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Abstract

This study applied a multi-analytical methodology involving Attenuated Total Reflectance
Fourier Transform Infrared (ATR-FTIR) spectroscopy, protein secondary structure determi-
nation, colorimetry, and texture analysis of milk images at a microscopic level to charac-
terize 47 commercial cow and goat milk samples of different fat content (whole and light).
Colorimetric measurements showed that hue values were significantly higher in light than
in whole milks, providing a rapid marker of fat level, while microscopic image analy-
sis indicated that whole milks had more heterogeneous textures with larger fat globules,
whereas light milks were more homogeneous. ATR-FTIR spectra revealed lipids, proteins,
and carbohydrates as the main constituents; lipid-associated bands were more intense
in whole milks, whereas carbohydrate-associated bands, particularly at 1026-1028 cm !,
were stronger in cow milk. Protein secondary structure analysis confirmed (-parallel sheet
as the predominant motif, with cow milk showing higher random coil and «-helix pro-
portions and goat milk enriched in 3-turn structures. Chemometric modeling using PCA
and PLS-DA achieved robust classification of samples by species and fat content, while
Receiver Operation Characteristics (ROC) analysis validated markers of differentiation.
The combination of the above methodologies enables effective classification of cow’s and
goat’s milk, offering a thorough product description.

Keywords: cow milk; goat milk; Attenuated Total Reflectance Fourier Transform Infrared
(ATR-FTIR) spectroscopy; color; microscopic image analysis; protein secondary structure;
Principal Component Analysis (PCA)

1. Introduction

Milk and dairy products are among the most nutritionally complete foods, providing
essential macro- and micronutrients such as proteins, lipids, carbohydrates, minerals, and
vitamins that contribute significantly to human health across all life stages [1]. Due to
their high nutritional value and widespread consumption, there is sustained scientific,
industrial, and consumer interest in improving the quality, safety, and authenticity of milk
and its derivatives [2,3]. According to the Food and Agriculture Organization, global
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milk production is expected to increase by 1.7% annually until 2028, outpacing most other
agricultural commodities [4].

Among the various types of milk consumed worldwide, cow’s milk dominates pro-
duction and trade, accounting for over 95% of the dairy market volume [5]. In 2022 alone,
European countries produced over 154 million tonnes of cow’s milk, compared to 3 million
tonnes of sheep milk and 2.5 million tonnes of goat milk [6]. However, in Mediterranean
countries such as Greece, non-cow milk—particularly from goats and sheep—plays a sig-
nificant role in dairy production and consumption, especially for traditional cheese and
yogurt manufacturing [7].

Goat milk is increasingly recognized as a valuable alternative to cow milk due to its
smaller fat globule size, which facilitates faster digestion, as well as its distinct protein
profile, which may offer hypoallergenic benefits [8]. Compared to cow milk, goat milk
generally contains higher levels of fat, protein, calcium, magnesium, and vitamin A, but less
lactose and sodium [9,10]. Also, it has a thicker and creamier texture [8]. The compositional
differences extend to casein micelle structure and whey protein fractions, affecting not
only digestibility but also processing characteristics like coagulation behavior and heat
stability [11,12]. As a result, goat milk is frequently used in specialized dairy products and
marketed toward consumers with lactose intolerance or milk protein allergies.

The nutritional and functional properties of milk are influenced by several intrinsic and
extrinsic factors, such as animal breed, lactation stage, feed, health status, rearing method,
and environmental conditions [13,14]. Variations in the composition profile and balance of
milk’s main compounds directly affect its nutritional quality, sensory characteristics, and
technological performance. These factors result in complex variations in milk composition,
which necessitate rapid, sensitive, and non-destructive analytical methods for its evaluation.

To this end, Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR)
spectroscopy has emerged as a powerful tool for milk analysis. It enables the identifica-
tion of key vibrational bands corresponding to functional groups in lipids, proteins, and
carbohydrates, and allows for the evaluation of secondary protein structures, which are
important for functional properties and product stability [15,16]. Complementary methods,
such as color analysis, which quantifies visual parameters linked to composition (e.g.,
riboflavin and fat content), and light microscopic image analysis, which reveals structural
attributes like fat globule size, further contribute to the overall characterization of milk sam-
ples [17-19]. Moreover, the integration of these analytical outputs with chemometric tools,
including multivariate data analysis, enhances interpretability, pattern recognition, and
classification of milk based on origin, processing state, or compositional attributes [20,21].
This analytical synergy provides a robust framework for quality assurance and innovation
in dairy research.

In light of the above, the present study aims to comparatively evaluate various milk
types (such as cow’s and goat’s milk) of different fat contents using ATR-FTIR spectroscopy,
color assessment, texture analysis of microscopic images, and protein secondary structure
characterization, in conjunction with chemometric modeling. While previous research
has demonstrated the utility of ATR-FTIR spectroscopy for differentiating milk species or
detecting adulteration [22,23], few studies have integrated spectral, structural, and image-
derived features to achieve both high classification accuracy and biological interpretability.
Moreover, by explicitly incorporating protein secondary structures into multivariate models,
this work also explores the conformational aspects of milk proteins that underpin functional
and technological properties. The ultimate scope of this study is to establish reliable markers
for species- and fat-level discrimination and to demonstrate the potential of multi-modal,
non-destructive analysis as a tool for milk characterization and quality control in the dairy
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sector. Finally, the integration of these multi-modal datasets through chemometrics could
offer a robust and data-driven approach to milk classification.

2. Materials and Methods
2.1. Sampling and Lyophilization of the Milk Samples

The milk samples were purchased from the Greek market, transported to the laboratory,
and stored under refrigerated conditions prior to analysis. The two most prevalent types
of milk available on the market-cow’s and goat’s, were selected for analysis. A total of
47 samples from various commercial brands were examined, comprising 35 cow’s milk
samples and 12 goat’s milk samples. Apart from their origin, the samples differed in terms
of fat content, as whole (~3.5% fat) or light (=1.5% fat). Prior to spectroscopic analysis,
milk samples were preserved at —80 °C for three days and then freeze-dried using a Gellert
CryoDryer 20 lyophiliser (Langweid a. Lech, Bavaria, Germany) to eliminate water content.
The vacuum was set to 0.80 mbar and the freeze-drying process began for the samples
once the thermocouples registered —25 °C. This continued until complete dehydration
was achieved. The milk samples, classified by animal origin and fat content, along with
their sample codes (each code representing a specific commercial brand) and compositional
data (mean values). Detailed sample labeling and compositional data are provided in
Table S1 (Supplementary Material). The samples’ codes were: M11 for light cow’s milk,
M12 for whole cow’s milk, M21 for light goat’s milk and M22 for whole goat’s milk, and
the individual commercial brands were 17, 18, 4, and 8, respectively. For every commercial
brand, three replicates were used.

2.2. Color Evaluation, Microscopic Image Analysis, and Statistical Assessment

Lightness (L*), red-green color (a*), yellow-blue color (b*), and hue angle (h), of milk
samples were measured according to Tsiaka et al. [24] with the CR-400 Minolta chromatome-
ter (Tokyo, Japan). For microscopic image analysis, a drop of each milk sample was carefully
placed on a glass slide, covered with a coverslip, and observed at 10x magnification using
an Olympus CX23 bright-field microscope fitted with an Olympus EP50 digital camera
(Olympus Corporation, Tokyo, Japan). Each microscopy image was then divided into
70 square regions of interest (ROIs), with 10 horizontal and 7 vertical regions (Figure 1),
in order to extract the appropriate textural features. A total of 15 statistical textural fea-
tures were extracted from the grayscale versions of the microscopic images to analyze the
textural differentiations of milk samples. These features were obtained using first-order
statistics and gray-level co-occurrence matrix (GLCM)-based descriptors. These included
the following: mean; standard deviation; contrast; energy; homogeneity; correlation; dis-
similarity; angular second moment (ASM); gray-level non-uniformity (GLN); run-length
non-uniformity (RLN); short-run emphasis (SRE); long-run emphasis (LRE), and run per-
centage (RP). The above-mentioned features were calculated using the Python 3.10.6 scipy
library (https://docs.scipy.org/doc/scipy/tutorial /, accessed in 5 June 2025).

2.3. ATR-FTIR Spectroscopy of the Lyophilized Milk Samples

According to Christodoulou et al. [25], lyophilised milk samples were analyzed using
ATR-FTIR spectroscopy with an IRAffinity-1S FTIR spectrometer from Shimadzu in Kyoto,
Japan. The same paper [25] states that LabSolutions IR software (version 2.21) was used to
perform ATR correction, normalization, smoothing and peak picking on the milk samples’
FTIR spectra. Following the procedures described by Kritsi et al. [26], LabSolutions IR
software examined the amide I area (1600-1700 cm™1) using Gaussian curves to determine
the secondary structure of the proteins.
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Figure 1. Calculation of textural features by extracting ROIs from a milk sample’s microscopic picture,
as indicated by the blue boxes.

2.4. Univariate Statistical Analysis

One-way Analysis of Variance (ANOVA) was used to statistically evaluate quantitative
results from the chemical composition, colorimetric parameters (L*, a*, b*, hue angle), ATR-
FTIR spectral band intensities, and the proportions of the secondary protein structure.
Tukey’s post hoc test was then used to determine pairwise differences among means
at p <0.05. IBM SPSS Statistics (Version 29.0, IBM Corp., Chicago, IL, USA) was used
to conduct this analysis. Furthermore, correlations between the respective FTIR band
intensities and the macronutrient content (as stated on the product label) were investigated
using Pearson’s correlation coefficients ().

2.5. Chemometrics and Multivariate Statistical Analysis

The ATR-FTIR spectral datasets were normalized using Pareto scaling (mean-centered
and divided by the square root of the standard deviation) prior to multivariate analysis. All
analyses were performed with the MetaboAnalyst 6.0 platform (www.metaboanalyst.ca,
accessed on 25 May 2025). To investigate natural clustering patterns and detect outliers,
an unsupervised Principal Component Analysis (PCA) was first applied. For supervised
classification, Partial Least Squares Discriminant Analysis (PLS-DA) was then employed
to distinguish among the four milk groups: whole cow, light cow, whole goat, and light
goat. The models incorporated 18 ATR-FTIR spectral band intensities along with four
secondary protein structures (f3-sheet, -helix, 3-turn, random coil) derived from Gaus-
sian deconvolution of the amide I region. Model reliability was tested using 1000-fold
permutation analysis, and predictive accuracy was further evaluated by cross-validation.
Variable Importance in Projection (VIP) scores were calculated to determine the features
contributing most to discrimination. Marker analysis was subsequently carried out to
identify variables responsible for discrimination. Receiver Operating Characteristic (ROC)
curve analysis was applied for three targeted comparisons: (i) cow vs. goat milk, (ii) cow
whole vs. goat whole milk, and (iii) cow light vs. goat light milk. Features with an n area
under the curve (AUC) > 0.70 and p < 0.05 were considered as validated markers.

3. Results and Discussion
3.1. Nutritional Information and Color Parameters of Milk Samples

The chemical composition of milk differs between species and breeds [14]. The com-
position of goat’s milk is significantly influenced by factors such as season, lactation stage,
breed, diet and environmental conditions [27]. The same is true of cow’s milk, whose


www.metaboanalyst.ca

Appl. Sci. 2025, 15, 10883

50f21

composition can be affected by internal and external animal factors. These include the
hygiene of the udder, microbial activity and enzyme reactions in raw milk, breed, stage of
lactation, milk quality control and processing procedures [28]. Table 1 presents the chemical
composition of total fat, carbohydrates, sugars, protein, and salt per 100 g of milk for each
milk type as indicated on their labels. The data revealed significant differences between
the various types of milk. The most important findings are listed below. The fat content of
milk is not influenced by the species of animal from which it originates. Therefore, whole
cow’s and goat’s milk do not differ significantly in fat content, and the same was found
for light milks. Felice et al. [29] reported that goat’s milk contains smaller fat globules
than cow’s milk, which makes it easier to digest for many people. The fat in goat’s milk
possesses higher proportions of short-chain fatty acids [30], imparting its unique flavor. In
contrast, cow’s milk contains higher concentrations of longer-chain fatty acids, which affect
the product’s structure and consistency [31]. Goat’s milk has a significantly higher protein
content than cow’s milk (p < 0.05). The two main characteristics that distinguish goat’s milk
from cow’s milk are the size of the casein micelles and the low level of alpha-S1-casein,
which is a protein associated with allergic reactions [32]. Therefore, goat’s milk is less
allergenic than cow’s milk. Also, cow’s milk has a significantly higher salt concentration
than goat’s milk. A significant difference (p < 0.05) in carbohydrate content was found
between light cow’s milk and whole goat’s milk. Regarding sugar content, cow’s milk has
a significantly higher value than goat’s milk. According to Chauhan et al. [33], cow’s milk
contains a higher concentration of lactose than goat’s milk, making the latter a better choice
for those who are lactose intolerant.

Table 1. Chemical composition of milk samples.

Cow’s Milk Light =~ Whole Cow’s Milk  Goat’s Milk Light =~ Whole Goat’s Milk

Composition (/100 g) (17 Samples) (18 Samples) (4 Samples) (8 Samples)
Total fat 14+03a* 3.6 £ 0.1b 1.7 £0.1a 3.7+ 0.2b
Proteins 3.4+ 0.1ac 3.3+0.1a 3.7+ 0.1b 3.6 £ 0.1bc

Carbohydrates 48+0.1a 4.7 +0.1ab 4.7 + 0.1ab 45+0.1b
Sugars 48 £0.1a 47 +0.1a 44+0.1b 44+0.1b
Salt 0.11 4+ 0.02a 0.10 & 0.02a 0.08 & 0.00b 0.07 £ 0.01b

Results are given as mean =+ standard deviation (mean + SD); * Different letters along the same row indicate
a significant statistical difference (p < 0.05).

It was deemed necessary to measure the color parameters of milk samples as con-
sumers’ perception of food is significantly influenced by its hue (see Table 2).

Table 2. Color parameters of milk samples.

Color Parameters

Cow’s Milk Light Whole Cow’s Milk  Goat’s Milk Light =~ Whole Goat’s Milk

(17 Samples) (18 Samples) (4 Samples) (8 Samples)
L* (Lightness) 75.67 &+ 5.55a * 78.91 £ 6.94a 73.23 £ 7.89%a 74.24 £+ 5.02a
a* (red—green) —3.26 £ 0.61a —2.50 £ 0.45b —3.07 £ 0.48ab —2.33 £ 0.36b
b* (yellow-blue) 3.52 +0.38a 533 £ 0.72b 4.79 £ 0.26b 492 + 0.54b
h (hue angle) 133.68 £+ 11.72a 115.46 £+ 4.53b 122.52 4+ 2.53a 115.29 4+ 1.48b

Results are given as mean =+ standard deviation (mean + SD); * Different letters along the same row indicate
a significant statistical difference (p < 0.05).

With respect to color parameters, no variation in lightness was observed among the
milk samples, irrespective of their type or fat content. Light cow’s milk also showed
a significantly (p < 0.05) lower a* value than whole cow’s milk. There was significant
variation in the yellow parameter b* of cow’s milk, with low-fat milk having the lowest
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(p < 0.05) value and full-fat milk the highest. The goat milks did not differ from each
other and ranged between values. According to Milovanovic et al. [34], whole cow’s milk
has a more intense yellowish b* parameter due to the presence of carotenoids, especially
beta-carotene, which are not metabolized by cows. According to Chudy et al. [35], the
natural color of milk is due to the presence of both water- and fat-soluble pigments. The
water-soluble pigment is riboflavin, also known as vitamin B2, which gives milk its yellow
color with green fluorescence. Fat-soluble pigments are carotenoids, such as beta-carotene,
retinol and xanthophylls, which range in color from yellow to orange and deep red-orange.
Interestingly, the values for hue (position of a color on a color wheel) were significantly
higher (p < 0.05) in light milks (yellow-green, chartreuse) compared to whole milks (yellow-
green, lime). This indicates that colorimetry is a rapid, easy-to-apply, non-destructive and
reliable method of distinguishing between light and whole milk. Milovanovic et al. [34]
also reported that milk color, could be affected by the animal diet and breed, parity and
animal age, lactation stage, and seasonal calving.

3.2. Assessment of Milk Samples Using Texture Analysis of the Microscopic Images

As indicated in the Section 2, the microscopic images of the milk samples were pro-
cessed using image analysis. The resulting textural features were then statistically correlated
according to the origin and fat content of the milk samples. The results obtained were
significant and interesting, as discussed below in Figure 2. Initially, the standard deviation,
contrast, dissimilarity and GLN values were significantly higher (p < 0.05) and the kurtosis,
homogeneity and correlation values were significantly lower (p < 0.05) for whole milk
microscopic images than for light milk images. According to Christodoulou et al. [25], the
above-mentioned changes in textural features suggest that whole milk is more heteroge-
neous than light milk in terms of its image texture. Since the main difference between these
milks is their fat content, it can be concluded that reducing the fat content makes the milk
more homogeneous. Consistent with this finding, Cheong et al. [36] reported that whole
milk contains larger fat globules, making it less homogeneous. Interestingly, goat’s milk
yielded significantly higher (p < 0.05) skewness values than cow’s milk, regardless of its
fat content. As the skewness value evaluates the asymmetry of pixel intensity within the
region of interest of microscopic images of milk, it appears that the visual weight of the
components of goat’s milk emulsion is not evenly distributed compared to cow’s milk.
This finding may be related to the fact that goat’s milk has a higher protein content and
a lower sugar content than cow’s milk (as shown in Table 2). Furthermore, energy and
ASM values of whole cow’s milk were significantly higher (p < 0.05) than those of all the
other milk samples, which did not differ from each other. As energy and ASM measure
the textural uniformity and the orderliness of an image, it is possible that these values are
correlated with the larger, more numerous fat globules contained in whole cow’s milk [29].
Finally, whole goat’s milk presented significantly higher (p < 0.05) SRE, RLN, RP values,
and significantly lower (p < 0.05) long-run emphasis (LRE) values than those of all the other
milk samples. These values are associated with small gray-level structures [37], which
may be due to the smaller fat globules present in whole goat’s milk [29,38]. In conclu-
sion, the features obtained from the microscopic images that indicate spatial variation in
pixel intensity levels within the milk tissue can be correlated with the milk’s composition,
homogeneity and smoothness.
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Figure 2. Box plots showing the variation in textural features of milks’ images: (a) mean, (b) standard
deviation, (c) skewness, (d) kurtosis, (e) contrast, (f) dissimilarity, (g) energy, (h) homogeneity,
(i) correlation, (j) angular second moment, (k) short run emphasis, (1) long run emphasis, (m) gray
level non-uniformity, (n) run length non-uniformity, and (o) run percentage.

3.3. ATR-FTIR Spectra Evaluation of Milk Samples

The analysis of ATR-FTIR spectra for the milk samples revealed significant findings,
highlighting the importance of Fourier Transform Infrared (FTIR) spectroscopy in evaluat-
ing the chemical composition of milk based on milk type and its fat content. Representative
ATR-FTIR spectra are shown in Figure S1 (Supplementary Material). The interpretation of
each absorption band in the FTIR spectra (Table 3) is provided below, alongside a commen-
tary on the results and a reference to the most interesting findings.
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Table 3. Relative intensities % of ATR-FTIR spectra bands of milk samples.
Spectra Bands (cm~1) Cow’s Milk Light Whole Cow’s Milk  Goat’s Milk Light  Whole Goat’s Milk
(17 Samples) (18 Samples) (4 Samples) (8 Samples)
3200-3300 0.786 £ 0.018a 0.651 £ 0.054b 0.749 £ 0.034a 0.676 £ 0.045b
2922 0.412 £ 0.044a 0.583 £ 0.035b 0.474 £ 0.009¢ 0.569 £ 0.019b
2854 0.115 £ 0.017a 0.213 £+ 0.023b 0.151 £ 0.008c 0.195 £ 0.011b
1741-1745 0.189 £ 0.024a 0.308 £ 0.030b 0.232 £ 0.011c 0.315 £ 0.036b
1638-1645 0.437 £ 0.016a 0.405 £ 0.013b 0.489 £ 0.011c 0.441 £ 0.005a
1535-1545 0.197 £ 0.014ab 0.184 + 0.010a 0.209 +£ 0.008b 0.195 £ 0.006ab
1440-1470 0.054 £ 0.009a 0.097 £ 0.007b 0.078 £ 0.003¢ 0.092 £ 0.005b
1396-1400 0.041 £ 0.005a - 0.021 £ 0.002b -
1370-1380 0.011 £ 0.001a 0.029 £ 0.004b 0.021 £ 0.001c 0.049 £ 0.006d
1280-1300 0.013 £ 0.001a 0.012 £ 0.002a 0.011 £ 0.002a 0.011 £ 0.001a
1242-1245 0.056 % 0.005a 0.051 = 0.004a 0.057 & 0.003a 0.056 =& 0.005a
1145-1149 0.067 £ 0.008a 0.091 £ 0.007b 0.086 £ 0.004b 0.092 £ 0.004b
1064 0.025 £ 0.003a 0.037 £ 0.005b 0.026 £ 0.002a 0.035 £ 0.002b
1026-1028 0.557 £ 0.040a 0.544 £ 0.028a 0.453 £ 0.017b 0.475 £+ 0.018b
891 0.041 £ 0.004a 0.040 £ 0.005a 0.045 £ 0.002a 0.046 £ 0.004a
777 0.045 = 0.005a 0.038 = 0.003a 0.041 == 0.003a 0.039 £ 0.002a
700 0.030 £ 0.001a 0.029 £ 0.002a 0.030 £ 0.001a 0.028 £ 0.001a
538-542 0.045 + 0.005a 0.046 £ 0.004a 0.053 £ 0.002a 0.049 £ 0.002a

Results are given as mean =+ standard deviation (mean + SD); Different letter along the same row indicates
a significant statistical difference (p < 0.05).

The amino group (N-H) stretching vibration (Amide I) in amides and proteins, as
well as the hydroxyl group (O-H) stretching vibration in hydroxyl-containing compounds
such as carbohydrates, phenolic and organic acids, etc., are linked to the spectra region at
3200-3300 cm ™! [39,40]. Light milks showed significantly (p < 0.05) higher intensity than
whole milks. This finding could be attributed to light milks having a higher proportion of
proteins and carbohydrates than lipids. The intensities of the bands at 2922 and 2854 cm ™!,
which correspond to the asymmetric and symmetric C(sp®)-H stretching vibrations of the
methylene groups, that are predominantly present in lipids and secondarily in carbohy-
drates [25], were significantly (p < 0.05) higher in whole milks than in light milks, thereby
confirming the higher fat content of whole milks, as shown in Table 2. In addition, light
goat milks showed higher intensity at 2922 and 2854 cm~! than light cow milks, while
whole milks showed no significant difference, irrespective milk origin. Nikolaou et al. [41]
reported that the intensity of goat milk was higher than that of cow milk at 2976-2884 cm ™!,
due to its higher content of fatty acids. The intensity of the carbonyl group (C=0O) stretch,
at 1741-1745 cm~!, which is mainly found in lipids (Balan et al., 2020) [16], was found to be
significantly higher (p < 0.05) in whole milk than in light milk due to the higher fat content
of whole milk. Moreover, the total fat content and the 2922, 2854 and 1741-1745 cm ™!
intensities showed high positive Pearson correlations (R? = 0.5658 0.5322, and 0.5467, re-
spectively, p < 0.05). Cow’s light milk also had a significantly lower intensity than goat’s
light milk, while there was no significant difference between whole cow’s and goat’s milks.
Proteins present three spectra bands at 1638-1645 cm~! of Amide I (stretching vibrations
of C=0), at 1535-1545 cm~! of Amide II (combined C-N stretching and N-H bending
vibrations) and at 1280-1300 cm ™! of Amide III (combined O=C-N stretching and N-H
bending vibrations) [26,39,40,42]. According to the results, light goat’s milk had the highest
intensity (p < 0.05) at the Amide I band compared to all the other milk samples, while
whole cow’s milk had the lowest. Moreover, whole cow’s milk presented significant lower
(p < 0.05) intensity at the Amide II band than light goat’s milk samples. The intensities of
methyl and methylene groups scissoring, and twisting vibrations, of lipids, proteins, and
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carbohydrates, at 1440-1450, and 1380-1370 cm ™! [26,40,43], resulted significant (p < 0.05)
variations among samples. These intensities were notably higher in whole milk than in
light milk, which supports the finding in Table 2 that whole milks have a higher fat con-
tent. Interestingly, the absorbance band at 1396-1400 cm ! was only identified in light
milk samples, suggesting that it could be used to distinguish light from whole milk. This
band may be related to the symmetric bending of methyl groups in proteins and/or the
symmetric stretching of the COO~! group of amino acids and fatty acids [40,44]. It is also
important to mention the intensities of the absorbance bands at 1242-1245, 1145-1149, 1064
and 1026-1028 cm ™!, which are associated with stretching vibrations of the etheric bond
primarily in mono- and polysaccharides, and secondarily in triglycerides [45]. The most
important finding was the significantly higher (p < 0.05) milk intensities for cow’s milk
than for goat’s milk at 1026-1028 cm !, probably due to the higher sugar (Table 2) and
lactose content of cow’s milk, as it is reported by Chauhan et al. [33]. In accordance with
the above findings, Nicolaou et al. [41] also reported higher C-O absorption band values for
carbohydrates at 1134-1018 cm~!. The second important finding was that the intensities
of whole milks were significantly higher than those of light milks at 1064 cm !, possibly
due to the etheric bond of triglycerides. This is consistent with the higher fat content found
in whole milks (Table 1). The intensities at 891 and 777 cm ™!, which are attributed to the
-anomeric configuration of carbohydrates and lactose’s pyran ring skeleton vibrations,
respectively [46,47], showed no significant differences between milk samples. Finally, no
significant differences (p > 0.05) were revealed in the intensity of the bands at 700 and
538-542 cm ™!, relating to the cis (Csp?-H) out-of-plane bend and the glycosidic linkage
(C-O-C) in-plane bend, respectively [37,40], between the milk samples.

The profile of proteins’ secondary structure in cow and goat milks was further evalu-
ated (Table 4). This outcome is important in food science because it affects the nutritional
value and texture of food by improving thermal stability, influencing digestibility, func-
tional properties and amino acid bioavailability. One of the most important findings was
that a higher (p < 0.05) percentage of 3-parallel sheet and a lower percentage of 3-turn
was detected, regardless of the milk’s origin or fat content. 3-parallel sheet proteins play
a critical role in the stability and functionality of dairy products, as well as increasing the
coagulation capacity of milk [48,49]. Another important finding was that, irrespective of the
fat content, cow’s milk showed higher proportions of random coil and «-helix, while goat’s
milk showed higher proportions of 3-turn structure. Finally, light milks have a significantly
(p < 0.05) higher percentage of the (3-parallel sheet structure than whole milks, irrespective
of the milk’s origin. In general, the 3-turn structure plays a key role in protein flexibility
and can influence its interactions with other molecules in milk. This structure is essential
for protein stability and functionality, and variations in its proportion can affect the quality
and processing of milk [50]. Moreover, the random coil structure typically indicates flexi-
bility in proteins, which can impact their functionality. Differences in random coil values
between milk types may reflect variations in protein flexibility and rigidity [50]. The higher
percentage of random coils in cow’s milk is due to the higher concentration of xsl-casein,
which has a more flexible structure [48]. Furthermore, x-helix plays an important role in
the structure and stability of proteins, and an increased presence of this structure in cow’s
milk may be related to processing and storage methods [49].
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Table 4. Proteins’ secondary structure proportion (%) of milk samples.

Secondary Structure

Cow’s Milk Light Whole Cow’s Milk  Goat’s Milk Light  Whole Goat’s Milk

of Proteins (%) (17 Samples) (18 Samples) (4 Samples) (8 Samples)

féfé‘_rféle i}rff{ 42.45 + 0.63ac * 37.43 + 0.29b 42.80 + 0.35a 41.54 + 0.83¢

. 6‘31‘112?(‘) if;l,l 26.86 + 0.37a 29.17 + 0.45b 25.78 + 0.46¢ 24.57 + 0.55d
a-helix

16501660 o1 22.02 + 0.59a 24.52 + 0.40b 20.25 + 0.46¢ 20.32 + 1.15¢
B-turn

8.66 + 0.88a 8.88 = 0.48a 11.16 = 0.30b 13.56 + 0.86¢

1660-1680 cm 1

Results are given as mean + standard deviation (mean + SD); * Different letter along the same row indicates
a significant statistical difference (p < 0.05).

3.4. Multivariate Statistical Analysis and Marker Validation

The unsupervised PCA provided an overview of the dataset structure. As shown
in Figure 3, the primary separation was observed between cow and goat samples, which
formed distinct clusters along the first principal component (PC1). Within each species clus-
ter, a further subdivision was evident along PC2, corresponding to fat content. Specifically,
light samples formed separate subclusters (highlighted within black cycles), indicating
that fat level contributed additional variance after species differences were accounted
for. The two-dimensional PCA model explained a considerable proportion of variance
among the samples, supporting the existence of intrinsic structural and compositional
differences based on both animal origin and fat content. The clustering of the four sample
types—cow whole, cow light, goat whole, and goat light—into distinct quadrants confirms
the discriminatory power of PCA. The statistical significance of these separations was
confirmed by PERMANOVA (Permutational Multivariate Analysis of Variance), which
yielded an F-value of 42.887, an R? of 0.488, and a p-value of 0.001. Although the dataset
was slightly unbalanced between cow and goat samples, the observed patterns remained
consistent and statistically significant. These results indicate that nearly 49% of the total
variance in the dataset can be attributed to differences between the milk groups, with the
probability of random group formation being statistically insignificant (p = 0.001).

A supervised PLS-DA model was developed to classify the four milk groups: cow
whole, cow light, goat whole, and goat light. As shown in Figure 4, Component 1 describes
the separation between whole and light milk within the two core categories (cow/goat milk),
while Component 2 effectively differentiated cow and goat milk samples. This resulted in
compact and distinct clusters for all four groups, indicating that the FTIR-derived spectral
dataset contains compositional features that are both species- and fat-dependent.

To identify the variables most responsible for this discrimination, a VIP plot was
generated (Figure 5). Variables with VIP scores greater than 1 were considered influential.
The most significant discriminants corresponded to protein secondary structure features
and more specifically to 3-turn and -parallel sheet content. These findings align with
the structural differences observed in Section 3.3: goat milk displayed a higher proportion
of B-turn structures, while cow milk contained more «-helix and random coil motifs. In
addition, light milks exhibited higher 3-parallel sheet content than whole milks, which may
explain their tighter clustering and more homogeneous microscopic textures (Section 3.2).
Thus, the prominence of secondary structure features in the PLS-DA model reinforces the
central role of protein conformation in milk differentiation.
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Figure 3. PCA score plot illustrating sample clustering by milk origin (PC1) and fat content (PC2)
using Pareto-scaled data.
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Figure 5. VIP plot showing the most influential FTIR spectral variables contributing to the
PLS-DA model.

Model reliability was assessed through 1000-fold permutation testing, which con-
firmed that the classification accuracy of the original model was consistently higher than
that of the permuted models (p < 0.001). Predictive performance was further evaluated
using 5-fold cross-validation, yielding a Q? > 0.85, an R? > 0.89, and an overall classification
accuracy of 92%. These metrics demonstrate that the model was both statistically robust
and highly predictive (Figure 6).

PLS-DA cross validation details:

3 -
-
Measure || 1 comps || 2 comsz
Accuracy |[ 0.72434 || 0.91737
S | R2 0.85239 | 0.8922
- 1L
> Q2 0.77005 | 0.85989 ‘
= J
=
=3
[
w
B Observed
statistic
p <0.001 (0/1000)
o - J/
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Permutation test statistics

Figure 6. Permutation test validating statistical significance of the supervised PLS-DA model; Cross-
validation plot showing high predictive performance (Q* > 0.85, R? > 0.89).

In summary, the PLS-DA confirmed that compositional differences at the level of
protein structure, already observed in univariate analyses, are the strongest drivers of
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discrimination in the multivariate space. This highlights the potential of the model for milk
characterization and compositional profiling.

3.5. Marker Validation
3.5.1. Comparative Analysis of Cow and Goat Milk

The comparison between cow and goat milk yielded a comprehensive panel of discrim-
inant markers (Table 5). Notably, protein secondary structures demonstrated exceptional
discriminatory power. The 3-turn, random coil, and «-helix structures displayed AUC val-
ues of 1.000, 1.000, and 0.990, respectively, each with highly significant p-values (p < 10-%),
underscoring their robust ability to distinguish between milk origin.

Table 5. Discriminative molecular features for cow versus goat milk differentiation identified through
ATR-FTIR spectroscopy. The table summarizes validated markers with Area Under the Curve (AUC)
values exceeding 0.70, including secondary structure components and functional group-specific
vibrational bands.

Cow Milk vs. Goat Milk

Features AUC p-Values
B-turn 1 6.44 x 10717
random coil 1 3.07 x 10710
o-helix 0.99 8.06 x 10~°
891 cm ! 0.87 428 x 107
1382 cm ™! 0.83 496 x 107°
538-542 cm ™! 0.8 133 x 1073
1242-1245 cm ™1 0.78 9.89 x 1073
1311-1313 cm ™! 0.78 1.08 x 1073
1145-1149 cm ! 0.74 5.64 x 1073

In addition to secondary structure, several vibrational bands emerged as validated
markers. The 891 cm~! band (AUC = 0.870, p =428 x 107%) and the 1382 cm~! band
(AUC =0.833, p = 4.96 x 1079, commonly attributed to C-O stretching and CH bend-
ing in carbohydrates and phospholipids, suggest that compositional variations in mi-
nor milk components also contribute significantly to species differentiation. These find-
ings support a multidimensional discriminatory model incorporating both structural and
compositional variables.

3.5.2. Comparative Analysis of Cow Whole and Goat Whole Milk

The comparative assessment between cow and goat whole milk revealed a robust set
of discriminative markers, underscoring both structural protein configurations and matrix-
compositional divergences inherent to species origin (Table 6). Notably, all four evaluated
secondary structure components—f3-turn, random coil, x-helix, and 3-parallel sheet—
exhibited perfect classification accuracy (AUC = 1.000), each supported by highly significant
p-values (p < 10712).

In addition to structural markers, several infrared spectral regions associated with
lipid and carbohydrate functionalities were validated. The 1382 cm~! band emerged as
a top-performing marker (AUC = 1.000; p = 2.41 x 10~7), likely corresponding to CHj
symmetric bending vibrations prevalent in fatty acid chains. Similarly, the 1242-1245 cm !
and 1311-1313 cm ™! regions (AUCs = 0.81 and 0.80, respectively) represent contributions
from C-O and P=0 stretching modes, consistent with phospholipid and ester functionalities
present in milk fat globule membranes.
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Table 6. Robust spectral and structural markers distinguishing cow and goat whole milk samples.
Validated variables (AUC > 0.70) are presented, encompassing conformational protein features and
characteristic infrared absorbance bands. The listed markers reflect compositional and structural
attributes unique to whole-fat milk across milk types.

Cow Whole Milk vs. Goat Whole Milk

Features AUC p-Values
1382 cm ! 1 2.41 x 1077

-parallel sheet . X -
B-parallel sh 1 5.16 x 1016
random coil 1 1.36 x 10~
o-helix 1 533 x 10713
B-turn 1 191 x 101
1242-1245 cm ™! 0.81 6.30 x 1073
1311-1313 cm ™! 0.8 1.18 x 102
1440-1450 cm ! 0.73 463 x 1072

The 1440-1450 cm ! region (AUC = 0.73) further contributed to class differentiation.
This spectral window typically captures CH; modes in saturated fatty acid moieties, and
its discriminant role suggests compositional and perhaps organizational differences in the
triacylglycerol content between cow and goat whole milk.

Collectively, these findings highlight the interplay between protein supramolecular
structure and lipid matrix organization in defining spectral fingerprints specific to milk
origin in whole milk systems. The statistical power of both secondary structure features
and lipid-informative bands supports the applicability of ATR-FTIR spectroscopy in au-
thenticating full-fat dairy matrices, with direct relevance to traceability, certification, and
fraud prevention workflows in the dairy industry.

3.5.3. Comparative Analysis of Cow Light and Goat Light Milk

The light milk comparison yielded a diverse and highly discriminative set of spectral
markers, confirming that fat-reduced matrices retain strong molecular signatures capable
of differentiating species origin (Table 7). In this comparison, a total of 15 spectral fea-
tures exceeded the criteria, with several variables demonstrating near-perfect or perfect
classification performance.

Among the most robust discriminants were a-helix and (3-turn secondary structure
motifs, both attaining AUC = 1.000, highlighting those intrinsic differences in protein
conformation between bovine and caprine milk persist even after fat removal.

Additionally, several vibrational bands linked to carbohydrate, protein, and residual
lipid functionalities emerged as validated markers. The 891 cm™! region (AUC = 1.000)
is associated with C—H deformation modes in saccharides, and the 1026-1028 cm ™! and
1145-1149 cm~! bands (AUCs = 1.000) likely correspond to C-O stretching vibrations in
glycoproteins or lactose. These results are consistent with previous studies suggesting
that variations in oligosaccharide and glycoprotein profiles are species-dependent and
preserved in low-fat formulations.

Additional validated markers included:

(i) 13961400 cm~! (AUC = 1.000)—CHj; bending modes, potentially linked to residual
phospholipids

(i) 1440-1450 cm~! (AUC = 0.99)—CHj, from saturated fatty acids

(iii) 2854 cm~! (AUC = 0.99)—CH, symmetric stretching from lipid chains

(iv) 1064, 1382, 1638-1645, 1741-1745, and 777 cm 1 —AUCs ranging from 0.79 to 0.96
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Table 7. Validated FTIR-based markers enabling classification of light cow and goat milk. The
table reports feature with confirmed discriminatory power (AUC > 0.70), highlighting the influence
of protein folding, carbohydrate vibrations, and residual lipid bands in differentiating light milk

products by milk origin.
Cow Light Milk vs. Goat Light Milk

Features AUC p-Values
891 cm—! 1 1.03 x 1072
1026-1028 cm 1 1 3.81 x 10712
1145-1149 cm 1 1 3.08 x 10~
1396-1400 cm ! 1 1.48 x 1077
oa-helix 1 227 x 107°
B-turn 1 2.61 x 1073
1440-1450 cm ™! 0.99 3.49 x 107°
2854 cm ! 0.99 2.02 x 102
random coil 0.97 7.18 x 107>
1064 cm ! 0.96 466 x 1074
1382 cm ™! 0.94 1.96 x 1073
538-542 cm ! 0.93 7.15 x 1073
1741-1745 cm ™! 0.93 2.77 x 1073
1638-1645 cm 1 0.91 1.00 x 1072
777 cm 1 0.79 1.42 x 1072

The presence of lipid-associated markers—despite the low-fat context—suggests that
minor differences in residual triglyceride or phospholipid content still contribute meaning-
fully to the spectral distinction. Meanwhile, 1638-1645 and 1545 cm ™! regions provided fur-
ther insights into secondary structure alterations, supporting the assertion that protein fold-
ing behavior is not homogenized by fat removal but instead retains species-specific traits.

In summary, the marker landscape in this comparison demonstrates a complex in-
terplay between structural protein features, lipid and carbohydrate-related vibrations, all
of which contribute to robust interspecies classification in milk products. These findings
validate the application of ATR-FTIR spectroscopy as a sensitive, compositionally integra-
tive technique for milk types characterization in dairy matrices, even under reduced-fat
conditions where conventional lipid markers may be diminished.

Overall, the outcomes of PCA, PLS-DA, and ROC analyses confirm the strong discrim-
inatory power of ATR-FTIR combined with chemometrics for milk classification. These
findings are in line with previous studies showing that spectral fingerprints can effectively
distinguish milk species and detect adulteration [22,23,51]. Nicolaou et al. [41] reported
that FTIR spectroscopy successfully differentiated bovine, caprine, and ovine milks, with
species-specific carbohydrate and lipid bands driving the separation. Similarly, Balan
et al. [16,52] demonstrated the utility of ATR-FTIR and multivariate models in detecting
adulterants in cow milk. The present study supports these earlier reports while extending
them by incorporating protein secondary structure variables into the multivariate space.
By including protein conformation alongside spectral features, this study offers a more
biologically meaningful interpretation of FTIR-based classification. From an industrial
standpoint, this integrative approach offers a rapid, non-destructive, and cost-effective
tool for verifying milk authenticity and detecting potential adulteration without extensive
sample preparation. Furthermore, the discrimination between species and fat content
could facilitate automated quality-control, traceability, and certification systems, while the
inclusion of secondary-structure markers enhances biological interpretability and ensures
compliance with labeling standards.
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4. Conclusions

This study applied ATR-FTIR spectroscopy, protein secondary structure profiling,
colorimetry, and texture analysis on the microscopic images to characterize and classify
47 commercial cow and goat milk samples of different fat contents. The results demon-
strated clear compositional and structural distinctions between milk groups. Goat milk
contained significantly more protein, whereas cow milk had higher salt concentrations,
while fat differences were driven by type rather than species. Colorimetric evaluation
showed that hue angle values were significantly higher in light than in whole milks, pro-
viding a rapid and non-destructive marker of fat level, while whole cow milk exhibited
greater yellowness. Textural features obtained from microscopic images showed spatial
variation in pixel intensity levels within milk tissue, which correlated with composition,
homogeneity and smoothness. Specifically, whole milks displayed more heterogeneous
textures with larger fat globules, whereas light milks appeared more homogeneous; in
addition, goat milks showed higher skewness, reflecting uneven distribution of compo-
nents linked to their higher protein and lower sugar content. ATR-FTIR spectra confirmed
these trends, with whole milks showing stronger lipid-associated bands at 2922, 2854, and
1741 cm~!, while cow milks exhibited more intense carbohydrate bands at 1026-1028 cm 1,
consistent with their higher lactose content. Light milks were uniquely characterized by
the 1396-1400 cm ™! band, highlighting the impact of fat reduction on the spectral profile.
Analysis of protein secondary structures revealed (3-parallel sheet as the predominant
motif across all groups, with cow milk containing higher proportions of random coil and
a-helix, goat milk showing elevated 3-turn, and light milks enriched in 3-parallel sheet
compared to whole. Multivariate analysis further confirmed these differences. PCA re-
vealed a primary separation between cow and goat samples, with additional sub-clustering
according to fat content. The PLS-DA model clearly distinguished the four milk groups,
achieving robust validation (Q? > 0.85, R? > 0.89) and high classification accuracy of ap-
proximately 92%. Marker validation through ROC analysis identified protein secondary
structures, especially 3-turn, random coil, and «-helix, as highly effective discriminants
with AUC values approaching 1.0. In addition, several carbohydrate- and lipid-associated
bands, including 1026-1028, 1382, and 2854 cm~ !, and the 1396-1400 cm ! band specific
to light milks, were validated as reliable markers. It should be noted that the number of
goat-milk samples analyzed (n = 12) was smaller than that of cow milk samples (n = 35).
Although the statistical models achieved high accuracy and cross-validation metrics, the
unequal sample size could affect model generalizability to broader populations. Future
studies should therefore include larger and more balanced sample sets, encompassing
additional breeds and seasonal variations, to further validate the robustness of the discrim-
inant features identified. In conclusion, the integration of ATR-FTIR spectral data, protein
conformational information, and image-derived features enabled robust and biologically
meaningful classification of milks according to species and fat content. The approach
not only achieved high statistical accuracy but also revealed compositional and structural
markers that reflect intrinsic differences between cow and goat milks and between whole
and light formulations.
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https:/ /www.mdpi.com/article/10.3390/app152010883 /51, Figure S1. Representative ATR-FTIR
spectra of cow and goat milks (whole and light) recorded in the 4000499 cm~! region; Table S1.
Labeling of milk samples.
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