics of
entanglement and fidelity in the hyperfine structure of hydrogen atoms subjected to pure
dephasing noise, modeled using the Lindblad master equation. By deriving exact analytical
solutions for the time-dependent density matrix across a spectrum of initial states, ranging
from separable to partially and maximally entangled configurations, we have elucidated
the intricate interplay between coherent hyperfine interactions and environmental deco-
herence. Our results demonstrate that entanglement, quantified through concurrence and
entanglement of formation, exhibits oscillatory decay modulated by the dephasing rate,
with anti-parallel spin states (|'¥)) showing greater robustness compared to parallel config-
urations (|¢)), which often experience entanglement sudden death. The fidelity analysis
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further reveals oscillatory decay patterns, underscoring the sensitivity of quantum state
preservation to dephasing noise. Beyond their fundamental significance, these insights
contribute to the broader effort to identify strategies for protecting quantum resources
against environmental disturbances. In particular, the identification of state-dependent
robustness under dephasing noise highlights potential pathways for encoding information
in symmetry-protected subspaces. Our findings thus offer valuable guidance for quan-
tum information processing protocols that exploit atomic systems, where the control and
preservation of entanglement and fidelity are essential for future quantum technologies.
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Appendix A. Expanded Derivation of Equations (18)—(24)

We begin with the set of first-order ODEs for the density matrix elements, expressed

in the product basis {[1),]2),13),[4)} = {| Tetp), | Tedp) | LeTp), | Lelp)}, which are
obtained directly from the Lindblad master equation for pure dephasing and are listed in

Equations (6)—(15).
Introduce the total dephasing rate:

L=+,

and for the two-dimensional subspace of interest, define the population difference and the
coherence real/imaginary parts:

A(t) = p22(t) — p33(t), p23(t) = x(t) +iy(t), p32 = x(t) —iy(t).

Case I: coherent superposition in the {|2),|3)} subspace

For the initial state |(0)) = cosa |2) + sina |3), only p22, P33, 023, 032 are nonzero at
t = 0, and the dynamics is confined to this block. Using (7)—(13) we obtain the real system
for the three real variables A, x, y:

A(t) = 8Ay(t), (A1)
2(t) = 2Ay(t) — 2T x(t), (A2)
y(t) = —2AA(t) —2A x(t) — 2T y(t). (A3)

These equations follow from direct substitution of pp3 = x + iy into (7)—(13) and separating
real /imaginary parts.
We next solve (A1)—(A3). It is convenient to write the linear system in matrix form

v(t) = Mv(), v()=|x@ |,
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with
0 0 8A

M= 0 —2I' 2A
—2A -2A -2T

The characteristic polynomial det(M — AI) factorizes to yield the eigenvalues

M =-2I, JAyz=-T+iQ, Q=+16A2-T2

(The algebra is direct but somewhat lengthy; it is obtained by expanding det(M — AI) and
collecting powers of A.)

The presence of the eigenvalue —2I' indicates a purely-decaying mode (which will be
associated with the real part of the coherence), while the pair —I' +-i() describes the damped
oscillatory dynamics (frequency (2, damping I') of the remaining two modes. To obtain the
explicit time dependence we diagonalize M (or equivalently apply the Laplace transform
to the linear system and invert). Using either method and imposing the initial conditions

A(0) = cos(2x),  x(0) = Llsin(2a),  y(0)=0,

one obtains after straightforward algebra the closed-form solutions

A(t) = cos(2a) e_rt(cos(ﬂt) + gsin(Qt)>, (A4)

x(t) = % sin(2a) e 2", (A5)
2A Tt

y(t) = a cos(2a) e™ ' sin(Qf). (A6)

Finally, reconstructing 025, 033,023 from A, x,y and using 2> + p33 = 1 inside this
invariant subspace yields the expressions quoted in the main text:

p22(t) = 3+ § cos(2a) e_rt<(1; sin(Q)) + cos(Qt)), (A7)
11 e L

p33(t) = 5 — 5 cos(2a)e <Q sin(Qf) + cos(Qt)), (A8)

p23(t) = x(t) +iy(t) = Lsin(2a) e 2" +2i % cos(2a) e Tt sin(Qt). (A9)

These are Equations (18)—(20) in the main text. The structure is transparent: the real part of
the coherence decays with rate 2I', while the population difference and the imaginary part
of the coherence participate in damped oscillations at frequency Q with envelope e~ '*.
Case II: aligned Bell-like initial state

For |$(0)) = cosa |1) 4 sina [4), only the block {1,4} is populated initially. From (6)
and (9) we see immediately that the populations p11, p44 are stationary:

P11 =puu=0 — pn(f) = cos? a, p44(t) = sin®a.

The only nontrivial element is the coherence p14 which from (12) satisfies the following:

pra=—2Tpyy = pu(t) =pu(0)e " =sinacoswe "

Thus, the aligned subspace is invariant under the hyperfine Hamiltonian (no unitary
coupling between |1) and [4)), so Hamiltonian coupling A does not enter the evolution;
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decoherence is purely environmental. These expressions are Equations (22)—(24) in the
main text.

To keep the Appendix concise, we have omitted the lengthy intermediate algebraic
steps; the remaining steps are straightforward and do not require presentation here.

Appendix B. Fidelity Calculations for Asymptotic States

The fidelity between a state po and a pure reference state o = |¢) (| is

F(poo,a):(Tr\/M)z, M = \/pes 0 +/Pes. (A10)

Case I: Initial state |¢p)

For |¢o) = cosa | 1)) +sina | /1), the asymptotic state is

pe = E(I TDCRL 1 4100 ). (A11)
The overlap vector is
0
o) = vaslyo) = | a |- (A12)
V2
0
so M = |v)(v| has eigenvalue A = }. Thus,
Fo = (TtvM)* = L. (A13)

This result is independent of the initial state parameter &, indicating that all initial states
converge to the same steady-state fidelity under the decoherence process.

Case II: Initial state |¢)

For |¢) = cosa | 1) + sina | |]), the asymptotic state is diagonal:

poo = cos®a | 1) (11 | +sin® | LL) (L) |- (A14)
The overlap vector is
COS2 %
o) =visier=| o | (a15)
sin? w

so that M = |v) (v| has eigenvalue A = (v|v) = cos* a + sin* a. Hence,
Foo = (Trv M)2 = cos* & +sin* & = 1 — 1 sin? 2a. (A16)

This expression clearly shows the x-dependence of the steady-state fidelity. This illustrates
the differing robustness of parallel and anti-parallel spin configurations under dephasing.
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