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Abstract

Traffic sign detection is a crucial task for autonomous driving perception systems, as it
directly impacts vehicle path planning and safety decisions. Existing algorithms face chal‑
lenges such as feature information attenuation and model lightweighting requirements in
the detection of small traffic signs at long distances. To address these issues, this paper
proposes a dual‑pooling dynamic grouping (DPDG) module. This module dynamically
adjusts the number of groups to adapt to different input features, combines global av‑
erage pooling and max pooling to enhance channel attention representation, and uses a
lightweight 3 × 3 convolution‑based spatial branch to generate spatial weights. Based on
a hierarchical optimization strategy, the DPDG module is integrated into the YOLOv10n
network. Experimental results on the traffic sign dataset demonstrate a significant im‑
provement in the performance of the YOLO‑DPDG network: Compared to the baseline
YOLOv10n model, mAP@0.5 and mAP@0.5:0.95 improved by 8.77% and 10.56%, respec‑
tively, while precision and recall were enhanced by 6.16% and 6.62%, respectively. Addi‑
tionally, inference speed (FPS) increased by 11.1%, with only a 4.89% increase in model
parameters. Compared to the YOLOv10‑Small model, this method achieves a similar de‑
tection accuracy while reducing the number of model parameters by 64.83%. This study
provides a more efficient and lightweight solution for edge‑based traffic sign detection.

Keywords: YOLOv10; traffic sign detection; DPDG; attention mechanism; small object
detection

1. Introduction
Driven by the deep integration of intelligent technology innovation and the digital

revolution, autonomous driving technology has achieved breakthrough progress and gar‑
nered significant attention from all sectors of society [1]. In the field of autonomous driving
technology, intelligent traffic sign recognition is a core component of environmental per‑
ception and decision‑making planning, and the optimization of its algorithm performance
directly impacts the reliability and safety of the system. Efficient recognition algorithms
can significantly enhance the detection accuracy and real‑timeperformance of autonomous
vehicles in identifying traffic signs, ensuring compliance with traffic regulations, and op‑
timizing overall traffic efficiency. Additionally, improved recognition accuracy not only
enhances the responsiveness of vehicle decision‑making mechanisms but also effectively
reduces safety risks caused bymisdetection ormissed detection, providing road userswith
more comprehensive safety protection [2]. However, real‑world road scenarios require au‑
tonomous vehicles to have the ability to perceive traffic signs at long distances to support
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advanced decision‑making. The “long distances” referred to in this study correspond to
the detection distances of 50 m to 100 m or more in real scenarios. Due to their multi‑
scale nature, low resolution, and susceptibility to complex background interference such
as changes in lighting and partial obstruction, traffic signs often appear as small objects in
sensor images, making recognition challenging [3].

Traditional traffic sign recognition methods primarily rely on color space analysis
and shape contour extraction, utilizing predefined template matching or shallow classi‑
fiers for detection and classification [4,5]. Such methods heavily depend on the robust‑
ness of predefined features and the stability of the scene. However, in scenarios involving
distant, low‑resolution small objects, artificially designed features exhibit severe limita‑
tions in adaptability, resulting in limited feature representation capabilities, poor gener‑
alization, and significant fluctuations in detection accuracy [2,6,7]. The complex feature
calculation and matching processes typically involve high computational complexity [8],
making it difficult to meet the stringent real‑time processing performance requirements of
in‑vehicle systems.

With the rapid development of deep learning technology, research on traffic sign
recognition has gained new momentum. Mainstream deep learning detection algorithms
can be broadly categorized into two types: two‑stage detection frameworks represented
by R‑CNN, Fast‑RCNN, and Faster‑RCNN, and single‑stage detection frameworks, includ‑
ing the You Only Look Once (YOLO) series [9–17] and SSD models. Due to their inherent
multi‑stage processing mechanism, two‑stage algorithms often suffer from high compu‑
tational complexity and slow inference speeds, making it difficult to meet the stringent
real‑time requirements of traffic sign recognition. In contrast, single‑stage algorithms have
a simpler model structure, significantly improving detection speed while maintaining ac‑
ceptable accuracy, making them more suitable for practical application scenarios. Among
the many single‑stage algorithms, the YOLO series has become a widely adopted research
foundation in the field due to its excellent performance balance achieved through contin‑
uous iterative optimization. This paper selects the YOLOv10 [17] version of the YOLO
series and performs in‑depth optimization of model efficiency and detection performance
to address the practical needs of traffic sign recognition.

The core competitiveness of YOLOv10 has been widely validated. Its end‑to‑end
deployment and model architecture optimization have achieved comprehensive break‑
throughs in speed, accuracy, and parameter efficiency. Its innovative direction represents
a major advancement in object detection, particularly suitable for latency‑sensitive au‑
tonomous driving scenarios. Among these, the lightweight model YOLOv10n achieves an
extremely lightweight design and inference speed while maintaining high accuracy, better
meeting the real‑time requirements of in‑vehicle deployment. However, when detecting
small objects such as distant traffic signs, simply improving inference speed is insufficient.
Lightweightmodels still haveweak feature extraction capabilities for small objects, making
it difficult to improve detection accuracy. They face challenges such as loss of feature reso‑
lution, inadequate utilization of contextual information, and insufficient flexibility of atten‑
tion mechanisms, leading to the risk of missing critical traffic information and constrain‑
ing the reliability and widespread application of autonomous driving technology. While
YOLOv10s significantly improves detection accuracy, it also leads to a sharp increase in
parameters, significantly increasing computational complexity and memory usage. This
results in higher inference latency on edge devices, impacting real‑time decision‑making
requirements for autonomous driving. Additionally, edge devices would need hardware
upgrades, leading to increased deployment costs.

These shortcomings limit the generalization ability of YOLOv10n in complex traffic
scenarios, especially when dealing with areas with a high density of small targets, where
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false negatives and false positives are likely to occur. YOLOv10s suffers from feedback
delays and instability, and changing hardware increases costs, making it difficult to adapt
to the demands of dynamic traffic environments. Traffic sign detection needs to optimize
detection accuracy while maintaining high inference efficiency.

To address the above issues, this paper proposes a dual‑pooling dynamic grouping
module (DPDG). The lightweight improved network YOLO‑DPDG integrates our newly
designed DPDG module into YOLOv10n to form a collaborative system with dynamic
feature aggregation capabilities, effectively balancing model accuracy and computational
efficiency. The DPDG module serves as the core component, with its implementation in‑
corporating three innovative mechanisms:

1. Coordinated adaptive dynamic grouping mechanism: Adaptively adjust the number
of groups based on the number of input channels to ensure optimal channel division,
improve the model’s generalization ability and feature utilization, and reduce intra‑
group redundancy.

2. Dual‑pooling channel attention: This component simultaneously employs global av‑
erage pooling to capture global statistical features across channel dimensions and
max pooling to aggregate prominent local features. Finally, it constructs a hybrid
statistic through dual‑path feature tensor concatenation and dimension compression,
enhancing feature representation in complex scenarios.

3. Lightweight spatial branch: A 3 × 3 separable convolution with parameter shar‑
ing [15,17] is used to construct a spatial weight generator, with fewer parameters than
traditional spatial attention. Through spatial compression operations, computational
complexity is reduced while maintaining the receptive field.

Themain contributions of this network are as follows: it proposes a dynamic grouping
attention mechanism for small object detection, innovatively integrating dynamic group‑
ing with dual pooling. Compared to traditional fixed grouping strategies, dynamic group‑
ing canmaintain optimal and stable channel division. Compared to single pooling designs,
dual pooling can increase the receptive field. Furthermore, compared to mainstream atten‑
tion mechanisms, DPDG performs better in detection accuracy and speed. The improved
network significantly optimizes the extraction strength and efficiency of small object fea‑
tures, enhancing recognition accuracy. It effectively addresses the issues of false positives
and false negatives in detecting small traffic sign objects while achieving a high balance
between performance and speed, making it more practical for real‑world applications.

The remainder of this paper is organized as follows: Section 2 focuses on the research
evolution of the YOLOv10n architecture and attention mechanism. Section 3 systemati‑
cally analyzes the network structure proposed in this study. Section 4 explains the ex‑
perimental implementation from three aspects: experimental details, comparison with ad‑
vancedmodules, and ablation experiments, and quantitatively evaluates the algorithmper‑
formance. Section 5 discusses and explains the deeper significance of this study. Section 6
summarizes the innovative methods and looks ahead to possible future optimization di‑
rections and technical extensions.

2. Related Work
As a key technology in autonomous driving perception systems, traffic sign detection

continues to drive innovation in detection network architecture and attention mechanisms
due to the challenge of balancing lightweight design and accuracy.

2.1. YOLOv10

The basic object detection model adopted the YOLOv10 version proposed by Wang
et al. from the Multimedia Intelligent Group of Tsinghua University in 2024. As an up‑
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graded version of YOLOv8, YOLOv10 has undergone a number of key optimizations and
algorithmic improvements in network architecture, training process, and post‑processing
mechanisms, significantly improving detection accuracy while maintaining excellent real‑
time detection speed. The model achieves a higher mean average precision (mAP) than
YOLOv8 across multiple sizes, including Nano, Small, Medium, Large, and Extra‑large.
The YOLOv10 architecture consists of three components: a backbone network based on
the enhanced Cross‑Stage Partial Network (CSPNet‑enhanced) structure, which reduces
redundant computations through partial convolution; a PAN neck that uses hierarchical
feature aggregation to fuse shallow spatial information with deep semantic features; and a
dual detection head structure that includes a one‑to‑many head for enriching positive sam‑
ples during training and a one‑to‑one head for directly outputting redundant predictions
during inference.

YOLOv10 achieves an NMS‑free detection process through a consistent dual assign‑
ment strategy. Specifically, during training, the one‑to‑many head dynamically selects
positive samples using a task‑aligned assigner, while the one‑to‑one head determines the
unique match through optimal transport assignment. During inference, only the one‑to‑
one head is retained, eliminating the need for NMS post‑processing. Extensive experi‑
ments validate that YOLOv10 achieves state‑of‑the‑art performance while significantly re‑
ducing computational overhead through the above optimizations, continuing and enhanc‑
ing the YOLO series’ advantage of balancing speed and accuracy.

YOLOv10n, a lightweight version of the YOLOv10 series, achieves synergistic op‑
timization of speed and accuracy through architectural innovation, such as the use of
depthwise separable convolutions and gradient reparameterization, which significantly
reduce the number of parameters and computations while maintaining performance. Its
lightweight branch, YOLOv10n, further reduces computational overhead while maintain‑
ing nano‑level parameters, making it the preferred benchmarkmodel for edge deployment.
Its detailed structure is shown in Figure 1.

 

Figure 1. YOLOv10n network architecture.



Appl. Sci. 2025, 15, 10921 5 of 25

The backbone network of YOLOv10n adopts a CSPNet‑enhanced structure, achieving
lightweight design through the synergistic integration of Depthwise Separable Convolu‑
tion and Gradient Reparameterization. The network decomposes standard convolutions
into a cascaded operation of depthwise convolutions and pointwise convolutions, signif‑
icantly reducing the number of parameters. During training, multi‑branch convolutions
enhance feature diversity, which is then merged into a single path during inference to
maintain efficiency. However, this design still has limitations in detecting small objects at
long distances, especially in extracting low‑pixel traffic sign features. The neck network
combines reversible cross‑stage connections (Reversible CSPConnect) with a hierarchical
feature aggregation mechanism to fuse shallow spatial information and deep semantic fea‑
tures through bidirectional feature routing. Compared to the Feature Pyramid Network
(FPN) proposed by Lin et al. [18], which enhances semantic perception through cross‑
scale feature fusion, the stacked structure of FPN significantly increases computational
complexity. This design replaces feature concatenation with channel reordering, reducing
memory usage while maintaining multi‑scale fusion effects. However, its static group‑
ing strategy has limited adaptability to the multi‑scale dynamic changes in traffic signs,
constraining detection stability in complex environments. The head network employs an
Implicit Decoupled Head to optimize feature decoding for classification and regression
tasks. By sharing the base convolutional layers and introducing task‑specificweights at the
terminal branches, it retains the accuracy advantages of the decoupled head while avoid‑
ing the computational overhead of an explicit multi‑branch structure. Combined with a
consistent dual‑allocation strategy, during training, a pair of multi‑branch structures is
used to augment positive samples, and during inference, it switches to a single‑branch
structure to achieve NMS‑free output. However, this mechanism is overly strict in filter‑
ing low‑confidence small objects, leading to increased sign detection rates and bounding
box prediction errors, highlighting the limitations of the existing architecture in detecting
small objects.

2.2. Attention Mechanism

The attention mechanism suppresses interference and enhances responses in key re‑
gions through feature reweighting strategies, making it a core technology for improving
small object detection performance. The channel attention mechanism was first proposed
by Hu et al. [19] in SENet, which uses global average pooling (GAP) to generate chan‑
nel weights. However, its single statistical measure struggles to capture the local salient
features of traffic signs. To address this issue, Woo et al. [20] proposed CBAM, which
combines channel and spatial attention and uses 7 × 7 convolutions to capture local con‑
text. However, the large convolution kernels introduce excessive computational load. Li
et al. [21] further proposed a fixed grouping attention SGE, which uniformly divides chan‑
nels into eight groups for parallel processing. Although this improves computational ef‑
ficiency, the rigid grouping strategy causes information imbalance between groups when
input channels dynamically change. As a result, dynamic attention has gradually become
a research hotspot. Yang et al.’s [22] CondConv enhances feature discriminative power
through sample‑adaptive weight matrices, but the demand for dynamic parameter stor‑
age causes severe model bloat; Dai et al.’s [23] Deformable Convolution adapts the recep‑
tive field by learning spatial offsets, but it is sensitive to offset prediction errors for low‑
resolution targets. Sunkara et al.’s [24] SPD‑Conv replaces downsampling with a spatial‑
to‑depth transformation to preserve fine‑grained features of small objects. However, intro‑
ducing an additional transformation layer increases the number of parameters. In traffic
sign detection, researchers have attempted to optimize attention design by incorporating
domain knowledge. For example, Wang et al. [25] proposed color‑aware attention based
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on color priors, which enhances the response to sign colors in theHSV space; Zhu et al. [26]
designed an orientation‑sensitive spatial attentionmodule to enhance the rotational robust‑
ness of triangular warning signs. Although the above methods have made some progress
in small object detection, they still have limitations in many aspects. There is an imbalance
between efficiency and accuracy, making it difficult to meet the lightweight requirements
of edge devices; insufficient suppression of feature interference, with noisy features in
complex backgrounds easily interfering with multi‑scale fusion processes [27]; and rigid
channel partitioning, with fixed‑group attention leading to low information utilization be‑
tween groups.

Therefore, using only the YOLOv10n model or existing attention mechanisms can‑
not fundamentally resolve the conflict between lightweight design and performance. An
effective balance has yet to be established among dynamic adaptability, computational
efficiency, and parameter control. Our method, YOLO‑DPDG, does not require addi‑
tional storage for dynamic weights. It achieves feature expression optimization solely
through adaptive adjustment of the number of groups, providing a solution for design‑
ing lightweight detection networks.

3. Method
The YOLOv10 series of models has demonstrated outstanding performance in mul‑

tiple computer vision tasks, including object detection, visual classification, and instance‑
level semantic segmentation. This series offers five model variants based on the balance
between computational efficiency and detection accuracy, namely Nano (n), Small (s),
Medium (m), Large (l), and Extra‑large (x). These variants are designed to meet different
resource limitations and accuracy requirements. The n version is specifically tailored for
ultra‑lightweight and high‑speed deployment on edge devices, while the gradually larger
types (s, m, l, x) will contain more parameters and computational complexity, achieving
higher detection accuracy while increasing inference latency. In this study, we selected
the computationally least intensive YOLOv10n as the base network architecture to meet
the stringent requirements for real‑time inference in practical application scenarios.

Aiming at the core issues of low feature resolution and strong background interfer‑
ence in traffic sign small object detection tasks, this paper constructs the Dual‑Pooling
Dynamic Grouping Network (YOLO‑DPDG), a lightweight improved network based on
YOLOv10n. By integrating a newly designed dual‑pooling dynamic grouping module
(DPDG) and restructuring the backbone with SPD‑Conv and C2fCIB modules, the net‑
work forms a synergistic system with dynamic feature aggregation capabilities, thereby
achieving a better balance between detection accuracy and computational efficiency. As
shown in Figure 2, the overall model structure achieves coordinated optimization of accu‑
racy and efficiency throughmulti‑levelmodular design. Specifically, the input featuremap
is first decomposed into subregions and channel concatenation through a space‑to‑depth
transformation, converting the downsampling process into a channel expansion operation.
This design addresses the issue of small object detail loss caused by traditional strided
convolutions while reducing the output resolution to one‑quarter of the original, provid‑
ing subsequent modules with rich spatial details, particularly enhancing edge and texture
information of small objects. Second, the feature fusion layer is restructured into a cross‑
stage interaction bottleneck structure (C2fCIB), utilizing bidirectional cross‑layer connec‑
tions to enhance the interaction efficiency between shallow‑layer localization information
and deep‑layer semantic features. Through a channel information bottleneck (CIB), redun‑
dant features are compressed to retain core semantic information across stages, thereby
reducing noise interference in subsequent DPDG processing.
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Figure 2. YOLO‑DPDG network architecture.

To overcome issues such as channel redundancy, group hardening, and insufficient
spatial perception in traditional attention mechanisms within lightweight models, this
work proposes the DPDG. It achieves feature expression optimization through an adaptive
channel partitioning strategy and a dual‑dimensional attention coordination mechanism,
ultimately deployed at the front end of the detection head. This module consists of three
parts: the dynamic grouping mechanism adaptively adjusts the number of groups based
on the input channel count to achieve a globally optimal solution for channel partition‑
ing; the dual‑pooling channel attention combines global average pooling and max pooling
to generate hybrid statistics, enhancing feature discriminative power in complex scenes;
and the lightweight spatial branch employs a 3 × 3 separable convolutional layer with pa‑
rameter sharing to construct a spatial weight generator, resulting in lower computational
complexity compared to traditional 7× 7 convolutions. The entire network adopts an end‑
to‑end optimization strategy, achieving dynamic aggregation of multi‑scale features while
maintaining lightweight characteristics.

3.1. SPD‑Conv

Convolutional neural networks (CNNs) often lose detailed features when processing
low‑resolution images or small objects due to the coarse‑grained downsampling opera‑
tions of strided convolution and pooling layers. To address this issue, this study adopts
the space‑to‑depth convolution module proposed by Sunaka et al. as an alternative to the
standard downsampling layer. The SPDmodule consists of a spatial depth transformation
layer and a non‑strided convolution layer. Its core operation involves dividing an input
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feature map X of size S × S × C into scale2 sub‑feature maps using a scaling factor scale,
as shown in the following formula:

f0,0 = X[0:S:scale, 0:S:scale], f1,0 = X[1:S:scale, 0:S:scale], …,
fscale−1,0 = X[scale − 1:S:scale, 0:S:scale];

f0,1 = X[0:S:scale, 1:S:scale], f1,1, …,
fscale−1,1 = X[scale − 1:S:scale, 1:S:scale];

f0,scale−1 = X[0:S:scale, scale − 1:S:scale], f1,scale−1, …,
fscale−1,scale−1 = X[scale − 1:S:scale, scale − 1:S:scale];

(1)

The sub‑feature map is composed of all X(i,j) in the original feature map X that satisfy
both i + x and j + y being divisible by scale. Therefore, each sub‑feature map implements
downsampling of X by a scale factor. For example, as shown in Figure 3, when scale = 2,
the original 4 × 4 feature map is divided into four non‑overlapping 2 × 2 subregions (f00,
f01, f10, f11), each corresponding to a set of pixels with odd‑even combinations of row and
column indices in the original feature map. Each submap contains the spatial local infor‑
mation of the original feature map. The four sub‑maps are concatenated along the channel
dimension to form a temporary feature map of size 2× 2× 4C1, which is then compressed
to the target dimension C2 via a 1 × 1 convolution. This operation reduces the resolution
by a factor of 2 while fully preserving the original spatial information, addressing the de‑
tail loss issue in stride convolution and enabling the retention of fine details in small traffic
signs. This approach demonstrates greater robustness in complex traffic scenes.

 

Figure 3. Illustration of SPD‑Conv when scale = 2.

3.2. C2fCIB

To optimize model computational efficiency and adapt to edge device deployment re‑
quirements, this study adopts the Context Interaction Bottleneck Module (C2fCIB) based
on deep separable convolutions proposed by Wang et al. This module is a lightweight
modification of the original C2f module in the YOLO architecture, particularly suitable for
processing deep features in the backbone network. Its core design involves constructing an
inverted bottleneck structure using deep separable convolutions in the feature propagation
path, as shown in Figure 4. First, a 1× 1 convolution is used to expand the channel dimen‑
sion, followed by a 3 × 3 deep convolution that processes each channel independently.
Finally, a 1 × 1 convolution is used to compress the channel dimension. This structure,
which first expands, then performs deep convolution, and finally compresses, significantly



Appl. Sci. 2025, 15, 10921 9 of 25

reduces the number of model parameters and computational complexity. Specifically, de‑
ploying the C2fCIB module in areas with low feature map resolution and high channel
counts can improve computational efficiency while maintaining model accuracy. Addi‑
tionally, this module retains the cross‑stage connection feature from the original C2f struc‑
ture, integrating shallow‑level detail features with deep‑level semantic features to main‑
tain multi‑scale feature representation capabilities. This lightweight design enables the
model to maintain traffic sign detection accuracy while improving inference speed, pro‑
viding practical support for real‑time processing requirements in actual traffic monitor‑
ing scenarios.

 

Figure 4. C2fCIB structure, containing CIB structure.

3.3. DPDG
3.3.1. Dynamic Grouping Mechanism

The dynamic groupingmechanism addresses the issues of empirical dependency and
insufficient generalization in traditional fixed grouping methods (such as SGE’s preset
G = 8) in channel division. This mechanism abandons the prior assumption of a preset
grouping number and instead dynamically calculates the optimal grouping number G
based on the number of channels C in the input feature map. The mathematical expres‑
sion is as follows:

G = argmaxg

{
g ∈ N+

∣∣∣∣C
g
∈ Z+, g ≤

⌊
C
r

⌋}
(2)

Among them, C is the channel dimension of the input feature map. By constraining
g ≤ �C/r�, the grouping granularity and computational efficiency are balanced. Parame‑
ter r represents the reduction rate, and the empirical value is set to 16 to control the upper
limit of the number of groups, prevent excessive grouping, and balance the grouping gran‑
ularity and computational efficiency. The mechanism architecture is shown in Figure 5.

The algorithm begins by extracting the input feature map, initially setting the num‑
ber of groups to Ginit ≤ �C/r�, and restricting it to an integer. It then iteratively adjusts
the number of groups to ensure that channels are evenly distributed within each group
and no information is fragmented. The process continues in a loop until C%G = 0. If the
condition is not met after the final iteration, the number of groups will be set to 1 to avoid
division‑by‑zero errors. The figure shows that when the input channel number C is 256,
the calculation yields G = 16, which means the channels are divided into 16 groups, with
each group containing 16 channels. Similarly, when C = 512 and G = 32, each group still
maintains 16 channels. More typical examples are shown in Table 1. After dynamic group‑
ing, the process proceeds to the dual‑pooling channel attention stage. This design enables
the module to adapt to feature maps of different scales, such as C = 256 for shallow layers
and C = 1024 for deep layers in the backbone, thereby avoiding performance degradation
caused by fixed grouping during cross‑scale feature fusion.
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Figure 5. Dynamic grouping mechanism architecture diagram.

Table 1. Typical input channel number grouping result.

Channels Reduction Groups
256 16 16
512 16 32
300 16 15
127 16 1

The theoretical advantage of the dynamic grouping mechanism lies in its adaptive
channel division strategy, which maximizes the consistency of features within a group.
Traditional fixed grouping methods tend to result in two extremes when the number of
channels changes: when there are few channels, grouping becomes redundant, with too
few channels within a group, limiting feature expression capabilities; when there aremany
channels, grouping is insufficient, with redundant channels within a group, leading to
the loss of detailed information. Dynamic grouping ensures stable channel counts within
groups through mathematical constraints, such as maintaining a constant count of 16 in
the example above. This enhances local texture responses in shallow features and captures
fine‑grained semantic information in deep features.

The setting of a reduction rate r = 16 in the dynamic grouping mechanism is based
on systematic research findings that involve a thorough trade‑off betweenmodel complex‑
ity and feature representation capability [28,29]. A larger r value (e.g., r = 32) limits the
maximum number of groups, leading to excessive channels within each group, thereby
weakening the network’s ability to extract fine‑grained features such as traffic sign tex‑
tures and edges. A smaller r value (e.g., r = 8) may introduce too many groups, resulting
in information redundancy and computational resource waste during feature interaction.
Through grid search and empirical analysis, r = 16 was the optimal compromise, better bal‑
ancing accuracy and efficiency. Additionally, the computational complexity of dynamic
grouping is O(C/r), which adds almost no latency under GPU parallel architecture, laying
the foundation for hardware compatibility in edge deployment.

3.3.2. Dual‑Pooling Channel Attention

The design of the dual‑pooling channel attention module stems from an in‑depth
analysis of traditional single‑pooling strategies. Existing methods typically rely solely on
global average pooling (AvgPool) to generate channelweights, which essentially reflect fea‑
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ture importance through the mean distribution across the channel dimension. However,
mean pooling tends to smooth out feature responses, potentially weakening the contribu‑
tion of locally significant regions, especially in small object detection taskswhere the target
region accounts for a low proportion, and background features easily dilute its response.
To address this issue, this paper proposes a dual‑pooling channel attention mechanism,
whose working principle is illustrated in Figure 6.

 

Figure 6. Dual‑pooling channel attention: (a) input feature; (b) dual‑pooling results; (c) grouping
mean; (d) sigmoid activation.

Thismechanism combines global average pooling and globalMaxPool in parallel, bal‑
ancing the overall statistical characteristics of the channel dimension with local salient re‑
sponses, thereby covering more comprehensive feature information. Specifically, given
an input feature map X ∈ RB×C×H×W , the module first performs global average pooling
and max pooling independently on each channel, respectively, obtaining the mean vector
representing the overall activity of the channel AvgPool(X) ∈ RB×C×1×1 and the response
vector MaxPool(X) ∈ RB×C×1×1 that focuses on local extrema. The two are fused into the
initial channel weights by adding them element by element:

Wchannel = σ(AvgPool(X) + MaxPool(X)) (3)

Here, σ is the sigmoid function, which normalizes the weights to the range [0, 1]. This
design is mathematically equivalent to imposing dual constraints on the channel features:
themeanweights ensure the global stability of the feature distribution, while themaximum
weights enhance the saliency of key regions. To further adapt to the dynamic grouping
mechanism, the module divides the fused weight tensorWchannel into G subgroups accord‑
ing to the dynamic group number G, with each group containing C/G channels, and gen‑
erates refined weights Wchannel ∈ RB×G×1×1. through intra‑group mean calculation. This
strategy significantly reduces computational complexity while preserving channel differ‑
ences and enhancing intra‑group feature consistency.

Theoretical analysis shows that the dual‑pooling strategy can cover a broader range of
channel information entropy. According to the Shannon entropy formula in information
theory [30], the information entropy H(X) of a feature map can characterize its informa‑
tion richness:

H(X) = −
C

∑
i=1

p(xi)log p(xi) (4)

where p(xi) is the normalized response probability of the i‑th channel. Compared to single
pooling, dual‑pooling fusion weights can improve information entropy coverage, thereby
enhancing the model’s adaptability to complex scenes and improving its robustness in
detecting small objects in low‑light conditions. This improvement can be attributed to the
dual‑pooling strategy’s multidimensional modeling of channel features, wheremean pool‑
ing suppresses background noise and max pooling enhances target edges. The synergistic
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effect of these two mechanisms enables the network to more accurately locate and classify
small‑scale objects.

In addition, the double pooling module has a significant computational efficiency ad‑
vantage. Since the global pooling operation only involves simple tensor compression and
addition operations, its computational overhead is negligible. It is also decoupled from
the dynamic grouping mechanism’s iterative computation process, ensuring the module’s
efficiency in real‑time inference.

3.3.3. Lightweight Spatial Branch

The design philosophy behind lightweight spatial branches is to enhance the model’s
ability to perceive key regions in the spatial dimension without significantly increasing
computational overhead, particularly addressing common challenges such as edge blur‑
ring and background interference in traffic sign detection tasks. Traditional spatial atten‑
tion mechanisms typically employ large‑sized convolution kernels or multi‑branch struc‑
tures, which, although they improve feature discriminative power, introduce additional
parameter counts and reduce inference speed, making them unsuitable for the efficient
deployment requirements of lightweight models. To address this, this work proposes a
minimalist spatial weight generation strategy that balances computational efficiency and
feature enhancement effects through the synergistic design of channel compression and lo‑
cal convolution. Specifically, given the input feature map Xmax ∈ RB×C×H×W , the branch
first performs two compression operations along the channel dimension: the first is maxi‑
mum value compression, which takes the maximum response value of all channels at each
spatial position (h, w) to generate the feature map Xmax ∈ RB×1×H×W , with the mathemat‑
ical expression as follows:

Xmax(b, 1, h, w) = maxcX(b, c, h, w) (5)

This operation effectively preserves the prominent edge features of traffic signs, such
as the red circular outline of prohibition signs. The second ismean compression, which cal‑
culates the mean of the channel dimension for each spatial position to generate the feature
map Xmax ∈ RB×1×H×W , whose formula is:

Xavg(b, 1, h, w) =
1
C

C

∑
c=1

X(b, c, h, w) (6)

Mean compression suppresses randomnoise, such as road reflections or leaf shadows,
through smoothing while preserving the overall spatial distribution characteristics of the
target. To further integrate the advantages of the two compression features, Xmax and
Xavg are concatenated along the channel dimension to obtain themulti‑scale spatial feature
Xcompress ∈ RB×1×H×W .

Subsequently, a single 3 × 3 convolution operation is applied to Xcompress to model
local spatial relationships. The convolution kernel parameters are shared across all spatial
positions, yielding a single‑channel spatial weight map Wspatial ∈ RB×1×H×W , which is
normalized to the [0, 1] interval via the Sigmoid function:

Wspatial = σ
(
ConV3×3

(
Xcompress

))
(7)

The number of parameters in the overall spatial branch is strictly limited by combining
the channel weight control at the group level in the dynamic grouping mechanism. Com‑
pared to the YOLOv10n model, this design can reduce the false detection rate in complex
urban scenes, especially under uneven lighting or partial occlusion conditions. The spatial



Appl. Sci. 2025, 15, 10921 13 of 25

weights can precisely enhance the edge response of the target, and the lightweight spatial
branch effect in traffic sign scenes is shown in Figure 7. The red‑highlighted area precisely
captures the edge contours of traffic signs, while the internal areas of the signs maintain
moderate responses. The blue areas represent the background regions, which are effec‑
tively suppressed, and the road areas exhibit only weak responses, thereby significantly
reducing false positives. Additionally, by omitting themulti‑scale fusion or pyramid struc‑
ture used in traditionalmethods, the inference time of this branch increases onlyminimally,
achieving an optimal balance between parameter count and computational efficiency, fully
meeting the real‑time detection requirements of edge devices.

Figure 7. Lightweight spatial branch visualization: (a) original traffic sign image; (b) spatial attention
heatmap.

It isworth noting that the lightweight spatial branch complements the dynamic group‑
ingmechanismanddual‑pooling channel attention: channelweightsWchannel ∈ RB×G×1×1

focus on “which channels are important,” while spatial weights Wspatial ∈ RB×1×H×W an‑
swer “which positions are important.” This fusion strategy enables themodel to adaptively
select features in both the channel and spatial dimensions, with the two being jointly opti‑
mized through element‑wise multiplication:

Xout = X·Wchannel ·Wspatial (8)

4. Experiment
4.1. Experiment Setup

To verify the practical effectiveness of the proposed method, we conducted a large
number of experiments on a large‑scale real dataset. The experiment used the CCTSDB
2021 [31] traffic sign dataset created by the ChangshaUniversity of Science and Technology
team, which provides 20,492 traffic sign images covering three typical categories of signs:
warning, mandatory, and prohibitory. These categories comprehensively cover the core
functional categories of China’s traffic regulatory system. Figure 8 shows examples of the
three categories of signs. Among these, small objects with pixel areas less than 50 × 50 ac‑
count for as much as 42.7%, a feature that accurately simulates the challenges of detecting
traffic signs at long distances and low resolutions in real‑world road scenarios, enhanc‑
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ing the model’s difficulty. To ensure the reliability and robustness of the experimental
results, all reported performance indicators are derived from a large independent test set
consisting of 1500 images. This test set was strictly retained during the training process.
Consistent and significant improvements observed in all key indicators provide strong ev‑
idence that the performance enhancement brought by our method is not due to random
fluctuations but is statistically significant and repeatable. After the test set was separated,
the total number of training images became 18,992. The remaining dataset was divided
into a training set of 15,194 images and a validation set of 3798 images at a ratio of 4:1.

 

Figure 8. Examples of three types of signs in the dataset: (a) warning; (b) mandatory; (c) prohibitory.

We use a high‑performance computing environment to ensure experimental effi‑
ciency, equipped with Intel® Xeon® Platinum 8352V processors (Intel Corporation, Santa
Clara, CA, USA) and NVIDIA GeForce RTX 4090 graphics cards (NVIDIA Corporation,
Santa Clara, CA, USA), running on the Windows 11 operating system. The deep learn‑
ing framework selected is PyTorch 2.0.1, and CUDA 11.7 technology is used to accelerate
model training and inference processes, thereby improving the computational efficiency
and data processing capabilities of the experiment.

This experiment was conducted over 250 training iterations, using a training config‑
uration with an input resolution of 640 × 640 pixels (imgsz) and a batch size of 32. The
optimizer selected was Stochastic Gradient Descent (SGD), which is known for its conver‑
gence stability and strong generalization capabilities. The initial learning rate was set to
0.01. Mosaic and MixUp data augmentation were disabled to reduce interference from
complex scenes on learning basic features, enabling the model to focus more on the es‑
sential features of traffic signs. The training process enabled 8‑thread data loading and
automatic mixed‑precision acceleration for computation.

This experiment uses six standard metrics from the field of object detection to com‑
prehensively evaluate model performance: mAP@0.5, mAP @ 0.5–0.95, precision (P), recall
(R), parameters (Params), and speed (FPS). Among them,mAP@0.5 is the average precision
(AP) value under a single intersection over union (IoU) threshold, which is relatively sim‑
ple to calculate. However, mAP@0.5:0.95 considers multiple IoU thresholds and is the core
metric for evaluating the overall performance of themodel, better reflecting its comprehen‑
sive capabilities. Higher P and R values indicate fewer false positives and false negatives,
respectively, directly reflecting the reliability of the detection results; the number of param‑
eters reflects the computational complexity of the model; and FPS quantifies the model’s
inference speed by measuring the number of images processed per unit of time, making it
a key indicator for assessing real‑time performance.

4.2. Comparison of DPDG with Mainstream Attention Modules

To comprehensively evaluate the effectiveness of the DPDG module, we compare it
with current mainstream attention mechanisms. All attention modules are inserted into
the same position at the end of the P3/8‑small branch of the neck layer of YOLOv10n to
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ensure fairness in the comparison. The training configuration is strictly unified, and the
experimental results are shown in Table 2.

Table 2. Comparison of attention module performance.

Model mAP@0.5 mAP@0.5:0.95 P R Params/M Incremental Params FPS FLOPs

YOLOv10n 0.730 0.464 0.844 0.680 2.695586 ‑ 1000 8.4
YOLOv10n + SE 0.722 0.454 0.839 0.658 2.696098 +0.000512 1111 8.4
YOLOv10n +

CBAM 0.726 0.443 0.841 0.661 2.699844 +0.004258 1000 8.4

YOLOv10n + SGE 0.741 0.468 0.831 0.696 2.945202 +0.249616 1250 8.7
YOLOv10n +

DPDG 0.740 0.473 0.878 0.676 2.695604 +0.000018 1250 8.7

Experimental data shows that the YOLOv10nmodel with DPDG achieves a 1.94% im‑
provement inmAP@0.5:0.95 and a 25% improvement in inference speedwhilemaintaining
almost the same number of parameters, and the FLOPs increase slightly, with significantly
higher accuracy than YOLOv10n with other modules added. Compared to the SGE mod‑
ule, which has nearly equivalent speed, DPDG achieves a 1.07% increase in mAP@0.5:0.95
with fewer parameters. As shown in Figure 9, in the Pareto front diagram [32,33] com‑
posed of model complexity (incremental parameter count ∆Params/M) and detection ac‑
curacy (mAP@0.5:0.95), the DPDGmodule is located in the upper‑left region of the Pareto
front. The Pareto frontier represents the boundary solution set where all objectives cannot
be improved simultaneously in a multi‑objective optimization problem. The upper‑left re‑
gion signifies the ideal direction of minimizing model parameter counts while maximizing
accuracy. This Pareto optimality clearly demonstrates the effectiveness of the DPDGmodule
in balancing accuracy and efficiency, i.e., significantly enhancing the robustness of sign de‑
tection in complex traffic scenarios without significantly increasing computational overhead.

Figure 9. Pareto frontier analysis of attention modules.

The significant performance advantages demonstrated by DPDG in multi‑module
system comparison evaluations are mainly due to its efficient collaboration and high re‑
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source utilization design. The SGE module enhances local features through grouped spa‑
tial attention, improving recall rates and demonstrating greater robustness in detecting
occluded and deformed signs. However, this also increases computational complexity,
and the fixed grouping leads to channel information fragmentation, resulting in higher
false positive rates. In contrast, DPDG’s dynamic groupingmechanism adapts the number
of groups to effectively avoid channel redundancy issues caused by fixed grouping, and
reasonable adjustment of channel division enables more balanced feature representation.
The SE module reweights feature maps through channel attention, but overemphasizing
the channel dimension may destroy the integrity of spatial features, especially in traffic
sign detection, where spatial location information is critical to positioning accuracy, lead‑
ing to a significant decrease inmAP@0.5:0.95. However, the DPDG’s dual‑pooling strategy
combines global statistical features with local salient responses to enhance target discrim‑
ination in complex backgrounds. Experimental results also validate the effectiveness of
our lightweight module design. DPDG uses a single 3 × 3 convolution layer to generate
spatial weights, resulting in lower computational overhead compared to the complex spa‑
tial branch of CBAM. Additionally, the dynamic grouping mechanism further improves
efficiency by reducing redundant computations.

In summary, DPDG achieves the greatest accuracy improvement with the smallest
increase in parameters, providing an efficient attention method for lightweight models.

4.3. Ablation Experiment

To validate the independent contributions of each module and the effectiveness of
the algorithm improvements, this experiment uses the YOLOv10n algorithm as the base
framework and conducts ablation experiments on the CCTSDB2021 dataset. Through a
progressive integration strategy, the SPD‑Conv, C2fCIB, and DPDG modules are system‑
atically validated, and our method is compared with the larger YOLOv10s model. All
experiments strictly adhere to the single‑variable principle, with consistent training con‑
figurations and dataset splits to ensure rigorous experimental results. The experimental
results are shown in Table 3.

Table 3. Ablation experiment.

YOLOv10n SPD‑
Conv C2fCIB DPDG YOLOv10s mAP@0.5 mAP@0.5:0.95 P R Params/M Incremental

Params FPS
√
× × × × × 0.730 0.464 0.844 0.680 2.695586 ‑ 1000√ √

× × × 0.785 0.510 0.893 0.722 3.280546 +0.584960 1111√ √ √
× × 0.787 0.508 0.886 0.714 2.827298 +0.131712 1000√ √ √ √

× 0.794 0.513 0.896 0.725 2.827316 +0.131730 1111√
× × ×

√
0.804 0.509 0.895 0.733 8.037282 +5.341696 769

4.3.1. Key Findings and Analysis

Analysis of the experimental data table reveals a key finding: replacing stride convolu‑
tion and pooling layerswith spatial‑to‑depth convolution significantly improvesmAP@0.5
and mAP@0.5:0.95 by 7.53% and 9.91%, respectively, with P improving by 5.81%, R by
6.18%, and FPS by 11.1%. However, this resolution preservation comes at the cost of a
21.7% increase in parameter count. These results demonstrate that in object detection, the
SPD‑Conv module can maintain feature map resolution by converting the spatial dimen‑
sion into the depth dimension, effectively mitigating the common issue of small object de‑
tail loss during downsampling. Additionally, parallel operations enhance speed, but the
number of parameters tends to surge. Therefore, maintaining resolution via SPD‑Conv
requires balancing detection accuracy (Accuracy) with the number of parameters.

Therefore, the experiment further increased C2fCIB to achieve cross‑stage optimiza‑
tion and enhance the fusion capabilities of features at different scales. After introducing
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C2fCIB on top of SPD, the number of parameters decreased by 13.82%,mAP@0.5 improved
by 0.25%, but mAP@0.5:0.95 slightly decreased by 0.39%, P decreased by 0.78%, R de‑
creased by 1.11%, and FPS fell back to the baseline level. This phenomenon indicates that
C2fCIB reduces redundant computations through channel compression, albeit at the cost
of slightly sacrificing accuracy. However, it reduces the number of parameters, laying the
foundation for subsequent lightweight networks, and to some extent addresses the trade‑
off issues introduced by SPD‑Conv.

Although the current P, R, and FPS are still superior to YOLOv10n, given the impor‑
tance of accuracy and efficiency in traffic sign detection, we require a more comprehensive
model. Wehave already validated the effectiveness of theDPDGmodule in Section 4.2, and
its dynamic enhancement effect is evident. After improving the neck layer small object de‑
tection head with DPDG, the complete YOLO‑DPDGmodel achieves an 8.77% increase in
mAP@0.5 and a 10.56% increase in mAP@0.5:0.95, with a 6.16% increase in P and a 6.62%
increase in R, compared to the YOLOv10n model, with an incremental parameter count of
0.13M. And an 11.11% improvement in FPS.

At this point, the ablation experiments for the YOLO‑DPDG network model are
nearing completion. However, we have included an additional dataset for YOLOv10s
at the end to highlight the comparative advantages of our research against larger mod‑
els. The visualization of the experimental results comparing YOLOv10n, YOLOv10s, and
our network is shown in Figure 10. Compared to YOLOv10n, YOLOv10s achieves an in‑
crease of 10.14% and 9.70% in mAP@0.5 and mAP@0.5:0.95, respectively, with 8.04 mil‑
lion parameters, while P improves by 6.04% and R by 7.79%. However, the number of
parameters increases by 198.1%, and FPS decreases by 23.1%. Further calculating the
accuracy‑parameter ratio (mAP@0.5:0.95/Params), YOLO‑DPDG achieves 0.181, far ex‑
ceeding YOLOv10s’ 0.063. This result demonstrates the effectiveness of our algorithm
improvements and shows that through targeted design of lightweight modules, we can
significantly reduce computational resource requirements while approaching or even sur‑
passing the performance of large models. In summary, for small object detection, whether
a lightweight model like YOLOv10n or a high‑performance model like YOLOv10s is re‑
quired, we recommend using the YOLO‑DPDG network model proposed in this study.

4.3.2. Module Synergy Effects

From ablation experiments, it was found that adding the first two modules consecu‑
tively resulted in a slight decrease in performance compared to adding only the first mod‑
ule. However, when all modules were integrated into the network, performance improved
and surpassed the previous results, which is worth further exploration.

We conducted combination experiments on the modules. Saltelli et al. [34] proposed
that by decomposing the variance contributions of model outputs, the interactive effects of
multi‑scale features can be quantified. To provide an interpretable assessment of multi‑
module synergistic effects, we adopted Sobol’s sensitivity index [35] for quantification.
Additionally, we referenced the adversarial generation method proposed by Wang and
Gupta [36] to design occlusion experiments. We randomly generated rectangular or irreg‑
ular masks covering 50% of the test images to simulate partial occlusion in real‑world sce‑
narios, verifying the feature compensation capability of the dynamic groupingmechanism
and providing reliability assurance for high‑risk scenarios such as autonomous driving.
The experimental results are shown in Table 4. We speculate that the performance improve‑
ments are primarily attributed to the synergistic effects of component collaboration.
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Figure 10. Visualization of model performance: (a) mAP@0.5; (b) mAP@0.5:0.95; (c) precision; (d) re‑
call; (e) parameters; (f) FPS.

Table 4. Quantitative comparison of synergistic effects.

SPD‑
Conv C2fCIB DPDG mAP@0.5 mAP@0.5:0.95 P R Params/M Incremental

Params FPS
Cross‑Scale
Feature

Correlations

mAP@0.5:0.95
When Occluded

by 50%
√ √

× 0.787 0.508 0.886 0.714 2.827298 +0.131712 1000 0.61 0.426√
×

√
0.784 0.510 0.877 0.715 3.280564 +0.584978 1111 0.68 0.445

×
√ √

0.741 0.477 0.833 0.678 2.491956 −0.203630 1250 0.52 0.392√ √ √
0.794 0.513 0.896 0.725 2.827316 +0.131730 1111 0.76 0.471

Experimental data indicate that pairwise combinations of modules yield significant
improvements in mAP or speed. However, the deep collaborative design of the three mod‑
ules in this study enables comprehensive optimization of the entire network, with interac‑
tion effects significantly outperforming the simple stacking of single or pairwise modules.

The SPD‑Conv module effectively preserves the core semantic information and fine‑
grained spatial features of the input, providing a rich information foundation for subse‑
quent processing, and the C2fCIB module reduces computational complexity through its
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bottleneck structure, which performs channel compression and reorganization of features.
The two modules exhibit high correlation at the feature level, indicating that C2fCIB ef‑
fectively maintains the key information extracted by SPD‑Conv during the compression
process. The fine‑grained features retained by SPD‑Conv provide high‑resolution input
for DPDG, and DPDG adaptively enhances the response of key regions at different scales
of SPD‑Conv through dynamic weight allocation. Specifically, when processing deep low‑
resolution features (such as the P5 layer, which is responsible for distant small objects), the
channel attention branch of DPDG exhibits a more concentrated weight distribution, effec‑
tively focusing on discriminative channel information and improving small object detec‑
tion capabilities. When processing shallow high‑resolution features (such as the P3 layer,
responsible for close‑range targets), the spatial attention branch of DPDG plays a domi‑
nant role, reinforcing responses to local details and edges. SPD‑Conv and DPDG exhibit
strong cross‑scale correlation, validating the critical role of SPD‑Conv as a high‑quality
input source for DPDG’s dynamic refinement effects. Although the correlation between
C2fCIB and DPDG is lower than that of the aforementioned combinations, their synergis‑
tic contribution to model efficiency is crucial. The bottleneck structure of C2fCIB not only
reduces computational burden but also standardizes the distribution of features across dif‑
ferent scales. This standardization helps the attention weights learned by DPDGmaintain
better semantic consistency across different layers, thereby enhancing the model’s over‑
all robustness. The significant computational efficiency optimization achieved by C2fCIB
andDPDG together offers an undeniable advantage for detection tasks with high real‑time
requirements.

To address the issue of traffic signs being easily obstructed and leading to missed
detections in real‑world road scenarios, this paper designed robustness verification ex‑
periments under extreme obstruction conditions. The experimental results show that the
YOLO‑DPDGmodel demonstrates significant advantages under occlusion conditions due
to its collaborative enhanced feature compensation capabilities. Specifically, the SPD‑Conv
module retains fine‑grained spatial information in high‑resolution feature maps, effec‑
tively capturing key local details such as edges and textures in the visible regions of par‑
tially occluded targets, therebyproviding reliable foundational information for subsequent
processing. The core advantage of the DPDG module lies in its adaptive attention mecha‑
nism, which actively focuses on unobstructed effective regions and dynamically enhances
their response weights based on the saliency features of these regions. This mechanism
partially compensates for information loss caused by occlusion, guiding the model to fo‑
cus on the distinguishable parts of the target. The C2fCIB module utilizes its CIB mech‑
anism to dynamically identify and suppress background noise and redundant features
introduced by occlusion by constraining information flow and optimizing mutual infor‑
mation between feature channels. This effectively enhances the model’s adaptability to
local feature loss or mutation. In high‑risk scenarios such as autonomous driving, target
occlusion and partial visibility are commonplace. The synergistic effect of the three mod‑
ules significantly enhances the model’s ability to extract and utilize features under incom‑
plete information conditions. Quantitative evaluations show that under extreme condi‑
tions with a target occlusion rate of 50%, the mAP@0.5:0.95 of YOLO‑DPDG reaches 0.471,
fully validating the model’s robustness advantage in complex occlusion scenarios.

Overall, the three‑module joint architecture significantly outperforms the two‑module
combination scheme in all metrics, demonstrating the synergistic gain effect betweenmod‑
ules. The YOLO‑DPDG network is not simply stacking modules but achieves an optimal
balance between computing resources and feature representation through cascaded op‑
timization of high‑resolution feature retention, cross‑stage information purification, and
dynamic attention enhancement.
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4.3.3. Detection Effect Comparison

As shown in Figure 11, we conducted a comparative analysis of the detection results
of YOLOv10n and its improved model, YOLO‑DPDG. From sample (a), it can be seen that
YOLO‑DPDG demonstrates higher detection accuracy. From sample (b), it can be seen
that when handling small objects at long distances, YOLO‑DPDG exhibits more compre‑
hensive detection capabilities, successfully identifying traffic signs that the original model
missed. From sample (c), it can be seen that in low‑light nighttime scenes, YOLO‑DPDG ef‑
fectively suppresses false detections caused by headlight reflections. At the same time, the
original model mistakenly identifies reflections as traffic signs. In summary, the improved
algorithm proposed in this paper effectively alleviates issues such as insufficient feature
expression capabilities and difficulties in identifying small objects, thereby enhancing the
model’s robustness and accuracy.

 

Figure 11. Comparison of detection results. The left column shows the detection results of
YOLOv10n, and the right column shows the detection results of YOLO‑DPDG: (a) comparison of
detection accuracy; (b) false negatives of the original model; (c) false positives of the original model.
In the picture, the non‑English characters “360 记录仪” refer to an electronic device installed in a
vehicle, which captures real‑time video, audio and environmental data during the driving process
through high‑definition cameras.
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4.4. Generalization Experiment

To verify the generalization ability of the YOLO‑DPDG model on different datasets,
this study conducted supplementary experiments on the Tsinghua‑Tencent 100K (TT100K)
dataset [26]. TT100K is a large‑scale traffic sign dataset compiled by Tsinghua University
and the Tencent Joint Laboratory, containing 100,000 high‑resolution street view images,
covering various scenarios such as urban roads, highways, and rural roads, as well as vari‑
ous lighting and weather conditions. The dataset includes 30,000 traffic sign instances and
221 different types of traffic signs. We selected 45 categories with more than 100 instances
for the experiment to eliminate the influence of class imbalance. After preprocessing, the
dataset was divided into 6793 training images, 1949 validation images, and 996 test images,
with a small target proportion of up to 84%, providing an ideal platform for verifying the
model’s generalization ability in challenging scenarios.

The experimental setup is consistent with that in Section 4.1, using the same hyper‑
parameters and training strategies. We trained the YOLOv10n baseline model and the
YOLO‑DPDG model separately on the TT100K dataset and evaluated their performance
on the test set. The experimental results are shown in Table 5.

Table 5. The experimental results on the TT100K dataset.

Model mAP@0.5 mAP@0.5:0.95 P R Params/M Incremental Params FPS FLOPs

YOLOv10n 0.67 0.501 0.731 0.579 2.711966 ‑ 769.23 8.3
YOLOv10n + DPDG 0.695 0.529 0.698 0.61 2.843696 +0.131730 625 11.1

As can be seen from Table 5, YOLO‑DPDG achieved consistent performance im‑
provements over the baseline model YOLOv10n on the TT100K dataset. Specifically, the
mAP@0.5 and mAP@0.5:0.95 metrics increased by 2.5% and 2.8%, respectively, and the re‑
call rate (R) increased by 3.1%. Although the precision slightly decreased on the TT100K
dataset, the mAP metric, which measures the overall detection performance, significantly
improved, demonstrating the enhancement of the model’s generalization ability.

In conclusion, YOLO‑DPDG not only performed well on the main experimental
dataset CCTSDB2021 but also demonstrated excellent generalization performance on the
more diverse and challenging dataset TT100K. This verifies the strong adaptability of the
proposedmethod to different traffic sign datasets and scenarios, providing strong support
for its deployment in practical applications.

5. Discussion
The core objective of this study is to address the performance‑efficiency trade‑off chal‑

lenge in small object detection of traffic signs by improving the network and designing a
new attention mechanism. Based on experimental validation and theoretical analysis, this
section discusses the findings from four dimensions: methodological innovation, practical‑
ity, limitations, and implications for the field, revealing the more profound significance of
the research results.

Compared with existing work, the experimental data in Section 4.2 show that the
DPDG module outperforms current mainstream attention mechanisms. The DPDG mod‑
ule effectively combines dynamic groupingwith dual‑pooling channel attention. Addition‑
ally, its lightweight design maintains performance while offering advantages in real‑time‑
critical traffic detection scenarios. The dynamic grouping mechanism breaks free from
the fixed structural constraints of traditional attention modules, reducing channel redun‑
dancy through adaptive adjustment of group counts and enhancing system robustness via
dynamic parameter optimization. Furthermore, the introduction of dual‑pooling channel
attention integrates global statistical features with local salient responses, enabling more
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comprehensive information extraction than single‑pooled attention. This validates the crit‑
ical role of information completeness in feature discriminative power.

In edge computing scenarios, YOLO‑DPDG demonstrates significant application
value. The balance between parameter count and inference speed makes it suitable for
low‑power devices and maintains advantages over YOLOv10s. This feature is crucial for
real‑time perception in autonomous driving systems, particularly for detecting small traf‑
fic signs that frequently appear on urban roads. Additionally, the dynamic feature com‑
pensation mechanism effectively mitigates the impact of partial information loss. By pre‑
serving visible edge details and enhancing responses in unobstructed areas, the model
reduces occlusion misclassification rates, enhancing its robustness in occlusion scenarios
and its practical application value.

Although YOLO‑DPDGperformswell inmost scenarios, it still has the following limi‑
tations: First, YOLO‑DPDG still has room for improvement in some extreme cases. As sug‑
gested by the occlusion experiment (Table 4, with 50% occlusion, mAP@0.5:0.95 drops to
0.471), severe occlusion remains a challenge. Additionally, although the performance has
improved under low‑light conditions (as shown in Figure 11c), the harsh weather condi‑
tions notwidely covered in our dataset, such as heavy rain or fog, may reduce performance
due to the introduction of noise and decreased contrast. Chen et al. [37] pointed out that in‑
tegrating infrared or thermal imaging data can significantly improve target discrimination
in low‑light conditions, and this issue can be optimized in the future through multimodal
expansion. Second, the dynamic groupingmechanism has theoretical limitationswhen the
number of input channels is prime. For example, when C = 257, grouping must be forced
to 1, which may affect the balance of feature representation. Based on the differentiable
architecture searchmethod proposed by Liu et al. [38], wewill further design a continuous
relaxation grouping strategy in the future. Finally, although the dynamic grouping mech‑
anism is quite robust, it may still perform poorly for extremely rare and complex shapes
of markers that are underrepresented in the training data. Introducing deformable con‑
volutions or adaptive receptive field modules can enhance the model’s feature extraction
capability for non‑rectangular targets, further improving generalization performance.

This study proposes a lightweight object detection model optimization method com‑
prising a three‑stage processing workflow of “resolution preservation,” “feature purifica‑
tion,” and “dynamic enhancement.” The design of this framework provides a feasible
approach and modular reference for constructing efficient and accurate small models. Ex‑
tending these design concepts to other visual tasks, for example, introducing a dynamic
grouping mechanism in instance segmentation can optimize feature aggregation during
the mask generation stage. This objective is similar to the adaptive processing of features
at different scales in the multi‑scale ROIAlign of Mask R‑CNN [39], but the focus is on the
grouping strategy. In real‑time video analysis, drawing inspiration from feature refine‑
ment and dynamic enhancement concepts and designing lightweight attention modules
can effectively reduce the computational overhead of temporal feature fusion. Addition‑
ally, in this study, cross‑scale feature correlation analysis provides a quantitative tool for
evaluating the synergistic effects between modules. Future research could combine causal
inference models [40] to further explore the universal mechanisms of causal interactions
between modules, thereby guiding model optimization design.

6. Conclusions
Long‑range traffic sign detection is critical for autonomous driving. This paper pro‑

poses an improved efficient detection network, YOLO‑DPDG, based on YOLOv10n, which
significantly improves small object detection accuracy while maintaining real‑time infer‑
ence capabilities. Compared to the original YOLOv10n algorithm, our improved algo‑
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rithm, YOLO‑DPDG, has been optimized in all metrics, resulting in better detection perfor‑
mance. Evenwhen compared to the larger YOLOv10s algorithm, this network still demon‑
strates a clear advantage in balancing performance and efficiency.

Based on the analysis of the limitations discussed, future work will focus on the fol‑
lowing directions: optimizing model performance in extreme scenarios such as occlusion;
utilizing differentiable architecture search to improve dynamic grouping strategies to ad‑
dress prime channel constraints; introducing deformable convolutions to enhance feature
extraction capabilities for irregularly shaped traffic signs; simultaneously extending core
mechanisms such as dynamic grouping and feature refinement to visual tasks like instance
segmentation and real‑time video analysis; and conducting in‑depth exploration of uni‑
versal interaction mechanisms between modules using causal inference models to further
enhance the generalization and interpretability of lightweight models.
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