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Featured Application

The proposed BowTie-based reliability framework provides a structured approach for exam-
ining and enhancing wind turbine resilience. It brings together preventive and mitigative
pathways, enabling decision-makers, such as asset managers, to pinpoint critical barriers,
prioritise maintenance, and evaluate the benefits of redundancy or redesign strategies.
The methodology can also be applied to other critical infrastructure, particularly where
critical processes are involved and defence-in-depth and quantitative risk justification are
crucial. This makes the framework a practical decision-support tool for balancing multiple
attributes, including safety, reliability, and cost, within complex engineered systems.

Abstract

Ensuring reliability and safety is essential in complex energy systems such as wind turbines,
where failures can trigger unexpected downtimes, severe incidents, and significant costs.
This study proposes a hybrid BowTie-based reliability framework that integrates Fault
Tree Analysis, Reliability Block Diagrams, and BowTie methodology to quantify risk and
evaluate the effectiveness of safety barriers. The framework employs key reliability metrics
including availability, probability of failure on demand, and probability of failure per hour,
and supports scenario-based sensitivity analyses to explore redesign options. A simulation-
based case study of a wind turbine generator subsystem is presented, using parameter
values drawn from published reliability data. Results highlight that protective relays and
automatic trip systems represent critical single points of defence, while improvements
such as enhanced oil analysis and redundant dashboards reduce consequence frequency
from 2.912 × 10−17 to 8.257 × 10−19 failures/h (a 97.16% reduction, nearly two orders
of magnitude). Compared to conventional models, the proposed framework introduces
explicit defence in depth modelling, improves computational compactness, and provides a
practical decision support tool for asset managers by balancing safety and reliability. At this
stage, the study should be regarded as a proof of concept that demonstrates feasibility and
sets a foundation for future research and application to larger, more complex infrastructures.
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1. Introduction
Reliability analysis is an essential method in engineering that concentrates on the

design, operation, and maintenance of complex systems, guiding maintenance strategies to
improve asset performance. Traditional methods, such as Fault Tree Analysis (FTA) and
Reliability Block Diagrams (RBDs), remain prevalent, offering structured approaches to
identify failure logic and assess system performance. FTA, a top-down approach, uses
Boolean logic to estimate failure probability, while RBD offers a complementary view at
the system level, illustrating how components and subsystems interact through series
and parallel configurations to ensure system functionality. Both techniques have proven
effective in safety-critical fields such as nuclear power, aerospace, and energy infrastructure.
Despite their long-standing usefulness, each has notable limitations when used alone [1,2].
FTA, although straightforward and rigorous, can become unwieldy in large systems due
to combinatorial complexity and is limited by its static nature, which hampers its ability
to model repair processes, time-dependent phenomena, or conditional interactions [3].
Conversely, RBD allows quick system-level insights but relies on binary assumptions,
making it challenging to represent multi-state, dependent, or sequential behaviours. These
constraints are particularly problematic in modern critical infrastructure, such as wind tur-
bines (WT), where systems operate under dynamic conditions and exhibit interdependent
failure modes.

Recent studies have attempted to overcome these limitations by hybridising FTA, RBD,
and related methods. For example, Rivera et al. [4] suggest an integrated method that
combines FTA, RBD, the Analytical Hierarchy Process (AHP), High Reliability Organisation
(HRO), and Learning from Failures (LFF) tools to analyse long-term patterns of small to
medium chronic failures in an Oil and Gas (O&G) organisation. However, this unified
framework increases complexity and is sensitive to expert bias. Conversely, Kabir et al. [5]
address individual limitations by assigning large, mainly series or parallel segments to
a modularisation technique using Binary Decision Diagram (BDD) and Markov models.
This approach can reduce the size and complexity of the embedded FTA, preventing the
exponential growth of cut sets. Still, it requires advanced solvers and can make model
traceability across modules challenging. Cheng et al. [6] share a similar viewpoint in
their study on unified approaches, connecting FTA logic to a Hierarchical Belief Rule Base
(BRB). They manage to mitigate issues related to excessive indexes and avoid combinatorial
explosion [4], but the framework’s scalability remains unvalidated, and it has a limited
domain focus.

Recent work has also explored hybrid frameworks that combine the BowTie method
with probabilistic reasoning to overcome its static nature and expand its analytical capabili-
ties. For example, Khakzad et al. [7] mapped a BowTie model into a Bayesian network to
perform dynamic safety analysis. They noted that the BowTie approach remains popular
for accident modelling but is limited by its static representation and inability to represent
conditional dependencies. By translating the BowTie to a Bayesian network, probabilities
can be updated in response to new information and causal relationships. Similarly, de
Barnier et al. [8] introduce a possibility-based BowTie to quantify uncertainties in barrier
performance. Another dynamic risk-assessment study [9] emphasises that BowTie is a
visual method for depicting event progression from causes to effects, while a Bayesian net-
work captures stochastic relationships. The translation from BowTie to Bayesian network
modifies the representation to include intrinsic uncertainties while maintaining logical
relationships. Although valuable, these unified methodologies often trade clarity for com-
plexity, a lack of redundancy integration, and risk fragmentation in tool support across
different methods [10]. The limitations of hybrid methods could lead to additional design
and verification burdens affecting reproducibility and traceability. A comparative taxon-
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omy of recent hybrid methods is summarised in Table 1, which positions the present work
relative to state-of-the-art contributions.

Table 1. Comparative summary of hybrid reliability-modelling frameworks (2010–2024).

Study and Year Hybrid Methods Application Domain Main Contribution

Rivera et al. (2021) [4] FTA + RBD + AHP + HRO +
Learning-from-Failures Oil and Gas organisation

Multi-criteria framework linking
organisational reliability factors
with classic FTA/RBD models to
analyse chronic failures

Kabir et al. (2020) [5]
Modular dynamic fault trees

using BDD and Markov
models

Safety-critical systems

Hybrid modularisation reduces
state-space explosion in dynamic
FTA, allowing non-exponential
failure distributions

Cheng et al. (2023) [6] FTA + Hierarchical Belief
Rule Base (BRB) Milling fault detection

Links FTA logic to a BRB to
handle uncertainty and avoid
combinatorial explosion

Khakzad et al. (2013) [7] BowTie mapped to Bayesian
network Chemical process safety

Dynamic safety analysis by
mapping BowTie to BN; allows
update of probabilities and
representation of conditional
dependencies

de Barnier et al. (2022) [8] Quantitative BowTie
(possibility-based) Industrial risk assessment

Introduces a possibility-based
BowTie to quantify uncertainties
in barrier performance

Wu et al. (2023) [9] BowTie + Bayesian network Petrochemical risk
assessment

Highlights BowTie as a visual
method and BN as a probabilistic
model; modifies BowTie to
incorporate uncertainties and
maintain logical relationships

This review highlights clear research limitations within existing hybrid methods.
Firstly, conventional models struggle to handle intricate systems due to their inability to
reduce combinatorial complexity. Secondly, although hybrid models may capture uncer-
tainty, they neglect redundancy and conditional interactions. Lastly, hybrid models retain
domain-specificity that limits generalisation.

To address these limitations, this study introduces a hybrid BowTie-based reliability
framework that integrates FTA’s top-down logical structure with RBD’s system-level quan-
titative features within a barrier-centric architecture. The framework tackles combinatorial
complexity by compressing large FTA subtrees into modular BowTie substructures, where
threats and barriers are organised using RBD configurations (series, parallel, or k-out-of-n).
This modularisation prevents the exponential growth of minimal cut sets and ensures
that barrier interactions remain traceable. Redundancy and conditional dependencies
are explicitly represented, with series and parallel redundancy modelled through RBD
logic, while barrier sufficiency and dependence are quantified using Risk Achievement
Worth (RAW) and Barrier Importance Factor (BIF). Conditional probabilities are assigned
to barriers and propagated through the BowTie logic, overcoming the binary constraints
of traditional RBD models. Finally, the framework is designed to be generalisable, as the
probability inversion and modular substitution techniques are independent of domain
specifics and can be applied to any engineered system with barrier data. This makes the
approach scalable and transferable beyond a specific case study, supporting wider critical
infrastructures that require defence-in-depth and quantitative reliability justification.
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Accordingly, this study is guided by the research question: Which failure scenarios
and corresponding recovery pathways in the system architecture contribute most to overall
risk, and where should redundancy or controls be implemented or redesigned to maximise
reliability and safety? To answer this question, this study outlines measurable outcomes:
(1) ranking of risk contribution (using Risk Achievement Worth); (2) quantified reliability
improvements (reduction in failure frequencies) influenced by implemented strategies;
(3) evidence of greater model efficiency, demonstrated through more streamlined path-
ways compared to conventional reliability model; (4) quantitative justification of barrier
sufficiency, using metrics such as availability, average probability of failure on demand
(PFDavg), and probability of failure per hour (PFH) under mission time. These outcomes are
exemplified through a case study of a WT subsystem in Section 3 to ensure its practicality.

This paper is organised into six sections, including an introduction (Section 1) to
promote a more precise understanding. Section 2 introduces the proposed framework
architecture underlying the research. Section 3 concentrates on implementing the proposed
framework in a case study of WT subsystems. Section 4 examines the results obtained
from the BowTie framework computation. Section 5 discusses the outcomes produced
by the proposed framework. Finally, Section 6 summarises the paper by reflecting on the
significance and contributions of this study within the theoretical context.

2. Proposed BowTie Framework Architecture
This section provides the conceptual and methodological foundation of the study. The

unified BowTie framework adapts several core components from traditional BowTie analy-
sis, such as hazard, TE, threat, consequence, barrier, and escalation factor. Standard BowTie
analysis employs two main methods: FTA as the threat pathway and Event Tree Analysis
(ETA) as the consequence pathway, as shown in Figure 1. Unlike traditional methods
discussed in this paper, the BowTie model includes human and socio-technical factors, thus
extending beyond purely mechanical systems. Its dual representation allows risks to be
quantified and risk-informed in decision-making for safety and performance improvement.

 

Fault Tree Analysis Event Tree Analysis 

Figure 1. Standard BowTie diagram.

The proposed method enhances traditional BowTie by integrating RBD features, such
as series, parallel, and k-out-of-n architectures, to arrange threat, barrier, and consequence
positioning and sequencing, thereby offering a more flexible and scalable model. This
integration follows a sequential workflow, as shown in Figure 2. First, FTA is initially
developed to define threats and their causal structures, identifying logical combinations of
basic events that lead to the TE. At this stage, it provides initial threat frequencies, λthreat,i.
Next, the barriers, such as PFDavg, PFH, Human Error Probability (HEP) or conditional
probability, Pconditional, are collected and converted into equivalent failure probability,
Pfail, using standardised rules as presented in Table 2. This ensures consistent reliability
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representation and resolves unit mismatches between FTA probabilities and RBD reliability
functions. Then, these barriers are organised in RBD, with AND gates represented as
series chains and OR gates as parallel structures, preserving the logical relationships from
FTA. These outputs are integrated into the BowTie framework, where the prevention side
aims to avert threats, and the mitigation side manages the consequences if the TE occurs.
This combination calculates the TE frequency, λTE(t), and the associated consequence
frequencies, fC(t). The findings based on λTE(t) and fC(t) metrics are evaluated to observe
the model’s effectiveness.

Figure 2. The workflow of FTA, RBD, and the BowTie integration framework.

Table 2. Illustrative of the Barrier Catalogue and conversion rule.

Barrier Input Type Barrier Expression Type Unit Dimension Conversion Rule

PFDavg Low demand Probability
λb = −ln(1 − PFDavg)/T

Pfail = 1 − e−λbt

PFH High demand/Continuous Failure/hour λb = PFH
Pfail = 1 − e−λbt

HEP Human reliability Probability Pfail = 1 − (1 − HEP)n

F(t) Passive device reliability Probability Pfail = F(t)
Pconditional Human + machine reliability Probability Pfail = Pconditional

Figure 3 shows the detailed process flow in the proposed model to explain how it
functions before exploring the following subsections.

2.1. Data Collection and Preprocessing

To advance the process, one should gather the data and preprocess it to achieve a
consistent domain. The process starts with a list of threats derived from the basic event
of FTA, which must be established beforehand, based on IEC 61025 [11]. The list should
include the threat’s name, a unique identification code, and a description to facilitate
easy tracking and identification. Each threat is then quantified with annual failure rates
obtained from an established maintenance record, such as a Computerised Maintenance
Management System (CMMS).

Another important tool in the proposed BowTie is the barrier’s information, also called
the barrier catalogue. This catalogue includes details about preventive actions that stop



Appl. Sci. 2025, 15, 10902 6 of 30

threats from occurring. It contains the barrier name, barrier input type, expression type,
unit dimension, role, input value, data sources and conversion rule, as illustrated in Table 2.
Operational data such as annual demands, proof test dates, and repairs must be included
in the catalogue.

Figure 3. The proposed unified Bowtie framework architecture.

Furthermore, it is important to note that before normalising input values into the same
domain, the mission time, T, must be chosen, as each barrier may operate over different
time intervals. Once T is selected, all input values of barriers are normalised into the
same domain, such as converting failure rates into probabilities; this improves calcula-
tion accuracy. If the historical data are inconsistent across reporting years or incomplete,
median values are used. Otherwise, if the data are missing, the values are supplemented
by peer-reviewed literature or standard reliability databases. After data collection and
normalisation are complete, the process moves on to the preventive chain side, as illustrated
in Figure 3.

2.2. Preventive Pathway

The proposed framework’s preventive chain represents the left-hand side of the
BowTie structure, where threats or basic events are systematically determined and con-
trolled by proactive barriers before they escalate into the TE. Each barrier is selected from
the barrier catalogue, which specifies its function, type and performance metric as demon-
strated in Table 2. These quantitative metrics depend on barrier type, as outlined by the
Centre for Chemical Process Safety (CCPS) [12]. Table 3 shows the mapping of barrier types
and their corresponding quantitative metrics, along with descriptions.
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Table 3. Barrier Types and Their Quantitative Metrics.

Barrier Type Description Quantitative Metrics

Behaviour Human actions, operator compliance HEP
Socio-technical Organisational and systemic safeguards Pconditional

Active hardware Components that must act on demand PFDavg
Continuous hardware Barriers that operate continuously PFH

Passive hardware Inherent design features that require no intervention F(t)

Each barrier is characterised by its attributes, as documented in the barrier catalogue.
The proposed framework utilises RBD features by arranging barriers in series when there
is a sequential dependence, or in parallel if there is redundancy, depending on the system
architecture. For the preventive pathway, all equations are based on failure probability,
similar to FTA. However, there is a slight difference when applying equations for series
and parallel structures compared to the RBD and FTA theory models.

Within the BowTie model, regardless of whether the configuration is series or parallel,
all barriers must fail for a TE to occur. As a result, both configurations have the same
equations as follows:

Pall_fail,pre,i(t) = ∏j∈Bi
Pfail,pre,ij(t) (1)

where j ∈ Bi means that each preventive barrier j belongs to the set of preventive barriers,
Bi. Pfail,pre,ij(t) is the failure probability of each preventive barrier j within threat i by
time, t, and Pall_fail,pre,i(t) is the prevention path failure probability for threat i when all
barriers have failed by time t. The derivation of Equation (1) differs from conventional
RBD and FTA methods. In FTA and RBD, a series system requires all components to
work, so a single failure causes system failure. Conversely, parallel systems need only
one component to operate; for instance, the system fails only if all components fail. In the
BowTie approach, these logics do not apply because barriers act as sequential safeguards.
For the TE to happen, every barrier in the chain must fail, regardless of how the barriers are
arranged. Although the equation appears similar, the model still incorporates redundancy
or parallelism to enhance reliability. From Pall_fail,pre,i(t), the TE frequency, λTE(t), for each
threat or basic event can be derived, as explained in Sections 2.3 and 2.4.

Establishing barriers within the BowTie framework follows a few guiding principles,
as recommended by CCPS [12]. First, the placement of barriers, whether triggered first
or last, depends on the chronological sequence of their effect. This means preventive and
mitigative barriers should be positioned logically based on their intended function. Second,
active barriers, aside from those mentioned in Table 3, must incorporate elements of Detect-
Decide-Action (DDA). Third, barriers’ properties should be independent, effective, and
auditable. These principles are crucial for ensuring their proper functionality. Finally, to
prevent common-mode failure, it is advisable to use more than one type of barrier on each
pathway. Having multiple barrier types can compensate for the limitations of others and
reduce the risk of simultaneous failure caused by a common cause.

2.3. Aggregate Top Event

At this stage, the goal is to compute the time-dependent aggregated TE frequency,
λTE(t), by summing the contributions of all initiating threats. Each threat’s contribution
is calculated as the failure rate of the basic event multiplied by the probability that the
entire preventive pathway fails, Pfail,pre,ij(t). The resulting λTE(t), is then used to determine
the frequencies of potential consequences, fC(t). Table 4 represents a snapshot of the
computation for each threat.
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Table 4. Illustrative of each threat computation given barrier value and failure rate.

Threat Failure Rate (λthreat,i) Barrier Input Value Pfail,pre,ij(t) Pall_fail,pre,i(t) λTE,i(t)

Threat i Failure per hour

Behaviour HEP
Conversion from

input value to Pfail
for each barrier

ni

∏
j=1

Pfail,pre,ij(t)
λthreat,i ∗

Pall_fail,pre,i(t)

Socio-technical PConditional
Active hardware PFDavg

Continuous hardware PFH
Passive hardware F(t)

From Table 4, specific rules of the framework need to be adhered to obtain barrier
failure probabilities from the input value. First, if the input value given is PFDavg, it
must be inverted numerically to determine an equivalent barrier failure rate, λb, by using
the following:

PFDavg = 1 − 1 − e−λbT

λbT
(2)

Equation (2) is solved numerically for λb using an initial guess λ0 ≈ 2·PFDavg/T. Then

Rb,ij(t) = e−λbt (3)

Pfail,pre,ij(t) = 1 − Rb,ij = 1 − e−λbt (4)

where Rb,ij is the reliability of each barrier j within threat i by time, t. Given that “t” is a
mission time, T. Therefore, Pfail,pre,ij(T) = 1 − e−λbT .

Second, if the input value given is PFH (failures per hour), then PFH = λb. Therefore,
Equation (4) can be used to determine Pfail,pre,ij(t). Otherwise, if the input value given is
HEP (per-demand), then,

Pfail,pre,ij(T) = 1 − (1 − HEP)n (5)

In this case, n represents the number of demands during mission time, T, assuming the
HEP remains constant. Lastly, if the input value is a conditional probability, Pconditional

(socio-technical) or the probability of failure, F(t) (passive hardware), they are treated as
per-mission Pfail,pre,ij(t) (constant),

Pfail,pre,ij(t) = Pconditional OR F(t) (6)

It is worth noting that for time series plots, the study uses Pfail,pre,ij(t) as a vector over time,
while HEP, Pconditional, and F(t) remain constant.

Next, in the proposed BowTie logic, a TE occurs only if all preventive barriers for
threat i fail. When this happens, the individual Pfail,pre,ij(t) values for each preventive
barrier in the threat are obtained, and Equation (1) is applied to multiply these Pfail,pre,ij(t)
values together. This product equals Pall_fail,pre,i (t). The Pall_fail,pre,i (t) is then used in the
following formula:

λTE,i(t)= λthreat,i × Pall_fail,pre,i(t) (7)

λTE,i(t) is the TE frequency of threat i, and λthreat,i is the failure rate of threat i. Equation (7)
calculates the individual threat contribution of TE intensity, λTE,i(t), by considering the
probability of failure when all barriers are failed within that threat i. Each calculated λTE,i(t),
based on the individual threat i is then aggregated together using the following formula:

λTE(t)= ∑i λTE,i(t) (8)
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The λTE(t) value is then used in Section 2.4 to determine the consequence frequency, fC(t),
in the mitigation pathway.

2.4. Mitigation Pathway

The mitigation pathway on the right side of the BowTie represents mitigative barriers
that reduce the likelihood of a TE leading to a particular consequence. This study computes
time-dependent mitigation reliabilities, Rmit,ck(t), combines them based on the system’s
architecture, and determines how frequently consequences occur over time. The analysis
process for the mitigation pathway closely resembles that of the prevention pathway, where
the barrier input value from the barrier catalogue must be converted into Pfail,mit,ck(t), as
shown in Table 4. From Pfail,mit,ck(t), the mitigation pathway is translated into reliability,
Rmit,ck(t), reflecting the probability of the system successfully preventing the consequence.
Combining these success probabilities in series or parallel yields the overall mitigation
chain reliability Rchain,mit,c(t).

Apply the same conversion rules used for prevention. If the input value is PFDavg,
after solving Equation (2) to find λb, use the reliability formula as follows:

Rmit,ck(t) = e−λbt, k ∈ Mc (9)

where, k ∈ Mc means each mitigative barrier, k, belongs to the set of mitigative barriers,
Mc. Rmit,ck(t) is the mitigative barrier reliability, k, at each consequence, c. If the input value
is PFH, it is considered equivalent to λb (λb = PFH). Subsequently, Equation (9) is used to
compute Rmit,ck(t). In case of HEP value for behavioural barrier, after solving Equation (5)
and obtaining Pfail,mit,ck(t), then

Rmit,ck(t) = 1 − Pfail,mit,ck(t) (10)

Equation (10) also applies to the input values of F(t) (passive barrier) and Pconditional (socio-
technical barrier).

This study’s mitigation logic topology follows the defence-in-depth principle, where
the consequences can be prevented if at least one mitigation measure succeeds. Conversely,
the outcome only occurs if all mitigation layers fail. The defence-in-depth principle does
not apply to FTA, ETA, and RBD, because, whether in series or parallel arrangements,
both topologies require at least one mitigative barrier to prevent the effect. Therefore, to
determine Rchain,mit,c(t), both cases use the same equation as follows:

Rchain,mit,c(t) = 1 − ∏k∈Mc
(1 − Rmit,ck(t)) (11)

Given the aggregated TE frequency, λTE(t), obtained from Equation (8), the time-dependent
consequence frequency, fC,c(t), is

fC,c(t)= λTE(t) · Pr{mitigation chain fails at t} (12)

Under defence-in-depth,

fC,c(t)= λTE(t)× (1 − Rchain,mit,c(t)) (13)

If the BowTie framework includes several mitigation pathways resulting in multiple conse-
quences, then Equation (13) can be reformulated as follows:

fC(t)= ∑c=1 fC,c(t) (14)
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The computations above are then evaluated, and their outputs can serve as decision-
support tools.

2.5. Barrier Parameterisation and Time-Dependent Mapping

In this study, time dependence is obtained directly from the exponential reliability
model. The mission time is set to T = 8760 h (1 year), consistent with the typical annual
operation and maintenance cycle of wind turbines and the reporting horizon of failure
statistics in CMMS datasets. This choice ensures that the derived reliability metrics are
directly aligned with industry practice and planning intervals. For any barrier characterised
by PFDavg (low demand) or PFH, the framework first maps the input to an equivalent
constant failure rate λb, then computes the time-varying failure probability Pfail(t) over the
mission horizon [0 until 8760] [0.8760] h with a 1 h step. When PFDavg is specified over the
mission time T (here T = 8760 h), λb is obtained via Equation (2). When PFH is provided,
the computation sets λb = PFH. In both cases, once λb is known, Equation (4) yields

Pfail(t) = 1 − e−λbt, t = 0, 1, 2, . . . , 8760 h.

These time series are then propagated through the BowTie logic to produce the top-event
rate λTE(t) and consequence frequency fC(t), making the results explicitly time-dependent
rather than single point values. This yields time-dependent results without imposing
additional solver assumptions and relies only on the standard exponential form.

2.6. Evaluation, Decision Support and Framework Outputs

This section outlines the comparison framework and decision-support outputs used to
assess BowTie scenarios. After calculating time-dependent reliability and availability met-
rics, as detailed in Sections 2.2–2.4, the study ranks barriers and threats using key measures
such as BIF, and RAW. The framework also assesses design modifications like adding re-
dundancy, reducing failure probabilities, and implementing process improvements through
scenario comparisons. These evaluation results are summarised in tables and plots and
integrated into a decision-making process that connects reliability improvements to prac-
tical interventions. This method facilitates transparent prioritisation of prevention and
mitigation measures.

2.6.1. Importance Measures

Importance measures determine how each barrier influences overall system risk and
aid in guiding design, testing, and investment decisions. This study uses two complemen-
tary measures, which are:

• Risk Achievement Worth (RAW) measures the increase in λTE(t) if a particular barrier
completely fails (Pfail,ij(t)= 1). It assesses a barrier’s risk significance by comparing the
baseline scenario to a scenario where the barrier is entirely failed. The RAW formula
for barrier i is expressed as,

RAW (Bi ) =
λTE(new total when Bi removed)

λTE(baseline total)
(15)

λTE(t) states that the TE frequency occurs with all barriers modelled as designed. On
the other hand, λTE(new total when Bi removed) defines that the TE frequency occurs when
barrier i is assumed always to fail (Pfail,ij(t) = 1). If RAW ≈ 1, this means barrier i has
no significant influence on λTE(t), and removing it barely changes them. Otherwise,
if RAW ≥ 1, barrier i is highly risk significant and its failure leads to a substantial
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increase in λTE(t). Therefore, RAW shows how much the risk affects the system if the
barrier completely fails.

• The Barrier Importance Factor (BIF) identifies which barriers significantly reduce
λTE(t). It measures how much λTE(t) could be lowered if these barriers were perfect.
This concept offers a straightforward, quantitative method to prioritise improvements
or actions for redundancy. The formula of BIF can be presented as follows:

BIF (Bi ) =
TE0 − TEi

TE0
× 100% (16)

TE0 represents the baseline λTE(t) with all barriers modelled as usual. Conversely, TEi

is the λTE(t) if the barrier, Bi, is considered perfect (Pfail,ij(t) = 0). A high BIF suggests
that the barrier is crucial, and making it perfect could significantly lower the overall
impact of λTE(t).

All significant measure results are displayed and visualised using a bar chart, clearly
illustrating the significance of the findings.

2.6.2. Sensitivity Analysis Workflow

This study adopts a structured, scenario-based sensitivity analysis workflow to evalu-
ate potential design and operational improvements. It begins by establishing a baseline that
represents the current system setup. From this baseline, it develops alternative scenarios re-
flecting proposed barrier upgrades. Each scenario is characterised by explicit modifications
to barrier parameters, such as reducing oil system failure probability. Multiple parameter
changes can also be combined into scenario sets, allowing the assessment of joint effects.

For each scenario, the reliability parameters are recomputed using the exact inversion,
as described in Sections 2.2–2.4. This avoids potential hidden biases that may arise if
baseline conversions are reused without modification. Finally, the comparison results are
plotted over time, t, using λTE(t) and fC(t) as performance indicators to analyse the trend.
The comparison framework is shown in Figure 4.

 

Figure 4. The comparison workflow for comparing baseline and alternative scenarios.

2.6.3. Model Efficiency

Model efficiency assesses computational and representational performance by com-
paring the BowTie aggregation to explicit ETA/FTA enumeration. This framework reports
the minimal cut-set counts and sizes, and the total number of explicit event-tree sequences,

NET = ∑Nthreats
i=1 2nmit,i (17)
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Each TE with the number of mitigation, nmit, would branch per TE = 2nmit,i . The number of
sequences the BowTie avoids representing explicitly is shown as follows:

Navoided = NET − Nrep (18)

where Nrep indicates the number of sequences explicitly represented by the BowTie. Ad-
ditionally, to validate the efficiency of the BowTie model, this framework compares the
runtimes of calculating the consequence frequency, fC(t), using the BowTie model versus
explicit ETA enumeration. It also performs a numerical comparison of outcomes from both
methods, ETA and BowTie, using the following formula:

∆ f = ∥ fC,bow(T)− fC,ET(T) ∥∞ (19)

This value is then reported to assess whether it lies within tolerance.

3. Case Study
This section demonstrates how the proposed BowTie-reliability framework can be

applied through a real case study. The study referenced here is conducted initially by
Ozturk [12], who examines WT failures using reliability methods and Machine Learning
(ML). Ozturk focused solely on identifying criticality, modelling reliability, and predicting
WT failure. However, this paper sees potential to expand the scope further, motivating the
application of the proposed BowTie framework using Ozturk’s foundational information.
Although their study addresses many reliability issues related to WT, it does not aim to
reduce failure risks, prevent the TE, or mitigate failure consequences—areas prioritised
here. As a result, this work develops two common reliability models, the FTA and RBDs,
based on Ozturk’s data and additional insights from related studies. From this foundation,
the BowTie model is constructed, assessed, and discussed.

3.1. Background of the Case Study

Wind energy is widely regarded as a leading renewable resource among alternative
energy sources. Its environmentally friendly and sustainable qualities have driven rapid
growth in its deployment. As the failure rate of WT increases significantly, the focus has
shifted toward enhancing their reliability and availability to ensure continuous power
generation. The study led by Ozturk, part of the Scientific Measurement and Evaluation
Programme (WMEP) in Germany, is a key component of a government effort to analyse
onshore WTs from 1989 to 2006. It compiled 64,000 maintenance and repair reports from
1500 turbines, representing over 15,000 years of operational data. Ozturk’s findings provide
valuable insights into WT reliability, aiding the development and validation of a reliability
modelling framework.

This study focuses on the generator as a key subcomponent of the WT system, selected
based on its criticality in prior research. Both Ozturk [13] and Parnon et al. [14] identify the
generators as the highest-ranked subsystem in their criticality analyses, though derived
from different frameworks. This finding is also supported by Pulikollu et al. [15], who
consistently identify generators as the most vulnerable and costly assets, with failures
such as imbalance, cracking, or lubrication deficiencies leading to sudden breakdowns,
extended downtime, and high replacement costs. While the generator’s annual failure
rate falls within the range of 1% to 4%, its downtime may lead to significant production
losses and unplanned repair costs, estimated at around $100,000 to $225,000 [15]. Owing
to this criticality, the generator is selected for developing the FTA and demonstrating the
proposed framework. The following section provides further details on the development
of both approaches.
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3.2. Development of Reliability Modelling

This section illustrates the development of the FTA and RBDs based on a study
conducted by Ozturk [13] and other studies [16–18]. It starts with comparing several
established FTA diagrams created by Novaković et al. [16], Márquez et al. [17], and
Kang et al. [18]. To produce an FTA based on these established studies, a screening
criterion is specified as follows:

• Include if:

• Mentioned in ≥2 literature sources OR
• Found in the dataset OR
• Has a significant impact

As stated in Section 3.1, this study focuses on the generator as a subcomponent of
the WT that requires evaluation. Consequently, Figure 5 illustrates an FTA diagram of the
WT generator, developed based on the referenced studies [16–18] and screening criteria.
Table 5, furthermore, showcases the list of TEs, intermediate events, and basic events with
sources of references.

 

Figure 5. FTA diagram of WT generator for the case study.

Table 5. Logic gates and principal events of the WT generator.

Logic Gates Codes Basic Events Codes

Generator failure G5 Bearing Imbalance L6
Bearing Failure G9 Bearing Crack L7

Rotor and Stator Failure G10 Broken rods L8
Failed Synchronisation L9

The RBD model, in Figure 6, is derived from the FTA diagram in Figure 5, based
on studies by Ozturk [13], Einarsson et al. [19], and Linsday et al. [20]. Afterwards, the
minimal cut set equation is formulated to construct the BowTie model.

 

Figure 6. RBD model of WT Generator.
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Based on the FTA and RBDs, a minimal cut set can be formulated to determine the
smallest set of subcomponent failures needed to cause the entire system to fail. The logic
operator in Figure 5 consists solely of OR gates, which correspond to the arithmetic “+”
sign in accordance with IEC 61025 [11]. Using this convention, the minimal cut set formula
can be derived as follows:

Fail state = G5 (20)

G5 = G9 + G10 (21)

G9 = L6 + L7 (22)

G10 = L8 + L9 (23)

Derivation involving Equations (20)–(23) generates the final minimal cut set equation:

Fail state = L6 + L7 + L8 + L9 = {L6, L7, L8, L9} (24)

L6, L7, L8, and L9 constitute the primary first-order minimal cut sets that need to be
emphasised in the BowTie model.

3.3. Development of BowTie Model

The BowTie model, clarified in Section 2 with an illustrative diagram in Figure 1
consists of several components, including the hazard, TE, the preventive pathway (left), the
mitigation pathway (right), and the associated barriers. This subsection describes how the
BowTie model is developed using a case study centred on the minimal cut set identified in
Section 3.2.

Section 3.2 of this study reveals that L6, L7, L8, and L9 are the fundamental events
of the developed FTA model in Figure 5. As first-order events, their states are highly
susceptible to failure and need focused improvement. To convert information from FTA
and RBD into the BowTie model, the minimal cut set is directly identified as threats. The
consequences or effects of the TE follow the taxonomy of Ozturk [13]. Barriers, preventive
and mitigative, are selected from the literature and industry practice to address each threat
and consequence. The full BowTie diagram is presented in Figure 7.

 

Figure 7. The proposed BowTie model for the WT generator.

To ensure transparency and reproducibility, this study provides supporting materials
alongside the BowTie model, including the assumption table listing modelling assumptions
and units and quantitative data, such as failure rate and probability. The calculation
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methods have been presented in Section 2, from Equations (1)–(19). This information
is summarised in tabular form, where Table 6 exhibits the modelling assumptions and
metrics, Table 7 presents BowTie core elements, while Tables 8–12 detail the preventive
and mitigative barriers associated with specific threats and consequences, supported by
quantitative evidence from prior studies. The assumptions in Table 6 are adopted for
demonstration purposes to keep the case study tractable; they are not rigid requirements of
the framework and can be relaxed or adjusted depending on the application context.

Finally, the results and discussion sections include model validation. The validity of
key modelling assumptions, as mentioned in Table 6 is implicitly tested through scenario-
based sensitivity analysis in Sections 2.6.2 and 3.4. By systematically varying barrier
parameters, this analysis provides analytical insights into how deviations from baseline
assumptions influence λTE(t) and fC(t).

Table 6. The modelling assumptions and metrics.

Item Assumption Notes

Time basis Steady-state reliability with constant failure rate. h

Barrier independence Barriers are assumed to be independent unless noted;
common cause failure is negligible. −

Threat failure rate Taken directly from the literature survey. Failures/h

Mission time, Tmission Use 8760 h = 1 year. h

PFH Continuous failure rate measure. Failures/h

PFDavg Demand frequency is assumed annually. Probability/demand

Pfail Point probability of the component failure. dimensionless

Pconditional
Conditional probability that monitoring fails to detect
the threat. dimensionless

HEP Derived from human reliability analysis
(THERP/SPAR-H) Probability/event

Maintainability The repair rate is assumed to be negligible; The renewal
function is used (part replaced “as good as new”) −

Table 7. The proposed BowTie core elements.

Element Type Element Name Failure Rate (Failure/h) Sources

Hazard Mechanical and electromagnetic excessive load in
power generation − [13]

TE Generator failure − [13]
Threat (L6) Generator bearing imbalance 5.85 × 10−6 [18]
Threat (L7) Generator bearing crack 1.17 × 10−6 [18]
Threat (L8) Broken rods 2.10 × 10−7 [18]
Threat (L9) Failed synchronisation 3.61 × 10−6 [18]

Table 8. Preventive barriers by threat (L6).

Barrier Category Type Input Value Sources

Routine bearing check and manual report Behavioural HEP 1.10 × 10−1 [21]
CBM with time trends and alarms Socio-technical Pconditional 3.00 × 10−2 [21,22]
Trigger automatic machine trip Active hardware PFDavg 6.20 × 10−6 [23]
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Table 9. Preventive barriers by threat (L7).

Barrier Category Type Input Value Sources

High-fatigue-resistance bearing material
and crack-arrest coatings Passive hardware Pfail 2.40 × 10−2 [24,25]

Oil-analysis and contamination
monitoring program (CMMS alerts) Socio-technical Pconditional 7.20 × 10−1 [26]

CBM dashboard with trending and
alarm escalation Socio-technical Pconditional 1.00 × 10−1 [27]

Table 10. Preventive barriers by threat (L8).

Barrier Category Type Input Value Sources

Deploy soft starter or VFD (Variable
Frequency Drive) to limit inrush and
thermal stress

Continuous hardware PFH 3.50 × 10−6 [28]

Online electrical signature analysis Active hardware PFDavg 3.00 × 10−2/demand [29]
Improving lubrication practice (grease spec
and intervals) Behavioural HEP 3.00 × 10−3 [30]

Align rotor dynamic balancing per IEC 60034 Behavioural HEP 1.00 × 10−3 [30]

Table 11. Preventive barriers by threat (L9).

Barrier Category Type Input Value Sources

Modern IEDs (Intelligent Electronic
Device) or synchroscopes with live
sync data

Socio-technical Pconditional 1.70 × 10−2 [31]

Enforce strict synchronisation tolerances
and procedures Behavioural HEP 3.00 × 10−2 [21,30]

Install dedicated sync-check relays Active hardware PFDavg 1.80 × 10−6/demand [32]

Table 12. Mitigative barriers by Consequence (C04).

Barrier Category Type Input Value Sources

Automatic Vibration Monitoring and Alarm Active hardware PFDavg 1.20 × 10−3 [33]
Constrained-layer Damping Retrofit Passive hardware Pfail 2.00 × 10−2 [34]
Elastomeric/Vibration Isolators at Mounting
Interfaces Passive hardware Pfail 3.00 × 10−2 [35]

Periodic ISO/IEC–based Vibration Survey
and Trend Review Behavioural HEP 1.00 × 10−2 [30]

3.4. Sensitivity Analysis

As outlined in Section 2.6.2, a sensitivity analysis is conducted to evaluate the robust-
ness of the model by systematically varying key barrier parameters. Each manipulation
represents a distinct scenario to observe the resulting trends in both λTE(t) and fC(t). In this
case study, there are four scenarios, with one baseline for comparison purposes. Table 13
summarises these scenarios, where each represents modifications in barriers such as redun-
dancy, reduction, and frequent proof-test frequency, as well as combined improvements
across multiple barriers.

Each scenario is analysed and evaluated using the outlined workflow in Figure 4. The
findings are then explained in Section 4.4.
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Table 13. Sensitivity analysis scenarios.

Scenario Barrier Modified Parameter Adjustment

Baseline None Reference value
Oil analysis improved Oil lab protection Pfail reduced from 0.72 to 0.20
Redundant dashboard Dashboard Addition of a 2nd independent dashboard
Faster auto-alarm proof-test Auto-alarm PFDavg halved

Oil analysis and dashboard applied togetherCombined (Oil + Dashboard) Oil lab protection, dashboard

4. Results
This section highlights the analysis results from the BowTie model applied to the WT

case study. The outcomes emphasise WT’s reliability performance and the strategies for
preventing and mitigating major failures. Findings are organised according to the research
question outlined in Section 1, focusing on four key measurable aspects: risk contribution
ranking, quantitative assessment of barrier adequacy, reliability improvements through
scenario-based sensitivity analysis, and overall model efficiency.

Using Equation (1) through (19) with the provided information from Tables 6–12, the
results are shown in Table 14, which addresses four measurable aspects of outcomes. The
inversion of PFDavg values into λb is implemented using the built-in fzero function in
MATLAB R2025a Update 1 (Version 25.1.0.2973910). Initial guesses for λb are taken from λ0

≈ 2·PFDavg/T, where T = 8760 h represents one year of operation. Convergence is accepted

when the absolute residual of the inversion equation, ϵ = 1 − 1−e−bT

λbT − PFDTarget
avg , is less

than 1 × 10−10, where all results are well within tolerance between 10−12 and 10−14, as
presented in Table 15. However, if the residual is unable to achieve within the specified
tolerance, the λb value is taken from the approximated equation, 2·PFDavg/T.

Table 14. Summary of BowTie outcomes.

Preventive Barrier Pall_fail,pre,i(t) λTE(t) Contributions (Failures/h)

Threat L06:

2.046 × 10−7 1.197 × 10−12Routine bearing check and manual report
Condition-based monitoring with time trends and alarms
Trigger automatic machine trip

Threat L07:

1.728 × 10−3 2.022 × 10−9High-fatigue-resistance bearing material and crack-arrest
coatings
Oil-analysis and contamination monitoring program (CMMS
alerts)
Condition-based monitoring dashboard with trending and
alarm escalation

Threat L08:

5.380 × 10−9 1.130 × 10−15
Deploy soft starter or VFD to limit inrush and thermal stress.
Online electrical signature analysis.
Improving lubrication practice (grease spec and intervals).
Align rotor dynamic balancing per IEC 60034.

Threat L09:

1.836 × 10−9 6.628 × 10−15Modern IEDs or synchroscopes with live sync data.
Enforce strict synchronisation tolerances and procedures.
Install dedicated sync-check relays.

Total λTE (sum of contributions) 2.023 × 10−9 failures/h
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Table 14. Cont.

Mitigative Barrier Pall_fail,mit,c(t) fC (t) Contributions (Failures/h)

Consequence C04:

1.439 × 10−8 2.912 × 10−17
Automatic Vibration Monitoring and Alarm
Constrained-layer Damping Retrofit
Elastomeric/Vibration Isolators at Mounting Interfaces
Periodic ISO/IEC–based Vibration Survey and Trend Review

Total fC(t)(Product of total λTE(t) and total Pall_fail,mit(t)) 2.912 × 10−17 failures/h

Table 15. Validation of PFDavg-to-λb inversion for selected barriers (mission time T = 8760 h).

Barrier (Type) Target PFDavg λb Residual

L06 (PFDavg) 3.100 × 10−5 7.078 × 10−9 −5.151 × 10−14

L08 (PFDavg) 3.000 × 10−2 6.990 × 10−6 −4.038 × 10−14

L09 (PFDavg) 1.800 × 10−6 4.110 × 10−10 2.077 × 10−12

Mitigation (PFDavg) 1.200 × 10−3 2.742 × 10−7 −1.823 × 10−14

4.1. Risk Contribution Ranking

RAW analysis, as described in Section 2.6.1, assesses barriers’ contribution to λTE(t)
assuming they fail completely. Figure 8 indicates that most barriers have relatively low
RAW values, such as the CBM dashboard, routine checks, and oil analysis. This suggests
that their absence would only slightly raise λTE(t). However, a few barriers show very
high RAW values, notably the sync-check relays and trigger auto trip, which exceed 104.
Additionally, rotor balancing, lube practice, and modern IED are also highly critical. These
barriers act as vital single points of defence, with their effectiveness significantly controlling
the likelihood of avoiding a hazardous outcome.

 

Figure 8. Barrier RAW analysis, including mitigation outcomes.

The pattern also demonstrates the defence-in-depth approach of the BowTie model.
Barriers relying solely on human action, like lubrication practices, or static hardware, such
as a soft starter, provide additional protection. However, active barriers, such as auto-
trip triggers or check relays, play a more significant role in the RAW distribution. This
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suggests that while barriers not aligned with DDA elements can help mitigate hazards,
those fulfilling DDA criteria are primarily responsible for protecting the system.

From a decision perspective, RAW analysis indicates that prioritising investment in
maintaining and testing high-RAW barriers is crucial, since their failure could lead to
exponential increases in system risk. Conversely, for barriers with lower RAW values, the
model suggests they still contribute to system resilience but may need optimisation or
streamlining, ensuring safety remains unaffected.

4.2. Barrier Importance Factor

The BIF measures how much each preventive barrier helps prevent λTE(t). A higher
BIF shows that improving these barriers can significantly reduce λTE(t). Figure 9 displays
the BIF results from the BowTie model.

 

Figure 9. Barrier Importance Factor with respect to λTE(t).

Figure 9 clearly shows that all three preventive barriers under threat L07 collectively
contribute 100% to the λTE(t). This implies that the effectiveness of preventing the TE from
happening is dependent on maintaining these barriers at their proper functioning level.
Furthermore, these results also highlight that L07 is fully controlled by its associated barriers,
meaning any failure or removal of these barriers would directly lead to an increase in
λTE(t). Unlike other threats, where barrier contributions barely emerge and are distributed
unevenly, L07 requires rigorous monitoring and maintenance.

4.3. Barrier Quantitative Assessment over Time

This section shows the trends of λTE(t) and fC(t) over mission time, T. The goal is to
observe how barrier systems behave along with their threats and consequences as time
progresses. Figures 10 and 11 display the λTE(t) and fC(t) over a year, or 8760 h. As
explained in Section 2.5, in all cases, barriers parameterised by PFDavg (over T = 8760 h) or
PFH are mapped to an equivalent constant rate λb, and their time-varying failure probability
is computed using Equation (4). This gradual increase in Pfail(t) over t explains the near-
linear growth of λTE(t) under constant λthreat and λb from approximately 2.02 × 10−9 to
2.023 × 10−9 failures per hour during the mission, as shown in Figure 10. Although the
increase is monotonic, the change remains minimal, indicating that barrier degradation is
slow and the preventive configuration sustains a consistently low top-event rate across the
operating horizon.
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Figure 10. The λTE(t) pattern over mission time, T.

 

Figure 11. The fC(t) pattern over mission time, T.

Figure 11 illustrates how fC(t) evolves over time, showing a rapid increase from
0 to 2000 h during the early mission phase. After this period, it gradually stabilises
around 10−18 failures per hour. This effectively prevents the escalation of TE into serious
consequences. The data suggest that, within a defence-in-depth framework, the occurrence
of severe outcomes remains very low.

The combined reliability analysis shows that although λTE(t) continues to rise over
time because of barrier wear-out, the mitigation measures keep the impact of TE very low
(≤10−17/h). This indicates the long-term effectiveness of the defence-in-depth strategy.

4.4. Scenario-Based Sensitivity Analysis Outcomes

Section 4.4 assesses the impact of barrier modifications on system reliability using a
series of what-if scenarios outlined in Section 3.4. The findings are presented in tabular
format in Table 16 and graphically in Figures 12 and 13 to enable a quantitative and visual
evaluation of barrier performance.

Table 16. The outcomes of scenario-based sensitivity analysis outcomes.

Scenario λTE(t) fC(t) % Reduction vs. Baseline Notes

Baseline 2.023 × 10−09 2.912 × 10−17 − Reference inputs
Oil -Analysis Improved 5.628 × 10−10 8.101 × 10−18 72.18 Oil Pfail 0.72 → 0.20
Redundant Dashboard 2.034 × 10−10 2.034 × 10−18 89.95 Dashboard Pfail 0.10 → 0.01

Faster Auto-Alarm
Proof-Test 2.022 × 10−09 2.911 × 10−17 0.03 PFDavg halved

Combined (Oil +
Dashboard) 5.736 × 10−11 8.257 × 10−19 97.16 Both improvements applied
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Figure 12. The baseline vs. scenarios of λTE(t).

 

Figure 13. The baseline vs. scenarios of fC(t).

Table 16 shows that the baseline case results for both λTE(t) and fC(t) are 2.023 × 10−9

failures per hour and 2.912 × 10−17 failures per hour, which serve as the reference point
for comparison. Both tabular and graphical results display this as the highest frequency,
emphasising the system’s vulnerability under the current barrier effectiveness.

In the initial alternate scenario, the failure probability of the oil analysis barrier de-
creases from 0.72 to 0.20. As a result, fC(t) drops sharply to 8.101 × 10−18 failures per hour,
marking a 72.18% reduction. This notable decline is clearly shown in Figures 12 and 13,
where the curve for this scenario diverges significantly from the original baseline.

Focusing on the redundant dashboard scenario, it significantly benefits by reducing
89.95% of fC(t), equating to 2.034 × 10−18 failures per hour. Figures 12 and 13 show these
findings, with the dashboard curve positioned well below the baseline and oil-analysis
curves, highlighting the substantial impact of redundancy in operator interface barriers.
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In contrast, cutting the proof-test interval of the auto-alarm in half did not influence
λTE(t) because the proof-test modification applies to a mitigation-side barrier, which affects
the fC(t). Therefore, no distinct curve appears in Figure 12. However, this approach slightly
reduced failures, fC(t), to approximately 2.911 × 10−17 per hour, or roughly 0.03%. The
results are consistent with the plots in Figure 13, where the new curve overlaps with
the baseline, indicating that this scenario does not contribute significantly to overall risk
reduction. This behaviour can be explained by the fact that halving PFDavg would reduce
the proof-test interval by half. When both parameters are halved, the underlying dangerous
failure rate λb remains unchanged. Consequently, the function fC(t) remains unaffected by
this change, affecting only the time profile (which resets at each proof test) rather than the
entire one-year outcome.

Lastly, the combined improvement between oil analysis and dashboard redundancy
achieved the most significant outcome by lowering the fC(t) to 8.257 × 10−19 failures per
hour, approximately 97.16% reduction. Figures 12 and 13 display this curve positioned at
the lowest point across the mission time, T.

Table 16 and plotted curves, Figures 12 and 13, consistently show the most effective
scenarios for oil analysis and dashboard barriers. Additionally, cutting the proof test period
in half does not significantly reduce the auto-alarm proof test interval and has a limited
impact. Using multiple approaches together can provide the most significant benefit, with
a reduction of nearly two orders of magnitude.

4.5. Model Performance Comparison

This section assesses the effectiveness of the proposed BowTie model, as outlined in
Section 2.6.3. It examines this assessment through minimal cut sets, runtime performance,
and model compactness. The traditional FTA yields four first-order minimal cut sets,
as derived in Equation (24). This equation suggests that these single basic events alone
could potentially trigger TE, indicating that their presence makes the system highly fragile.
Conversely, the proposed BowTie-based analysis expands the FTA model beyond Boolean
logic. It captures the interaction of barriers across both pathways. In this case study,
the proposed model identifies four dominant cut-sets of order four or higher, which are
4, 4, 5, and 4, as displayed in Figure 14. This chart illustrates that multiple barriers
must fail together for TE to propagate, reflecting more realistically the defence-in-depth
principles embedded in engineered systems. While this illustrates the usefulness of BowTie
in demonstrating resilience, this study acknowledges that the observed difference is specific
to this case, and outcomes may differ for other subsystems or system architectures.

Another key feature of the BowTie model is its computational advantage, which is
clear when comparing runtimes. Figure 15 shows that the BowTie aggregation method
completes the task in around 0.0009 s, whereas full ETA enumeration takes 0.0729 s. This
demonstrates that the framework can achieve efficiency gains while retaining analytical
rigour. Although this case study involves a single subsystem, the results highlight the
model’s potential for scaling to more complex systems where state-space growth poses
a challenge.

Ultimately, the proposed BowTie model showcases its capability through its compact
representation. As per Equations (18) and (19), the explicit ETA requires 64 distinct states
to capture event sequences. In contrast, the BowTie model achieves the same analytical
outcome using just 21 states, thereby eliminating 43 redundant states, as illustrated in
Figure 16. This simplification of the BowTie model does not compromise analytical rigour,
as evidenced by the value of ∆f = 0.0000. While the state reduction achieved here is a
clear advantage, the study notes that efficiency gains must always be balanced with the
preservation of critical dependencies. In this case, the framework successfully maintained
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accuracy while improving compactness, underscoring its potential as a reliable yet efficient
alternative to exhaustive enumeration.

 

Figure 14. The number and size of the cut-set of the BowTie model.

 

Figure 15. A runtime comparison between the BowTie model and ETA.

Another aspect of model comparison is the performance difference between the TE
probability, PTE(t) estimated using the proposed BowTie framework with the conventional
FTA (threat-only) approach. Figure shows the FTA curve (orange, dashed) rises sharply
during the initial phase and quickly stabilises around 10−2, reflecting the fragility implied
when threats are modelled as direct precursors to the top event. In contrast, the BowTie
curve (blue, solid) remains several orders of magnitude lower, stabilising in the range of
10−6–10−7 over the mission time. This outcome demonstrates the defence-in-depth effect: a
top event occurs only when all associated preventive barriers fail, resulting in significantly
reduced probabilities compared to the threat-only representation.
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Figure 16. Compactness comparison between BowTie and the ETA model.

5. Discussions
The study answer the research question via four measurable outcomes: (i) risk contribu-

tion ranking using RAW and BIF (Figures 8 and 9), (ii) quantified reliability improvements
from scenario redesigns (Table 13; Figures 12 and 13), (iii) quantitative evidence of barrier
sufficiency over mission time (Figures 10 and 11), and (iv) streamlined analysis relative to
ETA/FTA (Figures 14–16). The discussions presented in this section aim to interpret the
main findings related to the research question in Section 1 and highlight their implications
for system reliability and asset management.

5.1. Criticality of Barriers and Risk Contributions

The RAW findings in Section 4.1 emphasise significant variability in how individual
barriers contribute to λTE(t). This inconsistency is clearly evident in key system compo-
nents, such as sync-check relays and automatic trip triggers, which serve as single points of
defence; their failure can directly cause system breakdown. Conversely, barriers like CBM
dashboards and routine operator checks show a relatively low risk contribution to λTE(t).
This suggests that removing these barriers would not significantly increase the λTE(t).
Therefore, high-RAW barriers require strict routine maintenance, regular proof testing,
and consideration of redundancy, while low-RAW barriers are optimised or rationalised
depending on circumstances, such as operational costs.

Another important aspect of barrier contributions is the findings from BIF. It is essen-
tial to highlight that BIF analysis assumes barriers can either be perfected or improved.
This implies that the probability of failure is negligible. According to BIF’s findings, all
barriers at threat level L07 could significantly lower λTE(t), contradicting the conclusions
reached by RAW. There are several fundamental differences between the BIF and RAW
analyses. BIF focuses on the advantages of enhancing a barrier, while RAW evaluates
the potential damage that would occur if the barrier fails. A barrier that performs well
(with a low Pfail) may have a low BIF (indicating limited room for improvement) but a
high RAW (suggesting severe consequences if compromised), and the reverse can also be
true. In practice, maintenance managers can use RAW to identify which barriers need
maximum protection, while BIF helps justify investments by estimating the return on risk
reduction [36]. For example, improving the oil analysis programme reduces the probability
of failure from 0.72 to 0.20 and lowers λTE(t) by more than 70%, providing a clear business
case for enhanced monitoring. By contrast, halving the proof-test interval for the automatic
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trip barrier has a negligible impact on risk, suggesting that resources would be better
spent elsewhere.

These insights bridge the gap between technical analysis and financial decision-
making. High-priority barriers (those with a high RAW) should be allocated greater
inspection and testing budgets, as their failure would lead to prolonged outages and expen-
sive repairs. In contrast, low-priority barriers may be grouped or de-scoped to save costs.
BIF-driven improvements, such as upgrading vibration alarms or adopting more advanced
oil-analysis sensors, can be compared against their implementation costs to evaluate the
return on investment. This aligns with the broader reliability engineering literature, where
risk-based inspection (RBI) and reliability-centred maintenance (RCM) frameworks are
utilised to allocate maintenance resources based on both risk and cost considerations [36].

5.2. Reliability Improvements Through Barrier Redesign

The scenario-based sensitivity analysis in Section 4.4 reveals that not all preventive
or mitigation strategies yield proportional gains. While redundancy and lowering barrier
failure rates lead to significant reductions in system risk, as shown in Table 13, simply in-
creasing proof-test frequency yields minimal additional benefit. In this case study, halving
the auto-alarm proof-test interval reduced fC(t) by ≈0.03% (Table 13), indicating minimal
marginal benefit versus redundancy or Pfail reduction. This outcome is consistent with
modern reliability engineering and barrier management principles, which emphasise target-
ing the most influential safeguards rather than applying uniform maintenance escalation.
For example, Yuan et al. [37] present a dynamic risk-informed safety barrier management
approach where barrier interventions are prioritised based on current performance and
risk contribution rather than scheduled intensification. Their method demonstrates that
optimising high-leverage barriers yields more risk reduction per unit cost than blanket
increases in inspection or testing intervals. Likewise, in the risk-based maintenance litera-
ture, Leoni et al. [38] compare various RBM methods and show that prioritisation based
on probability × consequence offers more efficient resource allocation than across-the-
board maintenance increases. Hence, the results of this study, where proof testing offers
little marginal gain while barrier redesign and redundancy deliver considerable benefits,
align with the principle of maintenance prioritisation by risk importance, reinforcing that
strategic intervention wins over intensification. This prioritise-by-influence result mirrors
risk-based barrier management and RCM guidance, which favour targeting high-leverage
safeguards over blanket escalation of proof-testing or inspection intervals [39–42].

5.3. BowTie Modelling and Scalability

One of the key benefits of the proposed BowTie framework is its ability to simplify
reliability modelling without compromising accuracy. This can be seen through the minimal
cut set analysis, where the BowTie model can produce higher-order cut sets (size 4–5),
requiring multiple barriers to fail to escalate the TE. In contrast, conventional FTA in
Figure 5 generates first-order cut sets, suggesting that a single failure of basic events is
enough to cause a catastrophic event. This difference indicates that the BowTie framework
better reflects the defence-in-depth strategies used in practice, which capture the system’s
resilience rather than exposing single-point vulnerabilities. Additionally, the BowTie model
can reduce computational states compared to ETA enumeration without losing crucial
detail. This means the proposed model has a high potential for scalability, making it suitable
for larger or more complex systems where combinatorial explosion is a significant concern.
This pattern is consistent with defence-in-depth guidance, where layered safeguards raise
the minimum failure-combination order required for escalation.
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5.4. Barrier Sufficiency over Mission Time

Investigating barrier sufficiency quantitatively shows that λTE(t), increases linearly
but remains nearly constant over the mission period due to its small slope effect. The
consequence frequency, fC(t), on the other hand, remains at negligible levels, approximately
10−17/h. These findings provide strong evidence that the barrier configuration in the case
study is sufficient to maintain reliability over the operating horizon. In practice, the
defence-in-depth strategy ensures that even with gradual wear-out and ageing effects, the
probability of escalation to severe consequences is effectively controlled and minimised,
strengthening confidence in current operational practice.

5.5. Practical Implications and Generalisability

From an asset management perspective, this study highlights the benefits of a risk-
informed approach to barrier design and maintenance prioritisation. The comparison
in Figure 17 reinforces this point, as relying solely on FTA tends to overstate system
fragility by overlooking the role of barriers. Incorporating preventive and mitigative
defences through the BowTie framework demonstrates that the likelihood of generator
failure is drastically reduced by several orders of magnitude over the mission duration.
For example, the combined oil-analysis + dashboard scenario reduces fC(t) by 97.16% to
8.257 × 10−19 h−1 (Table 16), illustrating the material impact of diagnostic upgrades on
consequence frequency. For asset managers, this distinction is crucial because it clearly
shows the value of barrier design and maintenance investments. Measures like trip relays,
dashboards, and oil analysis directly lead to lower top-event risks. This approach thus
supports risk-informed decisions, helping identify where resources should be focused and
illustrating how defence-in-depth strategies offer meaningful improvements in reliability.

 

Figure 17. The performance difference of PTE(t) estimated using the proposed model and FTA.

The proposed BowTie model thus offers decision-makers a structured approach to
effectively balance safety and reliability by quantitatively ranking barriers, assessing the im-
pacts of redesign, and verifying sufficiency. This approach aligns with risk-based inspection
(RBI) by focusing maintenance resources on critical equipment while optimising inspection
schedules to reduce operational costs without compromising safety [39,40]. Concerning
the WT paradigm, the findings of this study indicate the importance of emphasising diag-
nostic redundancy and hybridisation, which lead to the most significant decrease in failure
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rates. Regarding the importance of barriers, critical protective relays, and automatic trip
triggers significantly enhance overall system reliability when properly maintained. On
the other hand, barriers that have a minimal impact can be optimised or streamlined to
prevent unnecessary waste of resources. This viewpoint aligns closely with the principles
of reliability engineering, which emphasise the importance of achieving the optimal level
of system reliability by balancing risk reduction with economic practicality throughout the
asset’s lifecycle [41].

Aside from the WT domain, the suggested BowTie methodology can also be applied to
various critical infrastructures where a defence-in-depth approach is necessary to prevent a
major incident. Yang et al. [42] showcase this approach by combining BowTie analysis with
a Bayesian network to improve risk management in oil storage facilities. This enhances
emergency response strategies and supports operational decision-making.

5.6. Limitations and Future Research

Several limitations of this study should be noted. First, the case study is limited to the
generator subsystem of a WT, which constrains the generalisability of the findings; applying
the framework to other subsystems or different infrastructures would provide broader
validation. Second, the analysis relies on the assumption of constant failure rates for threats
and barriers, without accounting for repair, degradation, or ageing effects. Similarly, HEPs
and conditional probabilities are treated as fixed values, overlooking potential variability
due to factors such as operator experience, fatigue, or context. Third, the data sources span
multiple years and industries, including technical reports and cross-sector studies, which
may introduce inconsistencies and reduce direct transferability to wind energy systems.
Fourth, barrier independence is assumed, with dependencies and common-cause failures
not explicitly considered. Fifth, the framework is presented deterministically, without quan-
tifying uncertainty or providing error bounds for the reported results. Finally, efficiency
gains over ETA are demonstrated for a single subsystem only; additional benchmarking on
larger and more complex systems is required to substantiate scalability. In this paper, these
assumptions are partially probed via scenario-based sensitivity, as explained in Sections 3.4
and 4.4, to observe directional robustness of λTE(t) and fC(t) under barrier redesign.

Future research should build on this work by extending the framework to multiple
subsystems and other critical infrastructures, incorporating non-constant failure behaviours
such as repair and ageing, and refining the treatment of human and conditional proba-
bilities to capture contextual variability. Explicit modelling of barrier dependencies and
common-cause failures, together with validation against field data, would further enhance
robustness. In addition, integrating uncertainty propagation techniques, such as Monte
Carlo simulation or Bayesian inference, would enable the reporting of confidence intervals
or error ranges, thereby strengthening interpretability. Finally, systematic benchmarking
across larger case studies is needed to evaluate trade-offs between efficiency and accuracy,
and to confirm the framework’s scalability for complex engineered systems.

6. Conclusions
This research has illustrated the BowTie framework based on reliability, which delivers

a practical and effective method for quantifying system reliability, ranking barriers, and val-
idating the adequacy of defence-in-depth measures. The framework provides a transparent
and computationally efficient alternative to traditional reliability models, such as FTA, ETA,
and RBD, by incorporating key metrics, including RAW and BIF, alongside cut-set analysis
and scenario-based sensitivity evaluations. The findings indicate that high-risk barriers,
such as protective relays and automation triggers, play a significant role in escalation path-
ways. In contrast, low-impact barriers exert only a marginal influence on overall system
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reliability. Furthermore, the higher-order cut sets generated by the proposed BowTie model
provide a more realistic representation of the resilience of WT systems compared to the
single-point vulnerabilities identified by conventional FTA.

The study also demonstrates significant efficiency gains: the BowTie model reduces
runtime by approximately 40 times compared to ETA enumeration (0.0009 s vs. 0.0729 s) and
compresses state requirements from 64 to 21 without loss of fidelity. These improvements
highlight its potential for a scalable application. Nevertheless, several limitations remain.
The current analysis is restricted to a single subsystem, assumes constant failure rates
and barrier independence, and does not explicitly address common-cause failures or
repair processes.

Future research should address these limitations by validating the framework across
multiple WT subsystems and other infrastructures, incorporating non-constant failure be-
haviours (repair, ageing, degradation), and explicitly modelling dependencies between bar-
riers. Large-scale benchmarking against conventional reliability techniques is also needed
to assess scalability, computational trade-offs, and accuracy in complex engineered systems.
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AHP Analytical Hierarchy Process
BIF Barrier Importance Factor
BRB Belief Rule Base
CBM Condition-based Monitoring
CCPS Centre for Chemical Process Safety
CMMS Computerised Maintenance Management System
DDA Detect-Decide-Action
DFT Dynamic Fault Tree
ETA Event Tree Analysis
FTA Fault Tree Analysis
HEP Human Error Probability
HRO High Reliability Organisation
IED Intelligent Electronic Device
LFF Learning from Failures
ML Machine Learning
O&G Oil and Gas
PAND Priority-AND
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PFDavg Average Probability of Failure on Demand
PFH Probability of Failure per Hour
RAW Risk Achievement Worth
RBD Reliability Block Diagrams
ROI Return on Investment
SPAR Standardised Plant Analysis Risk
TE Top Event
THERP Technique for Human Error Rate Prediction
VFD Variable Frequency Drive
WMEP Scientific Measurement and Evaluation Programme
WT Wind Turbine
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