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Abstract

The application of machine learning (ML) in healthcare has surged, yet its adoption in high-
stakes clinical domains, like the Intensive Care Unit (ICU), remains low. This gap is largely
driven by a lack of clinician trust in Al decision support. Explainable AI (XAI) techniques
aim to address this by explaining how an Al reaches its decisions, thereby improving
transparency. However, rigorous evaluation of XAl methods in clinical settings is lacking.
Therefore, we evaluated the perceived explainability of a dashboard incorporating three
XAI methods for an ML model that predicts piperacillin plasma concentrations. The
dashboard was evaluated by seven ICU clinicians using five distinct patient cases. We
assessed the interpretation and perceived explainability of each XAI component through
a targeted survey. The overall dashboard received a median score of seven out of ten for
completeness of explainability, with Ceteris Paribus profiles identified as the most preferred
XAl method. Our findings provide a practical framework for evaluating XAl in critical care,
offering crucial insights into clinician preferences that can guide the future development
and implementation of trustworthy Al in the ICU.

Keywords: machine learning; explainable artificial intelligence; dashboard; antimicrobial
concentration; healthcare; intensive care unit

1. Introduction

An ever-increasing number of researchers and companies are developing applications
to improve patient care based on artificial intelligence (AI) and machine learning (ML) [1].
One of the fields of interest is the intensive care unit (ICU), as it is a data-rich environment
where the stakes for the individual patient are high. Despite great optimism about the
potential of Al to provide substantial improvements in all areas of healthcare, only a few
developed models have been adopted in clinical practice [2-4]. Besides legislative, organi-
zational, and technical factors, the human factor is an important element to address when
considering the implementation of innovative digital technologies [5,6]. Fostering end-user
trust in Al outcomes is considered a crucial aspect of establishing clinical acceptance of Al
and ML [7].

One of the proposed ways to increase trust is by using explainable AI models (XAI) [8].
These XAI methods provide insights into the decision-making processes of black-box
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AI/ML models, promoting explainability—a necessary requirement in high-stakes envi-
ronments [9]. Several XAl methods, such as LIME [10] or Shapley Additive explanations
(SHAP-values) [11], have been proposed to provide (post hoc) explainability and clarity
to the end-user [12]. Although several studies have evaluated the clinical effectiveness of
medical Al, very limited research is available that specifically focuses on how these pre-
dictions should be communicated to clinicians through XAI [4,13-15]. To our knowledge,
only one formal evaluation with clinicians exists that evaluated the use of XAI methods as
a way to provide explainability [16]. Specifically, the study by Norrie et al. evaluated the
usefulness of SHAP and LIME for clinicians in trusting sepsis prediction ML models [16].
In our study, we expand upon this study by adding a broader evaluation of different XAI
methods and by providing more insight into the explainability requirements of Al for
clinicians in the ICU.

To this end, we expand upon our previously developed Catboost regressor model [17].
The purpose of this model is to aid clinicians in optimizing the dosage of piperacillin,
a commonly used antimicrobial in the ICU. We selected various XAI methods and inte-
grated them into a dashboard to try to mimic real-world use in the ICU. The perceived
explainability of applied XAI methods was evaluated by ICU clinicians using a question-
naire. The remainder of this article is structured as follows: Section 2 discusses the related
work and the background required for the study. Section 3 then covers and elaborates upon
different XAI methods, the use case, the used model, the software packages, the considered
XAI methods, the dashboard, the questionnaire, and the recruited participants. The results
of the study are discussed in Section 4, and finally, these results are then put into perspective
in Section 5.

2. Background

A distinction is made between the interpretability and explainability of AI [18]. In-
terpretability tries to improve the understanding of the inner workings of ML algorithms,
whereas explainability focuses on explaining the decisions made. The former answers the
question of “how” an algorithm makes a prediction, while the latter provides informa-
tion on “why” the prediction is made. Any technique helping to answer these questions
generally falls under the term “explainable AI” (XAI).

There are numerous available XAI methods, which can be categorized in several
ways [12,18,19]. A first classification is made based on the design of the AI/ML model
itself and defines ad hoc and post hoc XAI methods or models. Ad hoc methods represent
models that are intrinsically explainable by design (for example, representation or feature
learning), whereas, for non-interpretable black or grey box models, one is limited to de-
signing post hoc explanations. We will focus on the latter within this article. A second way
of classifying XAl methods is according to the agnosticism of the model [12,18]. On the
one hand, model-agnostic methods do not require access to the model architecture and
are therefore applicable to all models [10,20]. They usually work by analyzing input and
output pairs. Model-specific methods, on the other hand, are developed for a specific
kind of ML model and consider the model’s characteristics when determining explana-
tions [21]. XAI techniques can also be categorized based on the scope of the explanation
provided. Global methods attempt to explain the whole model, whereas local models
focus on providing explanations for individual samples and predictions. Global methods
will weigh input parameters the same way regardless of the individual prediction. Ad-
ditionally, a distinction can be made between techniques that use complete instances to
provide explanations [22-24] and techniques that focus on providing explanations using
features [10,11,23]. Instance-based methods can be seen as row-based methods where they
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use individual samples for explanations, in contrast to feature- or column-based methods
that only look at features.

Determining whether or not an XAI method provides adequate explainability is
challenging and mainly depends on the use case and the audience [19,25,26]. From a quan-
titative point of view, a conclusive test to determine the adequacy of XAI does not exist [18].
Instead, several parameters are used to evaluate explainability techniques [18]. Accuracy
measures how well predictions made by the explainer model match the predictions of
the complex model. Fidelity is determined by how correctly the explainer describes the
behavior of the complex model. In addition to accuracy, explanations need to be truthful
and complete to be considered fidel [19]. Stability refers to the robustness of the provided
explanations to fluctuations when small changes occur on the input side [12]. The XAI
method also needs to be deterministic: producing different explanations when applying the
same method multiple times is undesirable. Finally, the explainer needs to be understand-
able for the end-user and cannot be too complex [19]. As the aforementioned parameters
are a mix of quantitative and qualitative attributes, XAl evaluations are often performed by
combining both research methods. While for the quantitative metrics, researchers fall back
on the use of mathematical formulas most of the time, it is common practice to revert to
standardized questionnaires with end-users for the objectification of qualitative metrics.
Some of these human-centered evaluation methods are freely available online [27]. In this
research paper, we focus on evaluating XAI understandability and, hence, will make use of
qualitative research methods.

3. Materials and Methods
3.1. Use Case and Explainability Requirements

The use case in which the dashboard will be evaluated is the prediction of piperacillin
plasma concentrations for infection management in critically ill patients in the ICU. Approx-
imately 66% of patients admitted to the ICU receive antimicrobial therapy, with piperacillin
being one of the most frequently prescribed antimicrobials [28,29]. Attainment of thera-
peutic antimicrobial plasma concentrations is believed to be beneficial for the patient by
improving clinical outcomes and limiting drug toxicity. Target attainment is also believed
to be beneficial for society by reducing the chance for antimicrobial resistance, which is
considered one of the top 10 health priorities by the World Health Organization [30]. Unfor-
tunately, currently used dosing regimens are often insufficient to attain therapeutic plasma
concentrations [31]. Adjusting the dosing regimen based on therapeutic drug monitoring
(TDM), i.e., the measurement of the plasma concentration of the antimicrobial, has been
proposed as a dosing optimization strategy [32]. However, TDM is currently not widely
implemented, as the technique is labor-intensive and requires specialized equipment [33].
Furthermore, sample preparation and analysis require a certain turnaround time, impeding
instant dosing adjustments at crucial moments. To overcome these issues, we propose
to use an AI/ML model that can predict the plasma concentration of piperacillin by us-
ing routinely collected healthcare data to provide more real-time antimicrobial plasma
concentration information for each patient individually. The used model uses CatBoost,
a gradient-boosting decision tree (GBDT) model, and is a variant of the published model
in the study of Verhaeghe et al. [34]. Only the top nine features of the a priorimodel were
kept to keep the overview in the dashboard. Furthermore, only piperacillin samples were
chosen. The model should be integrated in such a way that clinicians can understand the
model, interpret the prediction, and explain their decision. Consequently, as the model
would be used on an individual patient basis, mainly local XAI methods are ideal for
interpreting each prediction.
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3.2. XAI Methods

There are a multitude of XAI methods. Given the use case, the main focus will be on
post hoc, model-agnostic, and local XAI methods for GBDT to explain a single prediction.
We focus on both the model-agnostic methods for the generalizability of our research results
beyond GBDT, as well as model-aware methods for GBDT specifically, as the back-end ML
model is based on the Catboost regressor model. Global XAI methods are not considered
as the interest lies in explaining a single prediction. Model-agnostic XAI methods focusing
on feature explanations are LIME [10], SHAP [11], and DALEX [23]; all three are suitable
for GBDT.

LIME is a model-agnostic feature contribution method that approximates the model
locally using a linear model. For every sample, new points are generated around the sample
based on the distribution of the training dataset and the model output. These new points
are then used to train a linear model that explains the region around that sample [10].
The sample is then put into that local linear model to provide an explanation that shows
how every feature in that sample contributes to the given output [10]. SHAP aims to
explain the sample by finding the marginal contribution of each feature to all possible
combinations of features to explain the output. This means that Shapley values measure
how much each feature contributes to the prediction when considered in combination with
other features [11]. Compared to SHAP, DALEX measures feature contributions based on
the average value of each feature. For every feature, it changes the value to the sample
value while keeping other feature values constant at their average value to quantify the
contribution [23].

Relevant model-agnostic instance methods for GBDT are Diverse Counterfactual
Explanations (DiCE) [24] and Ceteris Paribus (CP) [23]. We also consider leaf influence [22]
as a model-aware instance method. DiCE aims to explain why the current prediction is the
way it is and not another value by showing new instances with changed feature values that
are just enough for the prediction to change substantially, counterfactuals. Counterfactuals
are very intuitive for humans to understand, as they work similarly to how we think [24].
CP profiles visualize a function of the prediction based on the change of a single variable.
They visualize how a change in a specific feature value impacts the outcome while other
features stay constant [23]. Leaf influence determines the most influential training data
for GBDTs for the current prediction [22]. However, it is hard to determine whether the
calculated influential points are indeed the most influential.

To avoid overwhelming clinicians, we arbitrarily limited the number of applied XAI
methods to three to increase the usability of the dashboard. The three selected XAI methods
were: SHAP, CP, and leaf influence. SHAP was selected to provide feature contribution
explainability instead of LIME and DALEX feature contributions. LIME is not deterministic
because of the local sampling of new points and categorizes features into ranges, which
impacts the accuracy of the contribution, making it less suited compared to SHAP. DALEX
feature contributions and SHAP have the same contribution performances; therefore,
as DALEX is less known, we selected SHAP. For the CP curves, we utilized the DALEX
library to avoid implementing the method from scratch. The DALEX library offers CP
calculation functionality natively using its feature contributions and provides plug-and-play
visualizations. CP curves can also somewhat be used as rudimentary local counterfactual
explanations. DiCE can provide more expanded counterfactual explanations; however, it
does not take real value ranges and feature interactions into account, which makes it less
suited for a clinical use case and could confuse physicians. Additionally, leaf influence
was included to enable comparison with other cases with the same output to provide
more context. Leaf influence is also available by default for CatBoost. Consequently,
the selected methods include both model-agnostic and model-specific techniques for local
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explanations. Combining feature contribution and instance methods can strengthen the
overall interpretation, as these techniques complement each other.

3.3. Dashboard Visualization

The constructed dashboard consists of five components and is shown in Figure 1.
Each component’s content provides specific information on the patient and the prediction,
however, due to anonymization requirements, the data has been slightly modified for
publication. The first component (Figure 1a) visualizes the current given antimicrobial
dose, the predicted antimicrobial concentration, the therapeutic range of the antimicrobial
represented as a scale, and where the predicted antimicrobial concentration lies on this
scale. The second component shows the feature values of the patient used by the model
(Figure 1a). The first and second components are permanently visible. Components 3-5 are,
respectively, the SHAP component (Figure 1b), the Ceteris Paribus component (Figure 2a),
and the leaf influence component (Figure 2b). Each component visualizes the result of one
of the implemented XAI methods. The SHAP component (Figure 1b) shows the impact of
each individual feature from component two on the predicted antimicrobial concentration
(Prediction f(x)), shown as a blue bar. Features that increase the predicted antimicrobial
concentration relative to the mean predicted antimicrobial concentration (lowest green
bar E[f(x)]) are shown in green, while features that do the opposite are shown in red.
In this example, one can see that the 8-h creatine clearance forces the prediction to become
higher. The Ceteris Paribus component (Figure 2a) explains how the output of the model
(y-axis) would change if one single feature were to change (x-axis) while all other features
remain the same. The user can select features for which they want such an evaluation,
which is then shown as a graph on the right. For example, if the 8-h creatinine clearance
had been 150 mL/min, the model output would have been 60 mg/L. The last component
(Figure 2b) shows other training samples with similar feature values that influenced the
current prediction. The user can activate and hide these three XAI components from view
upon preference (they are hidden by default).

Current admitted dose: 15.94 g/24h Predicted plasma concentration: 122.97 mg/L

Admitted antibiotic: Piperacilline - Tazobactam

0 mg/L 91,43 mg/L 160 mg/L
Patient
Patient information Patient 1 -
Serum
8-Hour creatinine - Total serum Total serum Serum ureum Weight Serum Arterial Base
. creatinine INR X I
clearance (ml/min) (mardL) protein (g/L) bilirubine (mg/dL) (mg/dL) (kg) LDH (U/L) Excess
mg
58.41 0.52 1.04 0.51 0.77 10.27 60.37 147.5 0.64
Impact of variables on prediction v

Influence of individual variable on the prediction using constant other feature
values

Similar patients v

(@)
Figure 1. Cont.
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Impact of variables on prediction A

Prediction f(x)|

8-Hour creatinine clearance (ml/min))
Serum creatinine (mg/dL)|

Weight (kg)

Total serum protein (g/L)|

Serum ureum (mg/dL)

Serum LDH (U/L)]

INR|
Arterial Base Excess|

Total serum bilirubine (mg/dL)|

Mean E[f(x)]
0 20 40 60 80 100 120

Antibiotic Plasma Concentration (mg/L)

(b)

Figure 1. The dashboard used in the study with its XAI components. (a) The default dashboard
visualization of the last given dose, the antimicrobial concentration prediction, the therapeutic range
of the patient, and the features of the patient. For privacy reasons for publication, the patient shown
here is artificial. (b) The SHAP component visualizing the feature values of the considered patient.
Red indicates negative shap values, Green indicates positive shap values.

3.4. Architecture, Software, and Dashboard Development

The model was available in-house, while the XAI methods were available as Python
libraries and integrated into the back end using Flask 2.1.1. Flask is a micro web framework
for making simple web applications written in Python [35]. The used Python version was
3.8.10. The used model and XAI method versions were as follows: shap 0.36.0, catboost 1.0.4,
and dalex 1.6.0. The final architecture is shown in Figure 3. The front end was developed
using React 18.2.0. A React application consists of different components and updates
these components individually based on user input, making it an ideal framework for
the dashboard for our use case [36]. The back end contains several endpoints that send
information as JSON data to the front end. React requests this information on two occasions.
First, upon opening the dashboard when all components are first loaded, and second, in the
case of user input. The dashboard supports multiple patients so that the user can select
and visualize individual patients. The CP profiles can be plotted for every feature of the
patient. Therefore, there is the option for the user to select every feature individually to
visualize the CP profile of that feature. Each of these actions results in updating the relevant
React components. The dashboard was deployed using a single Docker container running
Gunicorn 20.1.0 as a static HTTP server. The HTTP server also serves as the React front end
for the dashboard.

3.5. Participant Recruitment and Dashboard Evaluation Form

Physicians working in the ICU or the clinical microbiology department of Ghent Uni-
versity Hospital, a tertiary teaching hospital in Belgium, were contacted via email to anony-
mously participate in the evaluation. The recruitment mail provided a password-secured
link to the dashboard as well as the evaluation form (both available in the Supplementary
Material). Seven clinicians responded and participated in the study.
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50 100 150 200 50 100 150 200 250
SELECT
Weight (kg) 8-Hour creatinine clearance (ml/min)
(a)
Similar patients ~
8-Hour Total ) L
L Serum Total serum Serum . Serum Arterial Antibiotic Plasma
creatinine serum Weight
creatinine INR bilirubine ureum LDH Base Concentration
clearance protein (kg)
X (mg/dL) (mg/dL) (mg/dL) (u/L) Excess (mg/L)
(ml/min) (g/L)
49.07 0.51 118 0.49 0.78 12.5 59.36 159.68 0.53 117.17
54.72 0.59 1.28 0.44 0.93 13.07 56.5 146.99 2.88 154.68
71.32 0.5 1.16 0.45 0.68 13.33 53.58 99.45 -1.97 172.91
56.99 0.43 1.23 0.46 0.59 23.99 56.76 115.85 -1.6 189.78
71.04 0.44 1.25 0.56 0.5 15.71 55.62 112.97 -2.69 114.37

Figure 2. The dashboard used in the study with its XAI components (continued). (a) The Ceteris
Paribus component visualizes how the output (y-axis) would change if a feature value (x-axis) were
to change while keeping all other features constant. (b) The leaf influence component visualizes
other patients in the training data with similar feature values that influenced the current prediction.
For privacy reasons, the similar patients shown here are artificial for publication purposes.

Five real-world patient cases were presented to the participants. Each of the cases
was taken from the same database used for the development and testing of the model (see
Supplementary Material; the data has been slightly modified for publication purposes and
anonymization requirements). For each case, the features used to produce the predicted an-
timicrobial concentration, the corresponding predicted antimicrobial concentration, and the
corresponding measured antimicrobial concentration were available. The five patient cases
were chosen to allow for a mix of concordance and discordance between the measured
concentration, the predicted concentration, and whether or not the predicted concentration
was in the therapeutic range. The patient cases are summarized in Table 1. For the first
patient case, the measured antimicrobial concentration is in accordance with the predicted
antimicrobial concentration, which falls in the therapeutic range of the antimicrobial. In the
second case, both antimicrobial concentrations are also in accordance and inside the thera-
peutic range, but close to the lower bound. Cases 3 and 4 represent discordance between
the measured and the predicted antimicrobial concentration. While for both cases the
measured antimicrobial concentration falls within the therapeutic range, the predicted
antimicrobial concentration in case 3 is supratherapeutic, while in case 4 it is subtherapeutic.
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In case 5, both concentrations are in accordance and are supratherapeutic. To enable a
‘plug-and-play’ evaluation of the XAI components, no prior guidance on how to use the
dashboard was given. Before completing the evaluation, physicians were asked to give
details on the department they worked in and their work experience. For all presented
cases, physicians were asked to give the most important conclusions they drew from the
dashboard concerning the predicted concentration of the patient. Additionally, they were
asked what their treatment plan would be if a single feature were hypothetically changed.
This question polls the use of the CP profiles, as these represent hypothetical changes of
feature values in the model. Also, for the first and last scenarios, participants were asked to
describe their interpretation of each of the five XAI components. These questions represent
qualitative questions. After all five scenarios were evaluated, participants had to give
a score between one and ten on the contribution of every component to the perceived
explainability of the model for a quantitative measure of the interpretability. Additionally,
they were asked to score the perceived completeness of the dashboard and the probability
of using the dashboard in their clinical decision-making. Responses to the evaluation form
were analyzed by two data scientists and a physician familiar with Al and ML applications
in healthcare.

lapi/auth/
/api/dose/
lapi/prediction/
Flask AP| [api/patient/
lapi/shap/
lapilcpprofile/
lapilleaf/
base_model Reactl]S
shap_explainer
dalex_explainer
X_trainingdata Y_trainingdata
X_testdata Y _testdata
Figure 3. System architecture of the dashboard application.
Table 1. Overview of presented scenarios.

Measured Range Predicted Range
Antimicrobial Measured Antimicrobial Prediction
Concentration Concentration Concentration Concentration

(mg/L) (mg/L)
125.1 Therapeutic 122.97 Therapeutic
90.41 Lower bound of 92.03 Lower bound of
therapeutic range therapeutic range
118.95 Therapeutic 216.4 Supratherapeutic
108.8 Therapeutic 67.6 Subtherapeutic
226.4 Supratherapeutic 218.7 Supratherapeutic
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4. Results

The averaged scores, as quoted by seven clinicians (six ICU physicians and one clinical
microbiologist), for the contribution of the XAI component to explainability are summarized
in Table 2.

Table 2. Total averaged score per XAI component on contribution to the explainability.

Component Score/10 o
Predicted concentration 8.14 1.57
Last given dose 8.14 1.57
Toxic-therapeutic margin 7.57 151
CP Profile 7.00 1.83
Patient information 6.29 1.70
SHAP 5.43 3.50
Leaf influence 5.43 1.72

The three elements with the highest contribution (and hence considered to be the most
contributing to the explainability of the GBDT model) were the predicted concentration,
the last given dose, and the toxic-therapeutic margin. All three elements are simply output
visualizations and thus not XAI methods. Of the XAI methods, the CP profiles were
perceived as having the highest contribution to explainability. Derived from the qualitative
questions, these CP profiles could correctly be described and interpreted by all physicians.
Furthermore, CP profiles were perceived as the most informative, as they provided a way
for the physician to estimate the evolution of the concentration given a change in one of the
features. SHAP and leaf influence have much lower scores on explainability. Contrary to
the CP profiles, several participants indicated that they were unable to fully understand
the function of the SHAP representation from the provided visualization, resulting in a
large variance in awarded explainability scores. For the leaf influence, participants were
able to understand and appreciate that these were similar patients, but could not identify
whether these patients were used as a basis for training the model or if they were similar
patients for whom the model also provided a prediction. None of the physicians indicated
that the prediction in scenarios 3 or 4 could potentially be flawed.

Physicians scored the completeness of explainability of the dashboard with an average
score of seven out of ten. Additionally, the physicians scored the likelihood of using the
dashboard to support their medical decisions in clinical care at an average rating of 6.29
out of 10. Clarifications and suggestions mainly indicated that additional guidance would
be welcomed on how to interpret the XAl visuals, mainly for the SHAP and leaf influence
components, as well as specific clinical information for the scenario at hand.

5. Discussion

In this work, we set out to evaluate the clinical explainability of XAI methods on end-
users for a GBDT model that predicts antimicrobial plasma concentrations of piperacillin.
Given the use case and a literature review, we selected three potentially applicable XAI
methods: SHAP, CP profiles, and leaf influence. These XAI methods were combined with
relevant clinical information in a dashboard and consequently evaluated by clinicians.
The evaluation covered five different patient cases, which were presented to six ICU physi-
cians and one physician working in the microbiology department. The physicians gave
the complete dashboard a seven out of ten on explainability, which is encouraging for
further research. To our knowledge, few of these XAl evaluations with clinicians have been
reported in the literature, making this study a valuable step in facilitating Al for the ICU.
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Interestingly enough, none of the participants questioned the accuracy and validity of
the GBDT model output, as none of the participants identified the predicted concentrations
that were discordant from the measured concentrations. Although participants were
not encouraged to critically appraise these elements, this observation may indicate a
profound challenge for the implementation of AI/ML models. Healthcare workers might
not constantly challenge the accuracy and validity of a model’s output when used in routine
clinical care, as a healthcare worker’s main concern is to adequately treat patients in the
limited time available. Furthermore, healthcare workers themselves indicate that one of the
most prominent expected AI/ML implementation benefits would be that clinical decision
support could be provided 24/7, especially at times when human resources are limited or
less experienced physicians are the primary caregivers [6]. Therefore, in future work, it is
worth exploring whether or not XAl can contribute to the ability of an end-user to identify
incorrect predictions.

The top three components contributing the most to the perceived explainability were
non-XAI components containing basic context information. Of the XAI methods, only
CP profiles were uniformly correctly interpreted and found to be useful. As the CP
profiles provide visualizations of how the prediction would have changed if a single feature
changed, these visualizations closely approach counterfactual explanations. For humans,
these kinds of explanations are the easiest to interpret, as they provide an answer to the
“what if” question. The results of our study are in line with the previously mentioned
XALI evaluation study by Norrie et al. They evaluated the usefulness of XAI methods,
such as SHAP and LIME, with physicians in establishing trust in an ML model that
predicts a sepsis diagnosis. Our study confirms these results for SHAP and places the Leaf
influence component on the same level, while the CP profiles have a much higher perceived
explainability. Norrie et al. reported neutral to negative scores for SHAP and LIME
methods when it came to user trust, explanation satisfaction, and human-machine task
performance. These scores were given in their study, even though participating physicians
received information regarding these techniques at the beginning of the study [16]. To our
knowledge, no study evaluates the perceived explainability of CP profiles with physicians.

The SHAP and Leaf influence results indicate that using popular XAI methods ‘as
is” might be insufficient, even with a short, readable explanation, to adequately confer
the explainability physicians want and expect. In other user groups, other less common
XAI methods are more suited for use ‘as is’. Kaur and colleagues found that explanations
provided by generative additive models (GAMs) are easier to understand intuitively than
explanations provided by SHAP; however, their study population was limited to data
scientists [37]. They mainly attributed their findings to the design of the XAI method
output instead of the participant’s interpretation. Notably, few of the data scientists could
accurately describe the output visualizations of both GAM and SHAP. If data scientists
themselves cannot accurately interpret XAl methods when given ‘as is’, additional clarifica-
tion techniques might be necessary to realize utility for lay end-users.

Natural language explanations are another way of providing explanations, which was
not researched in this study. A study where additional explanation of the XAl methods
was provided using natural language has shown to improve user decision-making by 44%
and might therefore improve perceived explainability of the XAl methods [38]. Several in-
teractive XAl systems that leverage natural language are currently being researched [39,40].
Additionally, combining natural language explanation with preattentive processing has
also been shown to improve the end-user’s understanding of a model’s behavior [41].

Our study also has some limitations. Only a limited number of participants from
the same hospital took part, increasing the chance of selection bias. Additionally, a single
composition of the dashboard was tested, which might have limited the potential of the
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dashboard. Finally, since the setup of the study was to investigate the perceived explainabil-
ity, no conclusions can be made about the potential trust in the model. To evaluate the XAI
dashboard on a broader range of criteria beyond pure interpretability, future work should
supplement the current qualitative questionnaire with quantitative evaluation indicators;
examples include time to decision, system usability, and user interaction metrics.

Future work could be directed toward improvement of the research methodology,
optimization of the dashboard, and broadening of the scope of the research questions.
Expanding the testing population to physicians working in different specialties, as well as
to a multicentric setting, will increase research validity and potentially uncover additional
insights. Furthermore, since CP profiles were perceived as the most clinically useful, this
XAI method is worth exploring further to fully understand its potential in a clinical setting.
The effect of changes to the dashboard, such as different components, layout, and the
addition of relevant clinical information, on the perceived explainability will also further
concretize the requirements and the needs of clinicians. To evaluate the XAl dashboard on
a broader range of criteria beyond pure interpretability, future work should supplement
the current qualitative questionnaire with quantitative metrics; examples include time to
decision, system usability, and user interaction metrics. Finally, the scope of XAl research
should be broadened. Not only should the perceived explainability by the end-users be
investigated, but also the possibility of end-users identifying incorrect predictions through
XAI and whether or not XAI methods elicit trust in end-users to start using the AI/ML
model. In general, many more studies are required to fully comprehend the requirements
of Al for use in an ICU setting in terms of trust, explainability, and perceived usefulness,
for which this study can serve as a stepping stone. Hence, this study could be seen as a
reference for future XAl research and clinical implementation.

6. Conclusions

In conclusion, a first attempt was taken to formally evaluate the usability of XAI
methods to satisfy the explainability requirement posed by end-users to start using AI/ML
models in high-stakes environments such as the ICU. With an average score of seven
out of ten for explainability, the responses from seven practicing physicians underscore
the potential impact of an XAI dashboard on clinical decision-making, with participants
specifically highlighting the CP profiles as the most useful XAI technique. Although small,
this work can serve as a starting point for the exploration of XAl applications to foster and
ultimately reach AI/ML implementation in clinical ICU practice.
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