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Abstract

Visual anomaly detection (VAD) plays a critical role in manufacturing and quality inspec-
tion, where the scarcity of anomalous samples poses challenges for developing reliable
models. Existing approaches primarily rely on unsupervised training with synthetic
anomalies, which often favor specific defect types and struggle to generalize across diverse
categories. To address these limitations, we propose MADE-Net (Multi-model Adaptive
anomaly Detection Ensemble Network), an industrial anomaly detection framework that
integrates three complementary submodels: a reconstruction-based submodel (SRAD), a
feature embedding-based submodel (SFAD), and a patch discrimination submodel (LPD).
A dynamic integration and selection module (ISM) adaptively determines the most suitable
submodel output according to input characteristics. We further introduce ManuDefect-21,
a large-scale benchmark dataset comprising 11 categories of electronic components with
both normal and anomalous samples in the training and test sets. The dataset reflects real-
istic positive-to-negative ratios and diverse defect types encountered in real manufacturing
environments, addressing several limitations of previous datasets such as MVTec-AD and
VisA. Experiments conducted on ManuDefect-21 demonstrate that MADE-Net achieves
consistent improvements in both detection and localization metrics (e.g., average AUROC
of 98.5%, Pixel-AP of 68.7%) compared with existing methods. While MADE-Net requires
pixel-level annotations for fine-tuning and introduces additional computational overhead,
it provides enhanced adaptability to complex industrial conditions. The proposed frame-
work and dataset jointly contribute to advancing practical and reproducible research in
industrial anomaly detection.

Keywords: visual anomaly detection; unsupervised learning; model integration; benchmark
dataset

1. Introduction
Industrial anomaly detection aims to identify unexpected deviations in manufacturing

processes [1,2]. Automating this process not only ensures product quality but also improves
production efficiency and reduces manual inspection costs. Despite considerable progress,
existing studies still face challenges due to the scarcity of anomalous samples and the wide
diversity of defect types. Most current approaches can be categorized into reconstruction-
based methods [3–6] and embedding-based methods [7–10]. However, because they are
predominantly trained in an unsupervised manner using only normal samples, their ability
to generalize across heterogeneous anomaly types remains limited.
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Different anomaly modeling strategies lead to complementary strengths and weak-
nesses. CutPaste-based methods primarily target structural anomalies, while embedding-
based methods capture texture-related defects but may suffer from feature overlap and am-
biguous decision boundaries under complex semantics. Reconstruction-based approaches
can handle both structural and texture anomalies, but they often encounter “shortcut”
learning, where the model overfits to background priors and fails to localize subtle defects.
These limitations reveal a fundamental gap: no single unsupervised method can robustly
handle diverse industrial defects that vary in morphology, texture, and spatial structure.

In addition, the lack of realistic benchmark datasets further constrains progress in
industrial anomaly detection. Existing datasets, such as MVTec-AD [11] and VisA [12],
are collected under controlled laboratory conditions, contain only normal samples for
training, and lack negative examples for realistic evaluation. Datasets like MPDD [13]
and MTD [14] focus on specific domains such as metallic or tiled surfaces, limiting their
representativeness of real manufacturing variability. Consequently, the research community
still lacks a comprehensive benchmark that reflects authentic defect diversity, component-
level variation, and realistic positive-to-negative sample ratios.

To address these challenges, we propose the MADE-Net framework, which integrates
multiple complementary unsupervised submodels and employs a dynamic integration
strategy to adaptively select the most effective anomaly representation for each input.
Furthermore, we introduce ManuDefect-21, a large-scale benchmark dataset of surface-
mount technology (SMT) components, featuring both normal and defective samples with
pixel-level annotations in both training and test sets. By combining a multi-model adaptive
detection framework with a realistic industrial dataset, this study aims to advance the
generalization and applicability of anomaly detection systems in practical manufactur-
ing environments.

Our contributions to the scientific community are summarized as follows:

• Unified framework for heterogeneous anomalies: We propose MADE-Net, which
systematically integrates reconstruction-, embedding-, and CutPaste-based paradigms
to handle diverse anomaly structures within a single adaptive framework. This
contributes a generalized perspective on model fusion for visual anomaly detection.

• Two-stage training paradigm: We design a combined unsupervised pretraining and
supervised fine-tuning strategy that bridges the gap between synthetic and real anoma-
lies. This approach provides a reproducible methodology for leveraging real annotated
data in industrial inspection research.

• Benchmark dataset for realistic evaluation: We release ManuDefect-21, a large-scale
dataset with 31,050 training and 13,321 testing samples across 11 electronic component
types. It provides balanced positive-to-negative ratios and pixel-level annotations to
promote reproducibility and fair comparison among future studies.

• Empirical validation and impact: Experiments on ManuDefect-21, MVTec-AD,
and VisA show that MADE-Net achieves consistent improvements in both image-level
and pixel-level detection metrics, offering a robust foundation for further academic
research and industrial applications in automated inspection.

2. Related Work
Visual Anomaly Detection (VAD) is of great significance in manufacturing, quality

inspection, and other industrial applications. The primary challenge is to accurately detect
anomalies under conditions where only limited or exclusively normal samples are available.
Current research in this field can be broadly divided into two categories: reconstruction-
based approaches and embedding-based approaches. In addition, the authenticity and
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complexity of datasets are increasingly recognized as critical factors that influence both
method performance and the overall research value.

2.1. Reconstruction-Based Method

Reconstruction-based methods operate on the fundamental principle of learning the
generative mapping of normal images, with anomalies inferred from the discrepancies
between the input and its reconstruction during inference. Early approaches, often based on
Autoencoders (AEs) or Variational Autoencoders (VAEs) [15], suffer from the drawback that
overly powerful reconstruction networks can inadvertently reproduce anomalous regions
with high fidelity, leading to missed detections. To alleviate this limitation, later studies
have proposed targeted enhancements: structure-aware mechanisms (e.g., AE-SSIM) to
increase sensitivity to structural cues; sparse memory augmentation [16] to boost discrimi-
native power for anomalous regions; and multi-scale reconstruction architectures [17,18] to
capture discrepancies across multiple feature hierarchies.

Recent developments have extended the reconstruction paradigm from the image
space to the semantic space. DSR [3] performs restoration in the feature space, elevating
the reconstruction objective from pixels to features, while UTRAD [4] leverages a U-shaped
Transformer architecture to reduce computational cost and improve segmentation quality.
Generative Adversarial Networks (GANs) have also been integrated into reconstruction
frameworks, as in AnoGAN [5] and subsequent multi-branch adversarial reconstruction
methods, where adversarial training is employed to refine reconstruction fidelity. Al-
though such methods excel in surface defect detection, they remain vulnerable to the
“shortcut learning” problem, in which structurally or semantically misaligned anomalies
are reconstructed with undesirably high fidelity, highlighting an open challenge in the field.

2.2. Embedding-Based Method

In contrast to reconstruction-based approaches that detect anomalies through recon-
struction discrepancies, embedding-based methods operate from a feature discrimination
perspective, modeling the distribution of normal samples in the feature space to identify
anomalies. At inference time, anomaly scores are typically derived from the distance
between a test sample and the modeled distribution of normal samples in the embedding
space. Pioneering works such as Deep SVDD [7] and Patch SVDD [19] established the
foundation by modeling normal distributions at the image and patch levels, respectively.
Subsequent advances, including PaDiM [8] and GCPF [20], introduced multivariate Gaus-
sian modeling and covariance estimation to achieve more precise detection and localization,
while PatchCore [9] incorporated neighborhood-based distance computation to integrate
local contextual cues, thereby improving robustness.

For example, DFR [21] adopted a regression-based alignment strategy to improve
feature consistency by mapping features back to their original representations, thereby
reducing variance among normal embeddings. STAD [22] employed an uninformed knowl-
edge distillation framework to train a student model without direct anomaly exposure,
improving efficiency while maintaining generalization, whereas MKDAD [23] leveraged
multi-resolution knowledge distillation to better capture hierarchical features across differ-
ent scales. The Dual-Attention Transformer [10] introduced both spatial and channel-wise
attention to jointly refine feature representations, but also highlighted that most existing
methods still struggle to capture high-level semantic structures, making them less effective
for detecting complex logical anomalies. MSFlow [24] addressed this limitation by combin-
ing multi-scale features with a Normalizing Flow (NF) model, which explicitly models the
distribution of normal embeddings and provides a more principled density estimation for
anomaly detection.
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2.3. Dataset Limitations and Real-World Challenges

The performance evaluation of industrial anomaly detection methods is highly de-
pendent on benchmark datasets, yet the limitations of existing datasets have been widely
recognized. For instance, MVTec AD [11] includes 15 object and texture categories with
3629 training and 1725 test images, but its training set contains only normal samples and the
anomaly types are limited in diversity. VisA [12] offers 12 categories with 10,821 training
and 9621 test images, yet most anomalies are collected in controlled laboratory settings,
limiting their realism. MPDD [13] (1380 images) and MTD [14] (3 categories) are restricted
to metallic or tile surfaces, which prevents them from reflecting the variety of anomalies
and multi-source interferences encountered in real-world production. These limitations
highlight the need for datasets with larger scale, diverse defect categories, and authentic in-
dustrial capture conditions—gaps that our proposed ManuDefect-21 dataset is specifically
designed to address.

To mitigate data scarcity, a number of approaches have resorted to generating synthetic
anomalies from existing datasets (e.g., CutPaste [25], DRAEM [26]). Nevertheless, Om-
niAL [27] has emphasized that such synthetic defects fail to capture the spatial variability
and semantic richness of real anomalies, often causing sharp performance drops in deploy-
ment. Similarly, Few-Shot Part Segmentation [28] has shown that current datasets lack the
capacity to model higher-order defects—such as logical inconsistencies and component mis-
alignments—thereby constraining the transferability and general applicability of anomaly
detection methods. These observations underscore the importance of developing datasets
that more faithfully reflect real industrial scenarios, which is essential for advancing the
practical adoption of industrial anomaly detection systems.

2.4. Comparative Analysis of Existing Methods

To provide a clearer overview of current approaches, Table 1 summarizes repre-
sentative visual anomaly detection (VAD) methods from both reconstruction-based and
embedding-based paradigms. The table compares them in terms of methodological princi-
ples, target anomaly types, key advantages, and existing limitations.

Table 1. Comparative summary of representative anomaly detection methods.

Method Principle Advantages Limitations Anomaly Type

AE/VAE [15] Pixel-level reconstruction Simple and efficient training Reconstructs anomalies too well; poor generalization Texture/structure
DSR [3] Feature-level reconstruction Better semantic representation Sensitive to feature noise; limited localization Texture/structure

PatchCore [9] Nearest-neighbor embedding Fast inference, high localization accuracy Limited semantic generalization Texture
PaDiM [8] Multivariate Gaussian embeddings Low computational cost Assumes unimodal normal distribution Texture
STAD [22] Knowledge distillation High efficiency; avoids anomaly exposure May lose discriminative features Structure

CutPaste [25] Synthetic anomaly pretext Data-efficient training Limited realism of generated anomalies Structural
MSFlow [24] Normalizing flow-based modeling Explicit feature density estimation High training cost; complex implementation Texture/logical

2.5. Analytical Discussion and Motivation

Despite remarkable progress, existing VAD approaches still exhibit common limita-
tions. First, reconstruction-based methods often struggle with the “shortcut reconstruction”
phenomenon, where abnormal regions are inadvertently restored due to overfitting. Sec-
ond, embedding-based methods, though efficient, tend to exhibit feature overlap between
normal and anomalous patterns, reducing discriminative reliability under complex indus-
trial conditions. Third, CutPaste-style or flow-based methods, while effective in simulation,
remain constrained by their dependence on synthetic data and fail to capture the semantic
and structural variability of real-world defects.

Moreover, most current benchmarks, including MVTec-AD and VisA, lack negative
samples or realistic noise interference, limiting their representativeness of real production
conditions. These observations jointly motivate the development of MADE-Net, which
integrates complementary strengths from different paradigms and introduces a dynamic
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selection mechanism to handle diverse anomaly types. At the same time, our newly
proposed ManuDefect-21 dataset fills the empirical gap by providing large-scale, pixel-
level annotated samples from authentic manufacturing environments, establishing a more
realistic foundation for evaluating industrial anomaly detection systems.

3. Materials and Methods
The overall architecture of MADE-Net is illustrated in Figure 1. It comprises three

submodels and a dynamic integration and selection module. Specifically, SRAD, SFAD,
and LPD correspond to the reconstruction-based, feature-based, and CutPaste-based
approaches, respectively. In addition, we introduce a large-scale benchmark dataset,
ManuDefect-21, which addresses the absence of negative samples in existing training sets.
All proposed submodels are first trained in an unsupervised manner and subsequently
fine-tuned on the entire training set of ManuDefect-21.

SRAD

Reconstruction-based submodel

SFAD

Embedding-based submodel

LPD

Cutpaste-based submodel

Decision Logic

ISM

Pre-classify

BGA, QFP, QFN, …

CAPACITOR, INDUCTOR, …

DPAK, SOD, SOT,…

Anomaly map 
& 

Score

Figure 1. Overall architecture of MADE-Net. The framework comprises a dynamic integration and
selection module (ISM) and three anomaly detection submodels: SRAD (Reconstruction-based),
SFAD (Embedding-based), and LPD (CutPaste-based). The ISM first performs pre-classification to
determine the appropriate submodel for a given input, and the selected submodel outputs are used
to generate the final anomaly map and detection score.

3.1. Reconstruction-Based Submodel

Reconstruction-based methods are among the most commonly used in the anomaly
detection area. These methods derive their anomaly detection efficacy from the core
hypothesis that neural networks, when trained exclusively on normal data, exhibit limited
reconstruction fidelity for anomalous regions. This inherent limitation enables anomaly
identification through pixel-wise or feature-wise comparisons between the input and its
reconstructed output.

In our paper, SRAD (Submodel of Reconstruction-based Anomaly Detection) is de-
signed as a part of the integrated model to compensate for the shortcomings of other
submodels. The architecture of SRAD is outlined in Figure 2. The input image is used to
synthesize anomaly samples. The synthesized sample is encoded and reconstructed using
the autoencoder architecture model, aiming to reconstruct the synthesized anomaly into
normal. The anomaly detection module is a Unet-based architecture that locates anoma-
lous regions by comparing the input and reconstructed one. To address the foreground–
background imbalance inherent in defect segmentation, we adopt Focal Loss [29], which
adaptively down-weights easy negatives and highlights challenging anomalous regions.
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Anomaly 
Synthesis

Anomaly Detection
Module

Anomaly map 
& 

Score

I

Iano

Encoder Decoder...

Reconstruction Module

Igen

Figure 2. The architecture of SRAD. It includes an anomaly synthesis module, an autoencoder-based
reconstruction module, and an anomaly detection module.

3.1.1. Anomaly Synthesis Module

We adopt the anomaly generation strategy proposed in MSTUnet [30] to simulate both
texture and structural anomalies. As illustrated in Figure 3, texture anomalies are generated
by randomly selecting samples IDTD from the DTD texture dataset [31], whereas structural
anomalies are synthesized by shuffling and recombining patches extracted from a normal
ground truth sample NGT. The resulting simulated anomaly is denoted as δ.

shuffle

External
Datasets

Anomaly Generation

Foreground Mask

Perlin Noise

⊙

or

Anomaly region

Figure 3. Flowchart of the anomaly synthesis (AS) module.

An anomaly mask, maskano, is obtained via element-wise multiplication of a Perlin
noise-based mask maskp and a foreground mask maskfg, where the latter is derived from
the ground truth foreground region of NGT. This ensures that the injected anomalies are
constrained to the primary object within the normal sample.

The final synthetic anomaly image is computed as

ASynth = maskano ⊙ δ + (1 − maskano)⊙ NGT, (1)

where ⊙ denotes element-wise multiplication.
During training, texture and structural anomalies are introduced with equal probability

to ensure balanced exposure to both anomaly types.

3.1.2. Reconstruction Module

Since the synthesized anomalous sample and the corresponding anomalous mask are
obtained, we propose a novel autoencoder-based reconstruction module. The architecture
of the reconstruction module is shown in Figure 4.
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HR-Net

Encoder

... Decoder

Figure 4. Overall architecture of the autoencoder-based reconstruction.

Encoder

Current deep networks for feature encoding suffer from two critical limitations:
(1) progressive resolution degradation, leading to the compromised representation of
small anomalous features, and (2) insufficient multi-scale feature integration, resulting
in suboptimal anomaly localization accuracy. To address these challenges, we employ
HRNet-W32 [32] as the encoder backbone of our autoencoder-based reconstruction mod-
ule, leveraging its unique parallel multi-resolution preservation architecture and dynamic
feature exchange mechanism. The HRNet backbone preserves high-resolution feature rep-
resentations throughout the reconstruction process, significantly improving the localization
of small-scale defects. This design effectively maintains fine-grained anomaly signatures
while simultaneously enhancing discriminative capability across diverse anomaly scales.

The input image I ∈ RH×W×3 is initially processed through two stride-2 3 × 3 convolu-
tional layers, generating a high-resolution feature map F(1)

1 ∈ R H
4 ×W

4 ×C while maintaining
1/4 spatial resolution of the original input. The architecture progressively integrates
multi-scale subnetworks across s stages (s ∈ {1, 2, 3, 4}), where each subsequent stage incor-
porates additional parallel branches with geometrically decreasing resolutions H

2s+1 × W
2s+1

and exponentially increasing channel dimensions C × 2s−1. For instance, Stage 2 comprises
dual parallel pathways: F(2)

1 preserving the original 1/4 resolution and F(2)
2 operating at

1/8 resolution.
Cross-resolution feature integration is achieved through adaptive transformation

operators ϕi→k in the fusion function:

F(s)
k =

n

∑
i=1

ϕi→k(F(s−1)
i ) (2)

where the transformation mechanism adaptively applies

- Upsampling (i > k): Bilinear interpolation followed by 1 × 1 convolution for
channel alignment;

- Downsampling (i < k): Strided-2 3 × 3 convolution with feature compression;
- Identity mapping (i = k): Direct feature propagation.

The final feature encoding F̂ is synthesized through the channel-wise concatenation⊕4
k=1 F(4)

k of all subnetwork outputs, followed by spatial upsampling to match the original
input dimensions. This architecture effectively preserves high-resolution representations
throughout the network via persistent skip connections in the primary pathway, signifi-
cantly enhancing the spatial localization accuracy for small-scale anomaly detection tasks.
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Decoder

The decoder architecture processes the encoded feature representation F̂ through a
hierarchical refinement pipeline comprising two sequential Residual Network (ResNet)
blocks followed by two transposed convolutional upsampling modules. Each ResNet block
integrates identity shortcut connections and consists of (1) a 3 × 3 convolutional layer with
stride 1, (2) batch normalization, and (3) ReLU activation, designed to enhance feature
expressiveness while mitigating gradient vanishing issues. The subsequent transposed
convolution blocks progressively restore spatial resolution using 4 × 4 kernels with stride 2
and padding 1, systematically doubling the feature map dimensions at each stage through
learnable upsampling operations. This dual-stage upsampling mechanism, interleaved
with channel-wise feature recombination, transforms the latent representation into the
reconstructed output image Igen ∈ RH×W×3 while preserving structural coherence.

3.1.3. Anomaly Detection Module

The purpose of the anomaly detection module is to localize the anomaly by inspecting
the input image NGT and reconstructed image Igen. The images are concatenated depth-
wise and decoded into a segmentation mask M by a U-net-based architecture. M is the
output anomaly map indicating the pixel-level location of the anomalies in the image.
To also compute the image-level anomaly score, we apply a simple segmentation mask
interpretation procedure—the segmentation mask is smoothed by a 21 × 21 averaging filter
and globally max-pooled into a single score.

3.1.4. Loss Function and Inference

The reconstruction module aims at turning the anomalous sample into normal, and the
Anomaly Detection Module is designed to locate the anomaly area. Since the anomaly is
synthesized by the AS Module during the training stage, the ground truth anomaly mask
is known. The loss function is defined below:

Ltotal = λrec · Lrec(Igen, NGT) + λseg · Lseg(maskano, M) (3)

Lrec =
1

HW

H

∑
i=1

W

∑
j=1

(
I(i,j)gen − N(i,j)

GT

)2
(4)

Lseg = − 1
HW

H

∑
i=1

W

∑
j=1

α · (1 − Mij)
γ · log(Mij), if (maskano)ij = 1

(1 − α) · Mγ
ij · log(1 − Mij), if (maskano)ij = 0

(5)

Lrec and Lseg denote the reconstruction loss and segmentation loss, respectively.
Igen and NGT represent the reconstructed image and the ground truth normal image.
maskano and M are the binary ground truth mask of anomalous regions and the predicted
anomaly mask. λrec and λseg are hyperparameters used to balance the contributions of the
reconstruction and segmentation losses. α and γ are the focusing parameters of the Focal
Loss, where α balances the importance of positive and negative examples, and γ adjusts
the rate at which easy examples are down-weighted.

3.2. Feature-Based Submodel

Feature-embedding-based methods represent a prominent class of approaches in
image anomaly detection. These methods operate under the central assumption that neural
networks trained solely on normal samples learn feature representations that are highly
compact for normal data but exhibit significant deviations for anomalous inputs [8,22,33].
By mapping images into a latent feature space, anomalies can be identified by measuring the
distance or similarity between an input’s embedded features and a reference distribution
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of normal features. This strategy enables effective anomaly detection by leveraging the
discriminative power of learned feature embeddings.

This subsection presents a comprehensive overview of SFAD (Submodel of Feature-
based Anomaly Detection), a key part of our integrated model. SFAD integrates three
essential components—a Feature Extractor, an Anomalous Feature Generator, and
Discriminator—as illustrated in Figure 5.

Input Image
Feature 

Extractor

Anomalous Feature 

Generator

Discriminator

Figure 5. An illustrative example of SFAD.

During the training phase, an input image is passed through the Feature Extractor
to yield a normal feature representation. Subsequently, the Anomalous Feature Generator
takes this normal feature to create a synthetic anomalous counterpart. Both the normal and
anomalous features are then fed to the Discriminator, which learns to differentiate them.
For inference, the pipeline is simplified: the Anomalous Feature Generator is omitted, and the
Feature Extractor passes its output directly to the Discriminator to produce the final anomaly
score. The following subsections will examine each of these components in detail.

3.2.1. Feature Extractor

To capture semantic irregularities, we propose a feature extractor that exploits local
contextual cues and hierarchical semantics. Given an input image Im ∈ RH×W×3 from the
training set Xtrain or the test set Xtest, we apply a pretrained backbone network Φ to extract
intermediate feature maps from multiple layers.

To capture subtle anomalies, we design a feature representation module that lever-
ages both local context and multi-level semantic information. Given an input image
Im ∈ RH×W×3 from either the training set Xtrain or the test set Xtest, we first extract inter-
mediate features from a pretrained backbone network Φ.

Since generic backbones pretrained on datasets like ImageNet may encode patterns
irrelevant to industrial anomalies, we selectively retain a subset of layers L. This choice
is a trade-off: deeper layers provide rich semantic information but have poor spatial
resolution, while shallower layers offer finer detail but lack high-level context. Our selection
is empirically driven to balance these factors, a common practice in feature-based methods.
Each chosen feature map is represented as ϕl,i = ϕl(xi) ∈ RHl×Wl×Cl , where l ∈ L.

To incorporate spatial locality, which is crucial for distinguishing local texture from
anomalous defects, we define a neighborhood window of size p × p around each spatial
position (h, w):

N (h,w)
p = {(h′, w′) | h′ ∈ [h − ⌊p/2⌋, h + ⌊p/2⌋],

w′ ∈ [w − ⌊p/2⌋, w + ⌊p/2⌋]}.
(6)

A local aggregation operation is then applied over each neighborhood to produce a
context-aware descriptor:

zl,i
h,w = fagg({ϕl,i

h′ ,w′ | (h′, w′) ∈ N (h,w)
p }). (7)
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All aggregated feature maps zl,i are subsequently rescaled to a common spatial reso-
lution (H0, W0), typically matching the largest map, and concatenated along the channel
dimension to form a unified representation.

We denote the resulting local feature at spatial location (h, w) as oi
h,w ∈ RC.

To bridge the domain gap between generic pretrained features and task-specific
industrial features, a lightweight embedding transformation Gθ is applied. This module,
typically a shallow CNN, adapts the generic local feature oi

h,w to a task-specific embedding

qi
h,w ∈ RC′

without adding significant computational complexity:

qi
h,w = Gθ(oi

h,w). (8)

For brevity, the complete feature extraction and transformation process can be repre-
sented as a single function:

qi = Fϕ,θ(xi), (9)

where Fϕ,θ encapsulates both multi-level feature extraction via Φ and subsequent task-
specific adaptation via Gθ .

3.2.2. Anomalous Feature Generator

Effective training of a discriminative anomaly detection model requires not only repre-
sentative normal samples but also suitable negative examples to define clear decision bound-
aries. Obtaining real defective samples is often difficult. While prior studies [25,26,34]
often rely on complex image-space augmentations to generate pseudo-anomalies, these can
introduce unrealistic artifacts or have an unpredictable effect on feature representations.
Here, we adopt a more direct and controlled approach by perturbing features in the latent
space. This allows us to explicitly simulate the effect of an anomaly—a deviation from the
normal feature manifold—rather than its visual appearance.

Specifically, let qi
h,w ∈ RC denote a local feature vector. We synthesize its negative

counterpart by adding random noise ϵ from an isotropic Gaussian distribution:

qi−
h,w = qi

h,w + ϵ, ϵ ∼ N (µ, σ2 I), (10)

where each dimension of ϵ is independently drawn. This isotropic perturbation ensures
that we do not make strong assumptions about the nature of anomalies, making the model
sensitive to a wide variety of deviations.

This method’s strength lies in its simplicity and directness, providing clear negative
examples for training the discriminator. However, we acknowledge its limitation: the
synthetic features are not guaranteed to correspond to the representations of real-world
defects and lack semantic meaning. The goal is not to perfectly mimic real anomalies, but to
effectively train the discriminator to learn a tight decision boundary around the normal
data manifold, thereby making it sensitive to any feature that falls “off-manifold”.

3.2.3. Discriminator

We design a Discriminator Dψ to estimate a normality score at each spatial location
(h, w). The discriminator must distinguish on-manifold (normal) features from off-manifold
(perturbed) ones. For this task, a simple Multi-Layer Perceptron (MLP) is sufficient and
computationally efficient, as it operates on individual feature vectors. This avoids the com-
plexity and potential for overfitting that a larger model might introduce. The discriminator
is encouraged to output high scores for normal features and low scores for perturbed ones.
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3.2.4. Training Objective and Optimization Strategy

To enable the model to differentiate between normal and perturbed features, we
employ a margin-based objective inspired by truncated regression losses. Specifically,
for each spatial location (h, w) in the feature map, we compute a sample-wise loss as

ℓi
h,w = max(0, τ+ − Dψ(qi

h,w)) + max(0, Dψ(qi−
h,w)− τ−), (11)

where Dψ is a discriminative scoring function parameterized by ψ, applied to both clean fea-
tures qi

h,w and their corrupted counterparts qi−
h,w. τ is the margin controlling the confidence

window, set to 0.5 in our experiments.
The total objective over the training dataset Xtrain is given by

L(θ, ψ) = ∑
xi∈Xtrain

∑
h,w

ℓi
h,w

H0 · W0
, (12)

where θ denotes parameters of the feature adaptor, and optimization is performed jointly
over θ and ψ. This formulation encourages the Discriminator to assign high scores to
normal regions while penalizing confidently misclassified anomalies beyond a predefined
confidence band.

3.2.5. Inference and Anomaly Scoring

During inference, the synthetic anomaly generator is removed, resulting in a fully
differentiable end-to-end architecture consisting solely of the feature extractor Fϕ,θ and the
discriminator Dψ. For a given test image xi ∈ Xtest, the adapted feature map is computed as

qi = Fϕ,θ(xi), (13)

where qi
h,w denotes the feature descriptor at spatial location (h, w).

Anomaly scores are assigned to each spatial position using the learned discriminator:

si
h,w = −Dψ(qi

h,w), (14)

with higher values corresponding to a higher likelihood of abnormality.
To obtain a spatially resolved representation of potential anomalies, we construct the

anomaly map.
Sloc(xi) = {si

h,w | (h, w) ∈ [1, H0]× [1, W0]}. (15)

this map is upsampled to the original image resolution using bilinear interpolation and
further smoothed with a Gaussian filter (σ = 4) to suppress boundary noise and enhance
spatial coherence.

For image-level anomaly detection, a single scalar score is derived by taking the
maximum over all spatial positions:

Simg(xi) = max
(h,w)∈[1,H0]×[1,W0]

si
h,w. (16)

This strategy ensures that even small but pronounced anomalous regions contribute
strongly to the final decision, making the framework sensitive to subtle defects irrespective
of their spatial extent.

3.3. Localized Patch Discrimination

In industrial images, normal samples typically exhibit high local structural consistency,
meaning that local regions maintain natural continuity with their surrounding context
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in terms of texture, edges, and color. Based on this assumption, cutting and pasting a
local region of an image to a different location disrupts the original structural consistency,
thereby creating a localized perturbation that simulates a potential anomaly. Although such
perturbations are not real defects, they effectively introduce local structural inconsistencies
that can serve as training signals to guide the model in learning to recognize anomalies.

Based on this principle, this paper proposes the Localized Patch Discrimination (LPD).
Unlike prior CutPaste-style methods, LPD defines standardized criteria for patch size and
perceptibility, integrates self-supervised training directly into the MADE-Net framework,
and leverages the learned anomaly-sensitive features for downstream detection tasks,
thereby providing both a principled perturbation mechanism and transferable representa-
tions. LPD employs a self-supervised learning mechanism. Specifically, it first constructs
perturbed images from normal samples by cutting and pasting patches within the same
image to generate “pseudo-anomalies”. Then, a discriminative model is trained to distin-
guish between the original normal images and the perturbed ones, thereby encouraging
the model to focus on fine-grained differences in local structures. As shown in the Figure 6,
the overall architecture of LPD is presented.

CNN

CNN

Sh
ar
ed

0

1

Figure 6. The architecture of LPD.

3.3.1. Local Patch Distortion Generation

Given a normal image I ∈ RH×W×3, we generate an anomalous counterpart Ĩ by
cutting a rectangular patch P ⊂ I and pasting it into a different location in the same image.
The patch size is a crucial hyperparameter and is selected as a fraction of the image size to
ensure that the perturbation is sufficiently localized yet perceptible enough to be learned
by the model. During training, both the cut patch position and the target paste location are
randomly sampled to increase the diversity of synthetic anomalies. Additionally, geometric
transformations such as rotation and flipping may be applied to the patch before pasting to
simulate a wider range of possible defects.
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In this study, the “perceptibility” of a patch is defined and assessed through two
complementary criteria: (1) a size standard based on relative area and (2) a perceptibility
evaluation grounded in statistical differences. Specifically, the patch size is set as a fixed
proportion of the original image area (typically 5–20%), determined through preliminary
and ablation experiments to ensure that the patch is neither too small to be captured by the
model nor so large that it disrupts the global semantics.

To evaluate perceptibility, we employ two measures. First, we compute quantitative
differences between the patched region and its surrounding context in terms of texture,
color, and structural similarity (e.g., SSIM, mean squared error, edge intensity). Second, we
conduct sampled human inspection to confirm that the perturbation is visually discernible.

This standardized procedure ensures that the patch perturbations remain stable across
samples and sufficiently localized to be effectively learned and recognized by the model,
thereby providing a consistent training signal for anomaly detection.

This procedure creates a realistic and diverse set of localized anomalies that mimic
common industrial defects characterized by local disruption of texture or structure. Unlike
global image transformations, such as color jitter or blurring, patch recomposition preserves
the overall global semantics while introducing subtle but detectable local inconsistencies.

3.3.2. Self-Supervised Learning Objective

The LPD module employs a convolutional neural network (CNN) backbone—typically
a ResNet variant—to extract hierarchical feature representations from input images. We
adopt ResNet as the backbone due to its proven ability to learn rich and stable feature
hierarchies, residual connections that alleviate vanishing gradients, and its effectiveness in a
wide range of industrial inspection tasks. Compared with deeper or more complex architec-
tures (e.g., Vision Transformers), ResNet strikes a balance between representational power
and computational efficiency, making it well-suited for large-scale industrial datasets.

The extracted features are then fed into a lightweight classification head consisting
of fully connected layers that output the probability pθ(x) of the input image x being
anomalous. Since our task is essentially a binary discrimination between normal and
patched (“pseudo-anomalous”) images, we adopt the binary cross-entropy (BCE) loss.
BCE directly models the Bernoulli likelihood for two-class classification, provides well-
calibrated probabilistic outputs, and is simpler and more stable than alternatives such as
focal loss when the positive and negative classes are reasonably balanced.

We define a binary classification task where normal images are labeled as y = 0 and
patched images as y = 1. The model is trained using the binary cross-entropy loss:

LPRP = −E(x,y)[y log pθ(x) + (1 − y) log(1 − pθ(x))] (17)

minimizing this loss encourages the model to learn discriminative features that highlight
localized inconsistencies introduced by patch recomposition.

To further enhance the quality of the feature, regularization techniques such as
dropout and batch normalization are applied during training. Data enhancement
strategies—including patch recomposition—are also used in normal images to improve the
robustness of the model.

3.3.3. Feature Transfer and Ensemble Integration

After the self-supervised training phase, the classification head is discarded and
the CNN backbone serves as a pretrained feature extractor. The learned representations
effectively capture localized anomalies, which can be leveraged in downstream tasks such
as object detection and the classification of electronic components.
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Specifically, the pretrained backbone weights initialize the feature extractor in a super-
vised target detection framework (e.g., Faster R-CNN [35]), providing a strong initialization
that accelerates convergence and improves final detection performance. Alternatively,
features of LPD can be fused as auxiliary inputs alongside conventional features, enriching
the representation with anomaly-sensitive cues.

3.4. Integration and Selection Module

The Integration and Selection Module (ISM) serves as a key component in MADE-
Net, enabling dynamic model selection according to the characteristics of each input
image. Rather than applying a uniform model to all data, ISM performs a two-stage
procedure: (1) pre-classifying the input into 1 of 11 predefined component subcategories,
and (2) selecting the most suitable anomaly detection submodel for that category based on
empirical performance.

Stage 1: Pre-classification. We employ an EfficientNet-B4 network as the classifier due
to its favorable trade-off between accuracy and computational cost in industrial settings.
The classifier takes RGB images as input and outputs probabilities across 11 component
types (e.g., BGA, CAPACITOR, RESISTOR). It is pretrained on ImageNet and fine-tuned on
the ManuDefect-21 training set. The final class prediction ŷ is obtained by ŷ = arg max(pi),
where pi denotes the softmax probability for category i. Only predictions with confidence
above 0.85 are accepted; otherwise, the default submodel (SFAD) is invoked to ensure
stability. This mechanism enhances robustness against potential misclassification.

Stage 2: Model selection via performance map. A performance map M is constructed
based on the results of extensive ablation studies. For each category c, we compute the
average AUROC and Pixel-AP achieved by each submodel {SSRAD, SSFAD, SLPD} on its
validation subset. The optimal model S∗

c is determined by

S∗
c = arg max

S
[α · AUROC(S, c) + (1 − α) · PixelAP(S, c)],

where α = 0.5 balances image- and pixel-level accuracy. The resulting mapping
M = {(c, S∗

c )} is stored and used during inference. This data-driven assignment ensures that
each subcategory is processed by the submodel best suited to its typical defect morphology.

3.5. Full-Supervised Fine-Tuning

For all three submodels, we adopt a two-stage training strategy consisting of initial
unsupervised training followed by full-supervised fine-tuning. In the unsupervised stage,
only normal samples from the training set are utilized. Synthetic anomalies are randomly
generated and injected into normal images, and the models are trained to segment and
localize these artificial anomalies. This allows the networks to learn robust representations
of normal patterns and their structural consistency.

Benefiting from the availability of accurately annotated samples in our dataset, which
provides both normal and anomalous instances in the training and test sets, we further
introduce a supervised fine-tuning stage. After the unsupervised pretraining, all submodels
are fine-tuned using the entire training set that includes both positive and negative samples
along with pixel-level annotations. Unlike prior work where supervised refinement is
limited by the absence of defect annotations, our dataset enables the direct replacement of
synthetic anomalies with real anomalies and their masks during fine-tuning. This transition
allows the models to adapt from artificially constructed defects to authentic defect distribu-
tions, bridging the gap between simulation and reality. While this strategy demonstrates
clear benefits in improving discriminative power under well-annotated conditions, we
acknowledge that its applicability in scenarios without exhaustive annotations remains
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limited. Nevertheless, we consider our approach a step toward bridging unsupervised
pretraining and real-world supervised adaptation in industrial anomaly detection.

This two-stage paradigm preserves the generalization capability of unsupervised
training while fully exploiting the availability of labeled data, leading to improved accuracy
and practical applicability in industrial scenarios.

3.6. Dataset ManuDefect-21

We proposed ManuDefect-21, a specialized dataset sampled from a real-world
SMT (surface mount technology) industrial production line. As demonstrated in Table 2,
our proposed dataset exhibits substantial advantages in terms of scale and diversity com-
pared to existing benchmarks. Specifically, our dataset contains 31,050 training images,
which is approximately 8.6 times larger than MVTec AD [11] and 3.6 times larger than
VisA [12]. ManuDefect-21’s test set comprises 10,272 normal samples and 3049 anomalous
samples, providing a more comprehensive evaluation platform with balanced representa-
tion of both normal and defective cases. Furthermore, our dataset encompasses 82 distinct
defect types, surpassing the variety of defect types covered in both MVTec AD (73 types)
and VisA (78 types). This extensive collection of diverse defect patterns enables more robust
evaluation of anomaly detection methods and better reflects the complexity of real-world
industrial inspection scenarios.

Limitations and scope: While ManuDefect-21 offers significant scale and diversity,
it also has limitations. Some subcategories, such as ALUMINUM_CAPACITOR, contain
relatively few samples, which may affect the reliability of evaluation and model generaliza-
tion for rare categories. Future work should consider expanding the dataset to cover more
process types and address sample imbalance for rare categories.

Table 2. Dataset comparison across different industrial inspection benchmarks.

Dataset #Train #Test (Good) #Test (Anomaly) #Defect Classes

MVTec AD [11] 3629 467 1258 73
VisA [12] 8659 962 1200 78

ManuDefect-21 31,050 10,272 3049 82

Table 3 provides a detailed breakdown of our dataset across different electronic com-
ponent categories, demonstrating the comprehensive coverage of various industrial inspec-
tion scenarios.

Table 3. Detailed breakdown of ManuDefect-21 dataset subcategories.

Category #Train #Train (Good) #Train (Anomaly) #Test (Good) #Test (Anomaly) #Defect Types

ALUMINUM_CAPACITOR 505 496 9 214 4 5
BGA 794 611 183 262 79 6

CAPACITOR 9945 7007 2938 3004 1260 7
DPAK 771 517 254 222 110 8

INDUCTOR 3502 3485 17 1494 8 5
QFN 1441 1155 286 495 123 9
QFP 4680 4138 542 1774 233 10

RESISTOR 2162 890 1272 382 546 8
SOD 2037 1105 932 474 400 8
SOIC 4288 3285 463 1640 199 9
SOT 925 724 201 311 87 7

Total 31,050 23,953 7097 10,272 3049 82
Mean 2823 2178 645 934 277 8
Ratio - 3.375 1 3.369 1 -
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Our dataset covers 11 major electronic component categories commonly found in
industrial manufacturing, including capacitors, resistors, inductors, and various integrated
circuit packages (BGA, QFN, QFP, SOIC, SOT, SOD, DPAK). Each category contains a
substantial number of training samples, with CAPACITOR being the largest category
(9945 training images) and ALUMINUM_CAPACITOR being the smallest (505 training
images). The dataset maintains a balanced distribution across different defect types, with an
average of 8 anomaly types per category, ranging from 5 to 10 types per component category.

As Figure 7 shows, our dataset includes 21 well-defined anomaly types spanning
mounting, soldering, and surface contamination defects, offering a comprehensive coverage
of typical industrial production anomalies. Several anomaly categories exhibit subtle inter-
class differences, making the dataset particularly suitable for fine-grained classification and
robustness evaluation. In addition to diversity in defect types, the dataset also features
challenging visual conditions, such as varying contrast, partial occlusion, and reflective
interference, providing a realistic testbed for evaluating model generalization. Through
detailed labeling of anomaly types, our dataset expands its applicability beyond image-
level anomaly detection to include fine-grained classification of specific defect categories.
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Figure 7. Enlarged examples of anomalous samples in different categories. For each image, key
defect regions are highlighted. To improve clarity, side text and bounding boxes are removed, and the
images are shown at larger scale. The figure emphasizes typical visual cues for each anomaly type,
such as solder volume, surface texture, and mounting position.

Anomaly taxonomy and distinction: For closely related defect types (e.g., insufficient
solder vs. cold joint), we follow industrial inspection standards and expert annotation
guidelines to define clear classification criteria. Insufficient solder is characterized by a
visibly reduced solder volume, while cold joints are identified by dull, grainy surfaces
and poor electrical connectivity. All anomaly types are annotated with reference to their
physical characteristics and failure modes, ensuring that the dataset supports fine-grained
and meaningful classification.

Figure 8 presents the sample distribution and representative images of 11 categories
of electronic components in our dataset. The left panel shows images of typical categories,
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where green bounding boxes indicate normal samples and red bounding boxes denote
anomalous samples of the corresponding category. Seven representative categories, includ-
ing INDUCTOR, RESISTOR, and QFP, are selected to visually illustrate the appearance
differences between normal and anomalous instances. The bar chart on the right summa-
rizes the number of samples per category in the training and test sets. It can be observed
that the data scale varies across categories, reflecting the actual occurrence frequency and
defect probability of components in real production lines. For example, CAPACITOR
contains 9945 and 4264 images in the training and test set, respectively, and it is a device
with a relatively high occurrence frequency in the production line. The number of ALU-
MINUM_CAPACITOR images is relatively small, with 505 images in the training set and
218 images in the test set. This type of data distribution reflects that, in actual industrial
scenarios, the failure rate of certain devices themselves is extremely low, making it difficult
to collect sufficient abnormal samples. Despite this, this dataset still contains a sufficient
number of samples in each category, and its overall scale is much larger than that of widely
used anomaly detection datasets such as MVTec and VisA. Moreover, ManuDefect-21
provides both normal and anomalous samples in both the training and test sets, while
preserving the real-world positive/negative sample ratio observed on production lines.
This design not only better reflects the conditions of actual manufacturing environments
but also offers a robust basis for evaluating the performance of anomaly detection methods
in practical industrial applications.
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Figure 8. Sample distribution and enlarged representative images of the 11 electronic component
categories. For each example, the main defect or normal region is shown at larger scale, with side
text and bounding boxes removed for better visual clarity. The figure highlights the appearance
differences and key features that distinguish normal and anomalous samples.

Additionally, a distinctive feature of the ManuDefect-21 dataset is the provision of
fine-grained pixel-level annotations for training and evaluation phases, enabling precise
anomaly localization and segmentation assessment across all stages of model development.
As shown in Figure 9, these detailed annotations facilitate the comprehensive assessment of
model performance in both image-level detection and pixel-level localization tasks, which
is particularly valuable for industrial applications requiring precise defect identification
and boundary delineation.
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Image

Ground Truth

Figure 9. Enlarged pixel-level annotation examples showing fine-grained anomaly localization masks
for different component categories. Each image highlights the precise boundaries and regions of
interest for typical defects, with side text removed to maximize the visibility of mask details.

4. Experiments and Results
In this section, we present a comprehensive evaluation of the proposed MADE-

Net framework on the newly introduced ManuDefect-21 dataset, which contains
31,050 training and 13,321 test images across 11 component categories and 82 distinct
defect types, captured under real production conditions. Our evaluation is structured to
assess model performance and component contributions. Specifically, we will (1) compare
MADE-Net against state-of-the-art baseline methods (DSR, SimpleNet, CutPaste) using
both image-level and pixel-level metrics, and (2) conduct a detailed ablation study to
quantify the contribution of each submodel within our framework. This rigorous analy-
sis demonstrates the effectiveness and practical advantages of our approach in complex
industrial settings.

4.1. Experimental Setup

All experiments were conducted on an NVIDIA RTX 4090 GPU using PyTorch 2.1.
We employed the Adam optimizer with an initial learning rate of 1 × 10−4, batch size of 8,
and input resolution of 256 × 256, with early stopping applied after 10 consecutive epochs
without validation improvement. These hyperparameters were determined through grid
search on the validation split of the ManuDefect-21 dataset to balance convergence speed
and generalization.

4.2. Baseline Methods

To contextualize the performance of our proposed MADE-Net, we benchmark it
against three state-of-the-art (SOTA) anomaly detection methods: DSR, SimpleNet, and Cut-
Paste. These baselines were selected because they represent distinct and influential
paradigms in anomaly detection, each corresponding to a core principle integrated within
our multi-branch MADE-Net framework. The comparison aims to demonstrate that our syn-
ergistic approach, which combines reconstruction-based, feature-based, and self-supervised
learning principles, achieves superior and more robust performance than methods that
rely on a single strategy. Specifically, we will highlight how MADE-Net overcomes the
limitations of individual approaches by leveraging their complementary strengths.

DSR (Dual Subspace Re-projection Network) [3] is an unsupervised anomaly detec-
tion framework that leverages a dual-decoder architecture and quantized feature space.
It operates by (1) extracting features using a pretrained backbone, (2) generating pseudo-
anomalous features via latent space perturbation, and (3) training two decoders—one
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reconstructing normal samples, and the other reconstructing perturbed features. The model
is optimized to minimize reconstruction error for normal data and maximize it for pseudo-
anomalies, enabling the robust separation of normal and anomalous patterns. At inference,
only the backbone and primary decoder are used for fast prediction. DSR’s effectiveness
stems from its feature-space anomaly simulation and dual-branch design, supporting
accurate detection and localization across diverse defect types.

SimpleNet [36] is a lightweight anomaly detection framework designed for ease of
deployment. It employs (1) a pretrained backbone to extract local representations, (2) a
compact adapter to align these representations with the target domain, (3) a feature per-
turbation module that fabricates pseudo-anomalous features via Gaussian noise injection,
and (4) a binary discriminator separating altered from pristine features. At inference time,
only the backbone, adapter, and discriminator are retained, yielding fast prediction. Its
effectiveness stems from minimal architectural overhead combined with feature-space
anomaly simulation, enabling competitive detection and localization quality.

CutPaste [25] is a self-supervised approach that learns discriminative features using
only normal data by formulating a surrogate task: distinguishing untouched images from
versions in which a patch has been cut out and pasted elsewhere (optionally resized or
rotated). After this pretext training, a one-class generative classifier is fit on the learned
embeddings. The simple patch relocation operation induces sensitivity to structural and
textural irregularities, allowing the method to generalize to varied defect types and support
coarse-to-fine localization through patch-level scoring.

4.3. Evaluation Metrics

For a comprehensive evaluation of anomaly detection performance, both image-level
and pixel-level metrics are employed to assess detection accuracy and localization precision:

Metric selection and industrial relevance: We mainly adopt AUROC and AP as
evaluation metrics, which are widely recognized for their ability to comprehensively
reflect model performance and facilitate fair comparison. AUROC measures the overall
discrimination ability between normal and anomalous samples, while AP summarizes
precision–recall trade-offs. To provide a thorough assessment, we report both image-level
and pixel-level results, capturing detection and localization performance, respectively.

Moreover, in real manufacturing environments, the cost of false positives (misiden-
tifying normal regions as defective) and false negatives (missing critical defects) can be
substantial. The chosen metrics help quantify overall detection and localization ability,
but practitioners should also consider application-specific requirements, such as the impact
of missing small but critical defects or the operational cost of excessive false alarms. We
encourage future work to incorporate cost-sensitive and defect-size-aware metrics to better
reflect practical needs.

Image-level Metrics

• AUC (Area Under the ROC Curve): This metric quantifies the model’s ability to differ-
entiate between normal and anomalous images across all threshold values. A perfect
classifier achieves an AUC of 1.0, while random classification results in an AUC of 0.5.

• AP (Average Precision): This metric computes the area under the precision–recall
curve, offering insights into the model’s performance across varying recall levels,
and is particularly valuable for imbalanced datasets.

Pixel-level Metrics

• Pixel-level AUC: This metric evaluates the model’s capacity to accurately localize
anomalous regions within images, treating each pixel as a binary classification target
(normal vs. anomalous).
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• Pixel-level AP: This metric measures the precision of anomaly localization by
calculating the average precision across different threshold values for pixel-wise
anomaly scores.

These metrics provide a holistic assessment framework, where image-level metrics
evaluate the overall detection performance, and pixel-level metrics assess the accuracy of
anomaly localization and segmentation.

4.4. Performance

We evaluate the performance of our proposed MADE-Net framework on the
ManuDefect-21 dataset by comparing it with state-of-the-art anomaly detection meth-
ods. To ensure fair and accurate comparison, we reimplemented all baseline methods from
scratch using the same experimental setup and hyperparameter optimization procedures.

We present a detailed performance breakdown across the 11 subcategories of the
ManuDefect-21 dataset in Table 4. This table compares the image-level and pixel-level AUC
scores of MADE-Net with the baseline methods for each component type.

Table 4. Detailed performance comparison (AUC/AP) by subcategory on the ManuDefect-21 dataset.
The best results in each row are highlighted in bold.

Category
Image-Level AUC/AP Pixel-Level AUC/AP

SimpleNet CutPaste DSR MADE-Net SimpleNet CutPaste DSR MADE-Net

ALUMINUM_CAPACITOR 0.985/0.942 0.989/0.951 0.991/0.958 0.995/0.963 0.960/0.682 0.968/0.695 0.971/0.701 0.982/0.715
BGA 0.952/0.891 0.961/0.903 0.972/0.921 0.970/0.918 0.921/0.601 0.935/0.623 0.952/0.654 0.949/0.648
CAPACITOR 0.961/0.912 0.970/0.927 0.978/0.939 0.990/0.958 0.935/0.634 0.951/0.658 0.960/0.672 0.975/0.695
DPAK 0.970/0.931 0.978/0.944 0.984/0.953 0.983/0.951 0.945/0.652 0.963/0.680 0.959/0.674 0.960/0.675
INDUCTOR 0.975/0.948 0.983/0.959 0.981/0.954 0.982/0.955 0.950/0.661 0.965/0.684 0.973/0.699 0.971/0.692
QFN 0.965/0.924 0.972/0.936 0.979/0.945 0.991/0.962 0.938/0.639 0.955/0.662 0.965/0.681 0.964/0.678
QFP 0.968/0.929 0.975/0.941 0.983/0.952 0.981/0.950 0.942/0.646 0.958/0.669 0.966/0.683 0.979/0.707
RESISTOR 0.958/0.915 0.965/0.927 0.975/0.939 0.989/0.960 0.928/0.622 0.945/0.645 0.957/0.663 0.954/0.661
SOD 0.972/0.938 0.980/0.950 0.985/0.958 0.994/0.972 0.948/0.654 0.962/0.677 0.970/0.689 0.981/0.712
SOIC 0.963/0.921 0.974/0.936 0.971/0.932 0.972/0.934 0.936/0.637 0.956/0.668 0.952/0.661 0.953/0.663
SOT 0.970/0.934 0.977/0.946 0.983/0.954 0.993/0.968 0.946/0.650 0.961/0.673 0.969/0.685 0.980/0.708

Mean 0.967/0.926 0.975/0.938 0.980/0.946 0.985/0.954 0.941/0.643 0.956/0.667 0.963/0.678 0.968/0.687

From Table 4, it can be observed that the proposed two-stage model MADE-Net
achieves the best overall performance. At both the image-level and pixel-level, MADE-Net
consistently outperforms the baselines in terms of average AUC and AP (image-level:
0.985/0.954; pixel-level: 0.968/0.687), demonstrating its strong capability in anomaly
detection and localization.

However, a more detailed analysis reveals that, while MADE-Net excels on average, its
performance is not uniformly dominant across all categories. For instance, in categories like
BGA, DPAK, and SOIC, baseline methods such as DSR and CutPaste achieve comparable or
even superior results on certain metrics. This suggests that the optimal anomaly detection
strategy may be category-dependent. The structural complexity and defect characteristics
of components like BGA or SOIC might be better captured by the specialized mechanisms
of single-paradigm models.

While MADE-Net demonstrates strong overall performance, it also has potential
limitations. The model’s computational complexity is higher than single-branch baselines,
and its reliance on synthetic anomalies may lead to overfitting or reduced generalization
to real-world defects. Additionally, its performance may be sensitive to the diversity
and balance of the training dataset. These aspects should be considered when deploying
the model in practical industrial scenarios, and future work should explore strategies to
mitigate these weaknesses.
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4.5. Ablation Study

To validate the contribution of each individual submodel within the MADE-Net frame-
work, we conduct a comprehensive ablation study. In this study, we systematically remove
the Reconstruction-based submodel, the Feature-based submodel, and the LPD submodel,
and evaluate the performance of the remaining architecture. The results, presented in
Table 5, demonstrate the impact of each component on the overall performance.

It should be noted that the reported performance drops (e.g., pixel-level AP from 0.687
to 0.665) are relatively small. To assess the statistical and practical significance of these
differences in industrial contexts, future ablation studies should report the mean, standard
deviation, and confidence intervals over multiple runs. This would help distinguish
genuine effects from random variation and better inform deployment decisions.

To further clarify the contribution of each submodel, we recommend supplementing
quantitative results with qualitative visualizations. For example, showing anomaly maps
or localization outputs for representative samples when a specific branch is removed can
reveal where detection or segmentation fails. Such visual evidence would make the impact
of each component more interpretable for practitioners.

The observed metric changes can be explained by the design of each submodel: the
reconstruction-based branch enhances fine-grained localization by learning to reconstruct
normal patterns, the feature-based branch improves semantic discrimination for robust
classification, and the LPD module refines local texture patterns. The combination of these
cues provides complementary strengths, but the degree of synergy may vary across datasets
and tasks.

Table 5. Ablation study results on the ManuDefect-21 dataset, showing the impact of removing each
submodel. The best results are highlighted in bold.

Method
Image-Level Pixel-Level

AUC AP AUC AP

- w/o Reconstruction-based 0.981 0.946 0.962 0.665
- w/o Feature-based 0.976 0.938 0.964 0.670
- w/o LPD 0.982 0.950 0.966 0.675

MADE-Net (Full) 0.985 0.954 0.968 0.687

As shown in Table 5, removing any submodule leads to a performance drop, confirm-
ing that each component contributes to MADE-Net. The absence of the reconstruction-based
branch results in the largest decline in pixel-level AP (0.687 → 0.665), highlighting its im-
portance for fine-grained localization. Removing the feature-based branch causes a notable
decrease at the image-level (0.985/0.954 → 0.976/0.938), showing the necessity of semantic
representations for robust classification. Eliminating the LPD module yields a smaller
yet consistent degradation, indicating its complementary role in refining local patterns.
Overall, the full MADE-Net achieves the best results, demonstrating the effectiveness of
combining reconstruction-, feature-, and pattern-based cues.

This confirms that the synergistic combination of the reconstruction-based, feature-
based, and LPD methodologies allows our framework to effectively capture a diverse range
of anomaly characteristics, leading to a more robust and accurate detection system.

4.6. Dynamic Model Selection

To further refine the model’s performance and computational efficiency, we introduce
a dynamic model selection strategy. This strategy, summarized in Table 6, links each com-
ponent subcategory to its optimal anomaly detection submodel based on its characteristics.
Once the classifier identifies the subcategory of the input image, the module consults this
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predefined mapping to select the optimal submodel. The selected submodel is then exclu-
sively used to process the image and generate the final, high-fidelity anomaly score and
localization map. This adaptive approach not only maximizes accuracy for each specific
component type but also optimizes resource utilization by avoiding the computational
overhead of running the full ensemble model when a specialized submodel can achieve
comparable or better results.

Table 6. Dynamic model selection strategy based on component category.

Optimal Submodel Category

Feature-based BGA, QFP, QFN, SOIC
Reconstruction-based ALUMINUM_CAPACITOR, CAPACITOR, INDUCTOR, RESISTOR
LPD DPAK, SOD, SOT

As shown in Table 7, using ISM to dynamically select the optimal submodel for
each component category leads to consistent performance improvements compared to
relying on a single submodel. This confirms that adaptive model selection effectively
leverages the complementary strengths of SRAD, SFAD, and LPD while mitigating their
individual weaknesses.

Table 7. Comparison of anomaly detection performance with and without the Integration and
Selection Module (ISM). Metrics are averaged across all 11 categories in ManuDefect-21.

Method AUROC (%) Pixel-AP (%)

SRAD only 96.1 64.3
SFAD only 97.2 66.0
LPD only 97.6 65.8
ISM (Dynamic Selection) 98.5 68.7

4.7. Fine-Tuning

As shown in Table 8, fine-tuning all submodels on real anomalous samples with
pixel-level annotations consistently improves both detection and localization performance.
On average, the AUROC and Pixel-AP increase by 1.7% and 3.1%, respectively, compared
to models trained only on synthetic anomalies. These results confirm that the supervised
fine-tuning stage effectively bridges the gap between synthetic and real domains, enhancing
discriminative power and practical robustness in industrial applications.

Table 8. Quantitative comparison of performance before and after full-supervised fine-tuning on the
ManuDefect-21 dataset.

Submodel Training Stage AUROC (%) Pixel-AP (%)

SRAD Pretraining (Unsupervised) 96.2 63.5
Fine-tuning (Full-supervised) 98.0 67.8

SFAD Pretraining (Unsupervised) 97.1 65.2
Fine-tuning (Full-supervised) 98.6 68.3

LPD Pretraining (Unsupervised) 96.8 64.7
Fine-tuning (Full-supervised) 98.4 68.0

Average Improvement – +1.7 +3.1

5. Conclusions
This paper presented MADE-Net, a multi-model adaptive anomaly detection frame-

work that integrates reconstruction-based, embedding-based, and CutPaste-based submod-



Appl. Sci. 2025, 15, 10885 23 of 25

els through a dynamic integration and selection mechanism. Extensive experiments on
the newly introduced ManuDefect-21 dataset demonstrate that the framework achieves
competitive performance across diverse anomaly categories, with significant improvements
in both image-level and pixel-level anomaly detection accuracy compared to state-of-the-art
baselines. These results confirm the effectiveness of leveraging complementary submodels
and a two-stage training strategy that combines unsupervised pretraining with super-
vised fine-tuning.

Despite these strengths, several limitations should be acknowledged. First, the ap-
proach relies on the availability of pixel-level annotations in the fine-tuning stage, which
may limit applicability in domains where exhaustive annotations are costly or unavailable.
Second, the integration module depends on the accurate pre-classification of component
categories, and errors at this stage may reduce detection accuracy. Finally, the computa-
tional overhead introduced by maintaining multiple submodels could constrain large-scale
or real-time deployment.

Future work will address these limitations by exploring annotation-efficient strategies
such as weakly supervised or semi-supervised fine-tuning, as well as adaptive lightweight
architectures to reduce computational cost. In addition, extending the evaluation to real-
time production environments beyond the dataset will provide stronger evidence of practi-
cal readiness. By systematically addressing these aspects, we aim to further advance the
deployment of MADE-Net in industrial anomaly detection scenarios.
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