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Abstract

This study addresses the challenge of cognitive waveform design for multiple-input—
multiple-output (MIMO) radar systems operating in cluttered environments. It focuses on
the key practical requirements for transmitting time-domain waveforms and proposes a
novel approach. This method first determines the optimal frequency-domain waveform
and then designs a time-domain waveform that closely approximates the frequency-domain
solution. The primary objective is to enable MIMO radar systems to transmit orthogonal
waveforms while accommodating various constraints. A frequency-domain waveform
optimization model was initially developed using the principle of maximizing dual mutual
information (DMI), and the energy spectral density (ESD) of the optimal waveform was
derived using the water-filling method. Next, a time-domain waveform approximation
model is constructed based on the minimum mean square error (MMSE) criterion, which
incorporates constant modulus and peak-to-average power ratio (PAPR) constraints. To
minimize the performance degradation of the waveform, an improved adaptive gradient
descent genetic algorithm (GD-AGA) was proposed to synthesize multichannel orthogonal
time-domain waveforms for MIMO radars. The simulation results demonstrate the effec-
tiveness of the proposed model for enhancing the performance of MIMO radar. Compared
with traditional genetic algorithms (GA) and two enhanced GA alternatives, the proposed
algorithm achieves a lower ESD loss and better orthogonal performance.

Keywords: cognitive MIMO radar; waveform design; water-filling method; GA; MI; SCNR

1. Introduction

To satisfy the requirements of radar systems that perform a variety of tasks in complex
electromagnetic environments, researchers have proposed the concept of multiple-input—
multiple-output (MIMO) radar [1] and cognitive radar (CR) [2].

Waveform design for cognitive radar has long been a research focus [3-5]. Waveform
design is a constrained optimization problem that involves selecting the optimization
criteria and constraints, which depends on the requirements of a specific task. Common
optimization criteria include the signal-to-interference-plus-noise ratio (SINR), mutual
information (MI), and minimum mean square error (MMSE). Typical waveform constraints
include the constant modulus, the peak-to-average power ratio (PAPR), and energy con-
straints [6,7]. According to the definition of the waveform domain, cognitive waveform
designs can generally be classified into two main categories: frequency-domain and time-
domain optimal waveform designs. Frequency-domain waveform design primarily focuses
on the energy spectrum distribution of the target and clutter. We obtained the energy
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spectral density (ESD) of the waveform by solving the energy constraint considering an
optimal output criterion. Kay [8] originally utilized the water-filling method (WFM) from
communication theory to design a waveform in a noisy environment and obtained an
analytical expression for the optimal waveform by maximizing the signal-to-noise ratio
(SNR) criterion under an energy constraint. C.Y. Chen [9] improved an iterative algorithm
to jointly optimize the transmitted waveforms and receiving filters of the MIMO radar
for the case of an extended target in clutter. However, the statistical characteristics of the
clutter should be precisely known for this solution.

Waveform design under an energy constraint can be viewed as the optimal allocation
of fixed resources. However, it is difficult to use the WFM to derive an analytical solution for
the waveform when the model is complex. To solve this problem, the researchers in [10,11]
applied the maximum marginal allocation (MMA) algorithm to appropriately obtain the
optimal waveform in the frequency domain. Among them, Y. Cao et al. [10] applied MMA
to obtain the optimal waveform with the joint optimization criteria of MI and SINR for
cognitive radar that faced multiple tasks. EM. Xin et al. [11] applied the MMA algorithm
for cognitive radar with a dual mutual information (DMI) criterion, which is designed to
maximize the MI between the received signal and the target impulse response and minimize
the MI between the received signal and clutter impulse response. The MMA algorithm is
essentially a dynamic programming technique that decomposes the optimization problem
into multiple stages by discretizing the objective function. At each stage, fixed energy is
allocated to the frequency bands such that the objective function is maximized. Through
several stages, energy is optimally distributed among the frequency bands to obtain the
optimal waveform so that it can effectively overcome the limitations of the WFM.

However, the frequency-domain waveform obtained using this approach cannot be
directly applied to MIMO radar transmitters and instead requires additional synthesis
of the time-domain waveform. To maximize the utilization of transmit power, constant
modulus constraints are typically imposed on time-domain waveforms. Waveform design
under a constant modulus constraint primarily involves optimizing the waveform phase.
This is often achieved using the inverse Fourier transform to convert the time-domain
waveform to the frequency domain, followed by windowing to reduce edge response
mismatches. However, this results in significant distortions. To address this issue, Jackson
etal. [12] introduced a constant phase method for optimizing the phase of constant-modulus
waveforms by assuming a flat spectrum, which helps to reduce ESD losses. Nevertheless,
the resulting waveform exhibited a significant error compared with the optimal waveform
in the stopband. In another study conducted by Gong et al. [13], a constant modulus
waveform optimization model was developed based on the minimum mean square error
(MMSE) criterion with a phase recursive optimization method to approximate the ideal
energy spectral density (ESD). Due to the limited number of phase optimizations, Liu
et al. [14] employed genetic algorithms to improve the global search capabilities.

To ensure that the nonlinear radar amplifier operates at or near saturation and to avoid
nonlinear distortion in the output waveform, it is often necessary to restrict the dynamic
range of the waveform amplitude. Therefore, after obtaining the ideal ESD through the
design of the frequency-domain waveform, a low peak-to-average power ratio (PAPR) con-
straint should be considered when designing the time-domain waveform. In this scenario,
the optimization involves the amplitude and phase variables of the signal. In this case, the
methods implemented in Refs. [12,13] would no longer be applicable. Daoud et al. [15]
utilized a genetic algorithm (GA) to address the PAPR limitations and improve waveform
flexibility, but they faced the problem of “premature convergence”. To avoid this problem,
D’Angelo and Palmieri [16] introduced the gradient descent (GD) algorithm, which pro-
vides strong local search performance and enhances overall convergence performance. In
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Ref. [17], a PAPR was included as one of the optimization criteria, and a cyclic optimization
algorithm was employed to reduce the PAPR while maintaining orthogonality and a low
sidelobe level. In Ref. [18], an AGA was applied to enhance the genetic algorithm (GA),
allowing for the mutation and crossover intensities to be automatically adjusted based on
the population state, thereby mitigating the risk of premature convergence. However, the
selection of mapping functions lacks a systematically established optimal design principle
and relies heavily on existing empirical knowledge.

Based on existing research works in Table 1, to take full advantage of MIMO radar
waveform diversity and achieve a balance between target detection and parameter estima-
tion performance through waveform design, this study establishes a frequency-domain
waveform design model based on the DMI criterion. To this end, the optimal waveform ESD
was obtained using the WEM. Based on this, a GD-AGA was proposed to synthesize a time-
domain waveform to approximate the optimal ESD waveform. The proposed algorithm
can employ waveform design under a constant modulus constraint and PAPR constraint
and possesses lower ESD loss than the existing GA and some other improved GAs.

Table 1. The related research chart.

Related Studies Contributions Shortages
K Originally applied the water-filling method (WFM) to address ~ Using the WEM to derive the analytical solution is
ay [8] . .
the optimal waveform. hard when the model is complex.
Improved an iterative algorithm to jointly optimize the - -
C.Y. Chen [9] transmitted waveforms and receiving filters of the MIMO radar The statistical characteristic of the clutter should be

for the case of an extended target in clutter.

precisely known.

Y. Cao et al. [10]
EM. Xin et al. [11]

Applied the maximum marginal allocation (MMA) algorithm
to address the complex waveform design problem.

The frequency-domain waveform cannot be directly
applied to MIMO radar transmitters.

Jackson et al. [12]

Presented a constant phase method for optimizing the phase of
constant modulus waveforms.

Gong et al. [13]

Presented a phase recursive optimization method for
optimizing the phase of constant modulus waveforms.

PAPR constraint cannot be used for the method.

Daoud et al. [15]

Presented a GD-GA for waveform that can avoid the problem
of “premature convergence”.

PARP constraint cannot be applied in the waveform.

D’Angelo and
Palmieri [16]

Presented a GA for the waveform with a comparable PAPR.

Has the problem of “premature convergence”.

AGA paper [18]

Dynamically adjusted the algorithm parameters to improve the
search efficiency.

The selection method for mapping functions lacks a
systematically established optimal design principle
and relies heavily on existing empirical knowledge.

The remainder of this study is organized as follows: Section 2 introduces the optimal
waveform design model and the algorithm solution process in the frequency domain of
the cognitive MIMO radar. Section 3 presents the optimal time-domain waveform model
under constant modulus and PAPR constraints and the principle of the GD-AGA. Section 4
presents a comparative analysis of the simulation data. Finally, Section 5 summarizes the
main results.

Description of operation symbols: ® denotes the Kronecker product operation, [-]*
is the conjugate operation, []™ is the conjugate transpose operation, []" is the transpose
operation, |-| represents the modulo value operation; * signifies the convolution operation,
Re(-) and Im(-) stands for the real and imaginary part operations, respectively.

2. Frequency-Domain Waveform Design
2.1. Development of an Optimization Model

The waveform design model for the cognitive radar is shown in Figure 1, where s(t)
denotes a transmitted signal; g(t), c¢(), and n(t) represent the target impulse response, the
clutter impulse response, and the noise signal, respectively. In addition, all three signals
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possess Gaussian random processes with zero mean independent of each other, where z(t)
signifies the signal scattered by the target, c(f) denotes the signal scattered by clutter, and
y(t) represents the received signal. This model is often utilized in waveform design to
maximize the SCNR and MI criteria. The SCNR and MI formulas are as follows:

S(F)Po2(f) )
MI =T, In[1 d
=T} <+ 20+ iz )

<f>|a§<f>
SCNR =T,
) Tyo2(f) + |s(f)|2(f)

where W represents the bandwidth; Ty is the target duration; aé (f), 02(f), and d2(f)

represent the target, clutter, and noise ESD, respectively; and |s(f)|? signifies the individual

af

transmit waveform ESD.

n(t)

Y
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Figure 1. Waveform design model for cognitive radar.

To enhance the target detection or parameter estimation performance of a radar system
in a cluttered environment, maximizing the signal-to-clutter-plus-noise ratio (SCNR) or
mutual information (MI) criterion is commonly used as an optimization criterion. In
Ref. [11], using practical engineering scenarios, the influence of both the target and clutter on
the received signal was considered. To maximize the DMI criterion, the mutual information
between the received signal and target impulse response (TIR) is maximized, whereas
the mutual information between the received signal and clutter impulse response (CIR) is
minimized. Therefore,

max(DMI) = max Ir(y(£);g(#)ls(£))) N min, Ie(y(t);e(t)ls(t))
s(f)! s(f)!
= max|[It — Ic]

s(f) 2(0 (f) = o2(f))
aAf) + Is(F)IPa2(f)

=Ty [ In 1+
W

If we compare Equations (1) and (2), we can see that the DMI criterion is different
from the MI and SCNR criteria, and the molecular term is adjusted to (aé (f) — d2(f ))
The target information is maximized, whereas the clutter interference is minimized by
considering the spectral difference between the target and clutter. However, to improve
the parameter estimation and target performance of the three criteria, further simulation

comparison is required.
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In the present work, we aim to extend this criterion to MIMO radars. To this end, the
centralized MIMO radar is assumed to have a uniform linear array structure, the number
of transmitting array elements is considered to be M, the distance between the transmitting
antennas is taken as dr, the number of receiving array elements is denoted by N, and the
distance between the receiving antennas is taken as dr. Consequently, the transmitted
waveform can be expressed as follows:

s(t) = [s1(t),s2(t), - sm (D] 3)

When the transmitted waveforms are orthogonal to one another, they create an omni-
directional low-gain wide beam in space. This allows the receiver to process the signals into
multiple channels and achieve waveform diversity gain. This approach provides greater
flexibility when it comes to designing waveform parameters and signal processing methods.
At this point, the transmitted waveform satisfies the following orthogonal relationship:

[sn(®)si(tyat = { S @

We examine the presence of an extended target in the far-field region, where its TIR is
equivalent to the superposition of multiple scatterers. It is assumed that when the target is
located in the MIMO radar array element, the azimuth angle is 6. Therefore, the transmitted
signal phase difference can be evaluated by ¢t = 27tdy sin 6/ A, whereas the received signal
phase difference can be calculated as ¢r = 27tdr sinf//A, where A represents the signal
wavelength. The transmitted signal steering vector, ar(6), and the received signal steering
vector, ag () are provided by the following equation:

‘ . T
ar(0) = [1,3—1%,. .. ,e—](M—l)pr]

, , T (5)
ag(6) = [1, eiPR ,e—z<M—1)]¢R}

Let us define g(t), c(t), and n(t) as the target impulse response, clutter impulse
response, and noise signal, respectively. Then, the vector expression, when the transmitted
signal of the first array is scattered by the target and reaches the received array, is given by
the following equation:

x(t) = (g(t) + e(1)) * ar(6)at(8)sm (t) + n(t) 6)

After matching the filtering process at the MIMO radar receiver and transforming it
into the frequency domain, the output waveform is obtained as follows:

y(f) = (G2(F) + ()" (O)(0)[s(f)]* +n(f) )

where b(0) = ar(f) ® aj(#). Combining Equations (7) and (2), the expression of the
maximization DMI criterion for the waveform design based on the cognitive MIMO radar
is derived as follows:

DMI(f) = Tg/ln 1+ df ®)
w

)Ty + [P OO |s()1202(7)
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M
where [s(f)|* = ¥ |sm(f)]?% and |s,(f)[* denotes the transmission waveform of the fourth
m=1

transmission array.

2.2. Application of the WFM

In the realm of cognitive waveform design constrained by energy limitations, recent
studies have increasingly investigated the MMA and WEM algorithms as effective solutions.

The MMA algorithm utilizes a dynamic programming algorithm to optimally allocate
waveform energy to a certain frequency band through the stage to achieve the optimal
overall energy allocation effect. The accuracy and complexity of the algorithm are related
to the minimum unit of energy allocation [11]. By constructing Lagrange multipliers, the
WEM employs convex function characteristics to obtain the extreme point, and the solution
result is represented by a waveform analytical formula. To solve the optimal waveform
analytical equation and reduce the ESD loss of the subsequent time-domain waveform, we
introduced the WFM algorithm solution process. For this purpose, the MMA algorithm was
implemented to arrive at an appropriate solution. The details are provided here for brevity.

To facilitate the calculation, the signal bandwidth (W) was first discretized into F
sub-bands by defining Af as the spacing of each sub-band and E as the signal energy.
Subsequently, the optimization model subjected to the energy constraint can be constructed
as follows:

@b 1s() 12 (R (F) ~ 2(9)
ATy + oo 15122 ) O

F
max DMI(f) = ToAf ¥ In| 1+
s(f) f=1

st ls(f)Ilz<E

The objective function is convex, and the Lagrange multiplier « can be constructed by
simultaneously combining the objective function and constraints.

BH(0)b(0)| 1s(£) 12(02(f) — o2
Awﬁﬁ:%Mim]+\<><ﬂuﬂ(%m 2(9)

5 +a(E=[Is()3) (10)
=0 TR T + 6™ (0)b(0)] Is()1202()

The partial derivative of the left and right ends with respect to s(f), and the extreme
point of the function obtained with the life partial derivative of 0 represents the optimal
waveform ESD in the frequency domain, denoted as |Spmi( f) | in the following form:

|Sowin(f)]? = max(B(f)(A - C(£)),0) (11)

where the following conditions of A, B(f), and C(f) should be exactly met:

F

f§1 max(B(f)(A —C(f)),0) < E
B b"(0)b(6) 2(a§(f) ()

2y )| 02 () + [ ewe)[ (o3 () - o2(5)
c(f) = zrel)
CROIOINCAREAR)

(12)

The optimal waveform ESD can be directly evaluated using the WFM, which provides
a better performance improvement in terms of the synthesis of the subsequent MIMO radar
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time-domain waveform. Similarly, the established approach can be extended to maximize
the SCNR and MI criteria, which are not explained here for the sake of brevity.

3. Time-Domain Waveform Design
3.1. Development of an Optimization Model

To allow for the characteristic of the high degree of freedom of MIMO radar to be fully
utilized, in this section, the continuous phase-coded signal s(t) = ¢ [e]"r”l ), efp2(t), . elPm (t)] !
with phase ¢(t) uniformly distributed in [0, 277) is used to approach the optimal waveform

ESD in the frequency domain (denoted as ESDopt) under the MMSE criterion. The optimiza-
tion model is constructed as follows:

M
. _ | 2
r?}pn| |ESD(mX:;1 Sm )-ESDopt| (13)

s.t. slnfsn =0, m#n

where m and 1 represent the transmitting array element, and @ = [p1(t),92(t), ..., @um(t)]"
represents the transmitting signal phase matrix. For the orthogonal constraints in the model,
the penalty function method was effectively utilized to construct the regularization constant
B1. Therefore, the objective function and constraint conditions can be combined as follows:

M
min|[ESD( Y si)-ESDopt| 1 + 1 L [skls, |2
¢, P m= Mm#£n .

1 (14)
st. @€ [0,2m)
Let us define the fitness function of the algorithm using the following equation:
M
fity(p) = ||ESD( Z )-ESDopt| 12+ B1 Y [shisn 1. (15)

m#n

When the constant modulus constraint is relaxed to the low PAPR constraint, the main
relations of the model can be expressed as follows:

mmHESD( Z Sm)- ESDopt||

max|s(t)|

1T 2
L5

sﬁsn:O,m#n

st. PAPR = <Z. (16)

In the case of { = T, the PAPR constraint no longer plays a role; therefore, { < T is
typically performed. Similarly, the penalty function method was employed to deform the
above equation, and the fitness function is constructed as follows:

fita(c, ) = ||ESD( Zsm “ESDopt| 12 + Ba(max(PAPR — £,0)) + 53Z)smsn (17)

m=1 m#n

3.2. Application of the GD-AGA

In this section, we introduce the process of solving the time domain orthogonal
waveform using the GD-AGA. This algorithm enhances the local optimization performance
by embedding the GD algorithm into the GA and adding an adaptive parameter tuning
strategy to improve the influence of the parameters on the algorithm.
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The GD algorithm requires the gradient of the objective function, which is detailed in
the Appendix A.

The adaptive parameter adjustment strategy is as follows. When the fitness of an
individual is less than the average fitness value, the individual’s performance is excellent,
and the crossover and mutation probabilities should be appropriately adjusted according
to its fitness value. In contrast, it adopts a crossover and mutation probability that is larger
than those of the other individuals:

Pc . .
Pe = { e =) n=Tiaeg)+ f1F < filavg (18)
c . .
p2-Pe, fit > fitavg,
pm . .
Pm = { oo Tiavg) T gy f1t < fitavg (19)
m — . .
P4'Pm/ flt 2 fltavg 7

where p. and p,, represent the initial crossover probability and initial mutation probability,
respectively; fit denotes the larger fitness value in the crossover individual, fita.yg signifies
the average fitness value of the population, and fityi, represents the minimum fitness
value of the population. It should be emphasized that the range values of all the constants
p1, P2, p3, and py are (0,1). To further improve the robustness of the GD-AGA, the random
mutation factor mut = (1 — k/iter)*-rand is set in the kth iteration, where rand € (0,1)
denotes the random value, and iter represents the maximum iteration number. The gene
value of the mutant gene fragment was synchronously adjusted as follows:

_ . > 0.
gene — (1 — mut)-gene, mut > 0.5 (20)
(1 — mut)-gene, mut > 0.5

The replacement strategy of worse individuals was adopted to accelerate the con-
vergence of the algorithm. Based on the maximum and minimum fitness values (fitmax
and fityn) of individuals in the population, a limit 0.2 X (fitmax — fitmin) + fitmin Was
set, and all values greater than the limit value were replaced by the best individual fitmin
in the population. In addition, the GD algorithm and mutation operation may cause the
amplitude and phase variables to exceed their upper and lower limits during the execution.
When a variable surpassed these bounds, it was adjusted to the nearest boundary value.

Taking time-domain signal synthesis under a constant modulus constraint as an
example, the GD algorithm and adaptive parameter tuning strategy were added to the GA,
and the flowchart of the GD-AGA is provided in Algorithm 1.

3.3. Analysis of Algorithm Complexity

In this study, the algorithm includes frequency- and time-domain waveform designs;
thus, the complexity of the algorithm is decided by the two groups. In the frequency
domain, because the FFT points are far larger than the MIMO radar array number, the
algorithm complexity can be expressed as O(Nr-log Nr). In the time domain, the algo-
rithm can be split into GD and AGA. Involving the FFT transformation and the gradient
solution process, if we assume that the iteration of GD is Tj, the algorithm complexity is
@) (T1 ‘N 1% log N p). Assuming that the iteration of GA is T, the population number is Pg,;
thus, the algorithm complexity is O (T1 “Pgg- TZ'N%- log N F)- Finally, the complexity of the
algorithm is O(Tl-Pga-TTN%- log Np) .
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Algorithm 1. Flowchart of the GD-AGA

Input: Chrom, number of population individuals (popsize), number of chromosomes (Chromy), fit(@), P, Pm, P1, P2, P3s
and py, B, iter
GD: step length 7, number of iterations itergy

Output: Chromyest, fitmin, fitavg

Step 1: Running the GA:i =1

Initializing Chrom, and then calculating fit, fitmin, fitavg, and Chromyp,g
Step 2: i = 2 : iter
a. Running the GD algorithm, for t; = 2 : iterg,:
Calculate the gradient V] = |1 or J» ;
Update Chrom(i) = Chrom(i) — y-V];
Calculate fit(g);
Check the mutated gene crosses the boundary and replace it with the boundary edge value if it crosses the boundary.
Terminate the algorithm after convergence.
Update Chrom and fit(g).

b. Roulette wheel algorithm
Calculate the probability according to the individual fitness function. As a general rule, the smaller the probability,
the better the performance.

¢. Adaptive crossover

Update fit(g);

if rand < p., update p. according to Equation (18), end;
Update fit(g).

d. Adaptive mutation

if rand < pm, update pnm, mut and gene according to Equations (19) and (20);

Check the mutated gene crosses the boundary and replace it with the boundary edge value if it crosses the boundary;
end;

Update fit(g).

e. Replace the worst individual
Update Chrompeg;.
Step 3: Evaluate the algorithm convergence and return to Step 2 in the lack of convergence.

4. Simulation Analysis

To facilitate calculation and simulation, the units of the parameters were normalized
and replaced by the value only. For this purpose, we set the MIMO radar transmitting array
element as M = 2, receiving the array element number as N = 4, bandwidth as W = 1 Hz,
FFT number as Np = 256, the length of the extended target as 35 sampling points, the
target and clutter relative to the radar angle as 30°, noise power as 02 (f) = 0.001J, and
waveform energy as E = 1]. In addition, the spacing of the transmitting and receiving
array element was considered as half the wavelength.

4.1. Waveform Performance Analysis in the Frequency Domain

The extended target and clutter spectra are plotted in Figure 2 with the parameters set
to the values given above, and the optimal waveform spectra obtained using the WFM and
MMA approaches are shown in Figure 3.
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Figure 2. (a) Extended target and clutter TIR spectrograms; (b) Extended target and clutter Power
spectrum curve.
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——— WFM

—6— MMA(P=3000)
—¥— MMA(P=6000)
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Normalized frequency (Hz)
(b)

Figure 3. (a) Analysis of the influence of the number of array elements on the waveform design;

(b) Comparison of the waveforms generated by the WFM and MMA algorithms for various levels
of P.

Figure 3a compares the influence of different transceiver elements on waveform design.
Compared with the case of M = 2 and N = 4, the waveform energy of a single transmitting
element is reduced when two new transmitting elements are added, and the output SCNR
is reduced by 0.15 dB on average after 50 experiments. Reducing the receiving sensors by
two results in a degradation in the quality of the received signal, resulting in no energy
allocation on some frequency bands, and the output SCNR is reduced by 0.88 dB on average
after 50 experiments.

Figure 3b shows the influence of different algorithms on the optimized waveform with
M =2 and N = 4 array elements. The WFM and MMA algorithms are capable of obtaining
the optimal waveform through reasonable energy allocation in the frequency bands, and
the allocation method depends on the optimization criterion; that is, under the criterion of
maximizing the DMI, the waveform energy is allocated in the frequency band where the
target TIR amplitude exceeds the clutter TIR. Conversely, no energy is allocated when the
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target TIR amplitude is lower than the clutter TIR. Owing to the different energy allocation
criteria of the two algorithms, the obtained waveforms differed in terms of recognition
performance. After 100 random simulations, the SCNR value of the waveform solved by
the WEFM is predicted to be 20.50 dB, whereas the SCNR value of the MMA algorithm is
obtained as 20.35 dB. In this case, the performance of the WFM was better than that of the
MMA algorithm.

To further compare the discrepancies of the designed waveforms based on various
criteria, the optimal waveforms in the frequency domain were obtained using the WEM un-
der three criteria—maximizing the DMI, MI, and SCNR—as shown in Figure 4. The shapes
of the designed waveforms in the presence of the maximization SCNR and MI criteria were
similar, and energy was consistently allocated in the frequency band corresponding to the
higher target TIR. Additionally, the DMI criterion does not allocate more energy when the
target TIR is lower than the cluttered TIR.

45 T T T T
DMI
4+ —e— M| il
—%— SCNR
3.5 !
3 - -
Ss—&L ]
P {7
2 %
g 2 GF 4 : ‘ B
a8 ar & P B
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Figure 4. Comparison of the predicted waveforms using various criteria.

The target detection and parameter estimation performance values of the design
waveforms obtained after 100 random simulations, based on the three criteria, are listed
in Table 2. The plotted results reveal that the detection performance and parameter es-
timation performance of the designed waveform using the DMI criterion are between
the corresponding values of the maximization SCNR and MI criteria, and the waveform
performance obtained by the solution is more balanced.

Table 2. Performance comparison of the three employed criteria.

Parameter Estimation

Detection Performance

Criterion (dB) Perf?l:;l:)ance
DMI 19.25 23.76
MI 18.89 24.57
SCNR 19.60 19.47
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4.2. Performance Analysis of the GD-AGA

The GD parameters were set as follows: the step size () was set to 0.005, and the
number of iterations (itery4) was set to 10. Additionally, the AGA factors were considered
in the following form: the number of population individuals (popsize) was set to 100, the
length of the signal number (T) was set to 200, the initial crossover probability (p.) was set
to 0.8, the initial mutation probability (p;;) was set to 0.1, and the parameters were set in
the following order: p; = 0.5, pp = 0.8, p3 = 0.05, and p4 = 0.8.

The waveform obtained using the WEM, as shown in Figure 4, was substituted into
Equation (14) as the ESDopt for evaluation. When the synthetic waveform closely matches
the ESDopt, the algorithm’s performance improves, indicating that the synthetic wave-
form enhances the radar system’s effectiveness. Under the same parameter settings, for
the GD-AGA proposed in the present study, the GA with the GD algorithm (GD-GA),
GA with adaptive strategy (AGA), and general GA are reasonably compared. After the
iter = 300 iterations of these algorithms, the fitness iteration curves of the various algo-
rithms were appropriately evaluated, as shown in Figure 5. The corresponding optimal
waveforms obtained after extracting the best individuals are shown in Figure 6.

700 T T

fitness

0 50 100 150 200 250 300
iter

Figure 5. Comparison of the best fitness curves.
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Figure 6. Comparison of the optimal waveforms obtained from various approaches in the
frequency domain.
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From the perspective of convergence performance, the iterations of the GD-AGA, GD-
GA, AGA, and GA tended to converge after 300, 150, 200, and 225 iterations, respectively.
This clearly indicates that GD-AGA can overcome the “premature convergence” problem
of the traditional GA. After the introduction of the GD algorithm, the GD-AGA and
GD-GA had better convergence speeds in the early stages of operation, which reveals
that the GD algorithm can improve the local convergence performance of the GA. From
the output results, the GD-AGA exhibits better convergence performance and the best
output waveform approximation effect among the four algorithms, which indicates the
effectiveness of the improved GA strategy in the present work.

Because the heuristic algorithm has certain randomness, the results of each experiment
are not the same. To comprehensively evaluate the influence of each parameter on the
performance of the algorithm, the basic experimental parameters were set as follows: the
number of iterations was set to 300, the initial crossover probability was set to 0.8, the
initial mutation probability was set to 0.1, and the step size of the GD algorithm was set to
0.005. The factors [mse and Jo,4, are used to represent the waveform approximation effect
and quadrature performance, respectively, where smaller values of both represent better
performances.

After 100 Monte Carlo stochastic simulation calculations, [ymse and [y, of the wave-
forms obtained by the four algorithms for various parameter values are provided in Table 3.
It is observed that for the improved GA strategy, the GD-GA or AGA can effectively reduce
the discrepancy between the synthesized waveform and ESDopt; however, in terms of
waveform orthogonality, the AGA demonstrates better performance compared with the
GD-GA. When the GD algorithm and adaptive parameter tuning strategy are integrated
into the GA, the proposed GD-AGA is superior to the other three algorithms in terms of
both the waveform approximation effect and orthogonality.

Table 3. Comparison of performance of various algorithms.

Parameters Value GD-AGA GD-GA AGA GA

Jinmse Jortno Jinmse Jortno Jinmse Jortno Jinmse Jortno
100 96.7614 0.3237 184.7883 7.0183 244.0837 4.7839 327.1806 7.7672
iter 300 42.6567 0.1006 173.0316 7.0054 189.8556 4.5413 292.2732 6.1038
500 30.9443 0.0347 169.6139 5.4724 170.8922 2.6475 280.7527 4.8605

0.9 37.5163 0.2064 169.8239 9.1472 185.6456 4.4057 302.1408 49721
Pc 0.8 42.6567 0.1006 173.0316 7.0054 189.8556 45413 292.2732 6.1038
0.7 44.1954 0.4825 170.9422 7.1613 191.37 4.0084 294.3374 5.0932
0.15 45.5350 0.1752 167.8338 6.2851 2442554 4.7060 357.6697 6.0365
Pm 0.1 42.6567 0.1006 173.0316 7.00536 189.8556 45413 292.2732 6.1038
0.05 29.1029 0.1593 176.7611 3.4770 100.5259 1.6423 193.9559 4.5253
0.01 54.3055 0.3353 176.7021 4.7403 100.8837 1.5971 200.3443 3.2394
Y 0.005 40.6515 0.1006 173.0316 7.0053 189.8556 4.5413 292.2732 6.1038
0.001 43.2392 0.2725 92.49853 5.1537 98.70791 1.8120 196.6820 2.7392

Considering that the regularization parameter has a weighted impact on Jy;use and
Jortho, the B1 interval value was set to [0, 100], and the average value of 100 random
simulation experiments is shown in Figure 7. The plotted results indicate that as the value
of B1 increases, the value of J;;us. increases, which reveals that the waveform approximation
effect is poor, and the value of ], decreases, which indicates better orthogonality among
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the waveforms. Consequently, a trade-off between the waveform approximation effect and
orthogonality can be achieved by adjusting the tuning parameter value according to the
actual requirements.
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Figure 7. Performance analysis of the algorithm in terms of ;.

4.3. Waveform Comparison in the Presence of Constant Modulus and PAPR Constraints

Using the GD-AGA, the time-domain waveforms obtained under the constant mod-
ulus and low PAPR constraints are illustrated in Figure 8. To this end, the waveform
amplitude under the constant modulus constraint was normalized, the waveform ampli-
tude in the presence of the low-PAPR constraint was randomly varied between 0 and 1,
and the phase was distributed in the interval of [0, 277).

The same parameter settings used in Section 3.2 were adopted; the number of iter-
ations was set to 300, the initial crossover probability was set to 0.8, the initial mutation
probability was set to 0.1, the step size of the GD algorithm was 0.005, and B, = 3 = 1 was
used. On this basis, the performance values under different PAPR constraint values were
extracted through 100 Monte Carlo stochastic simulations, and they are presented in Table 4.
The results revealed that the waveform performance under the PAPR constraint varied
only slightly as the value of ¢ increased. However, owing to the increase in the number
of optimization variables, the waveform approximation and orthogonality performance
exhibited a remarkable reduction compared with the values under the constant modulus
constraint outlined in Table 3.
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Figure 8. (a) Constant envelope time-domain waveform based on the GD-AGA; (b) time-domain
waveforms under PAPR constraints based on the GD-AGA.

Table 4. Comparison between the results of the PAPR and the constant envelope.

Factor =1 =30 =60 =90 =120 =150 =180
Jrmse 67.9807 65.2190 66.0581 65.8337 65.8430 65.0253 66.0908
Tortho 0.1650 0.1645 0.1624 0.1642 0.1619 0.1648 0.1617

5. Conclusions and Future Prospects

To enhance the performance of MIMO radar in order to detect targets amidst clutter,
we methodically designed specific orthogonal time-domain waveforms that can be practi-
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cally transmitted via the application end. For this purpose, this study adopts a strategy
in which the orthogonal time-domain waveform for a cognitive MIMO radar is designed
using a frequency domain method followed by a time domain approach. First, in the
frequency domain, the optimal waveform ESD curve was effectively extracted using the
WEM via maximizing the DMI criterion and energy constraints. Compared with the MMA
algorithm, the WFM scheme provides an analytical expression for the optimal waveform.
The optimal waveform recognition and parameter estimation performances fell between
the SCNR and MI criteria. Next, in the time domain, the adaptive parameter tuning and
gradient descent principle were introduced into the GA, and accordingly, the GD-AGA was
proposed. Under the MMSE criterion and orthogonal constraints, time-domain waveforms
that satisfied the constant modulus and low PAPR constraints were appropriately syn-
thesized to approximate the optimal waveform ESD. The simulation results demonstrate
that the proposed model effectively enhances the target detection performance in cluttered
environments for MIMO radar systems. The orthogonal time-domain waveforms of the
designed MIMO radar satisfy the constant modulus and low PAPR constraints, and the
proposed algorithm demonstrates better convergence performance compared with the
traditional GA and improved GAs.

Future research directions could include exploring polarimetric radar [19] and other
radars, and multi-objective optimization design could be performed under the condition
that the requirements of multiple tasks such as communication, radar detection, and
interference suppression are met. In addition, in future work, we will extend upon the
development of worst-case robust waveform design under parameter uncertainty.
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Abbreviations

The following abbreviations are used in this manuscript:

MIMO multiple-input-multiple-output

DMI dual mutual information

ESD energy spectral density

MMSE minimum mean square error
PAPR peak-to-average power ratio
GD-AGA gradient descent genetic algorithm
GA genetic algorithm

CR cognitive radar

SINR signal-to-interference-plus-noise ratio
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SCNR signal-to-clutter-plus-noise ratio
MI mutual information

WEM water-filling method

MMA maximum marginal allocation
SNR signal-to-noise ratio

TIR target impulse response

CIR clutter impulse response
Appendix A

The GD-AGA algorithm enhances the local optimization performance by embedding
the GD algorithm into the GA algorithm and adding an adaptive parameter tuning strategy
to improve the influence of parameters on the algorithm. The synthetic MIMO radar-
transmitted signal is first expressed as follows:

S(t) =Y sm(t). (A1)

Let us now represent the Ny point DFT transformation of the signal S by FFT(S).
Therefore, the fitness fractions in Equations (15) and (17) can be expressed as follows:

i = fiti(e)
= ]NmFmse + ,Blfortho ) (AZ)
= ¥ (IFFT(S)[K]12 ~ ESDope[K] ) + 1 L Ishisul?,
k=1 m#n
] = fita(c, @)
= Jmmse + ,BZIPupr + ﬁ3]ortho (A3)
Nf 2
-y ( | FFT(S)[k] 12 — ESDOPt[k]> + Bo(max(PAPR — &,0)) + B3 ¥ |sts, 12
k=1 m#£n

The GD algorithm computes the gradient of the objective function, such that the
objective function tends to converge in the gradient descent direction. The gradient of the
magnitude and phase with respect to Jymse is calculated as follows:

D mmse N 3|FFT(S)[k] I
N 2%1 (FFT(S)1K 12— ESDope] )~ —— (A4)
F aS *
=41 (‘FFT(S)[k] |2 — ESDopt[K] ) Re (FFT(aC> [K]-FFT(S) [K] )
mmse 4 35S ;
o= 4];1 (’FFT(S)[k] 12 — ESDipt K] ) Im (FFT(aC)[k]FFT(S)[k] > (A5)

Because the value of [y, for the phase gradient is zero, when PAPR < ¢ is satisfied,
the amplitude gradient can be derived as follows:

a]pﬂp, _ Zc(tpeuk> (A6)

Jdc E[|S|2],
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where t ., denotes the corresponding symbol of the peak signal amplitude. J,44, can be
obtained separately by determining the magnitude and phase gradient:

a]orrho

2-Re(siisn) [Re(sn/ |sm|) + Re(sm/ |sn])]

ons H (A7)
g—g"” = —2-Re(s}ysn)-[In(sp-cm(t)) + In(sm-cn(t))].
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