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Abstract

Optimal airfoil design remains a critical challenge in aerodynamic engineering, with tra-
ditional methods requiring extensive computational resources and iterative processes.
This paper presents GEO-DSGA, a novel framework integrating hybrid geometric neural
networks with deep symbiotic genetic algorithms for enhanced airfoil optimization. The
methodology employs graph-based representations of airfoil geometries through a hybrid
architecture combining graph convolutional networks with traditional deep learning, en-
abling precise capture of spatial geometric relationships. The parametric modeling stage
utilizes CST, Bézier curves, and PARSEC methods to generate mathematically robust air-
foil representations, subsequently transformed into graph structures preserving local and
global shape characteristics. The optimization framework incorporates a deep symbiotic
genetic algorithm enhanced with dominant feature phenotyping, applying biological sym-
biotic principles where design parameters achieve superior performance through mutual
enhancement rather than independent optimization. This systematic exploration maintains
geometric feasibility and aerodynamic validity throughout the design space. Experimental
results demonstrate an 88.6% reduction in computational time while maintaining prediction
accuracy within 1.5% error margin for aerodynamic coefficients across diverse operating
conditions. The methodology successfully identifies airfoil geometries outperforming
baseline NACA profiles by up to 12% in lift-to-drag ratio while satisfying manufactur-
ing and structural constraints, establishing GEO-DSGA as a significant advancement in
computational aerodynamic design optimization.

Keywords: airfoil optimization; geometric neural networks; symbiotic genetic algorithms;
graph convolutional networks; aerodynamic design; computational fluid dynamics

1. Introduction

Airfoil design optimization represents a critical challenge in aerodynamic engineer-
ing, requiring the simultaneous consideration of complex geometric parameters, fluid
dynamics principles, and multi-objective performance criteria [1]. Traditional optimization
approaches face fundamental limitations: computational fluid dynamics (CFD) simulations
demand extensive resources, parametric design spaces exhibit high dimensionality with
non-convex characteristics, and conventional genetic algorithms lack intelligent guidance
mechanisms for efficient convergence [2,3]. Recent advances in machine learning have in-
troduced promising solutions through physics-informed neural networks [1], multi-fidelity
optimization [4], and deep learning-enhanced evolutionary algorithms [2]. However, these
approaches address individual aspects of the optimization challenge in isolation. Liu
et al.’'s CNN-PINN-DRL framework [1] successfully integrates physics constraints with
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neural networks but lacks geometric relationship modeling. Wu et al.’s multi-fidelity ap-
proach [4] achieves computational efficiency through intelligent data fusion yet does not
exploit parameter interdependencies. Similarly, existing evolutionary methods treat design
parameters independently, missing critical symbiotic relationships that emerge in optimal
airfoil configurations [2,5].

No existing framework successfully integrates geometric understanding, aerodynamic
prediction, and evolutionary optimization within a unified system that exploits symbi-
otic parameter relationships. Current methods suffer from three fundamental limitations:
(1) geometric parameterization approaches (CST, PARSEC, Bézier) operate independently
of aerodynamic performance prediction, (2) neural network architectures fail to capture
spatial geometric relationships inherent in airfoil surfaces, and (3) evolutionary algorithms
ignore beneficial parameter interdependencies, treating optimization as independent vari-
able problems rather than collaborative systems. This research addresses this critical gap
by introducing GEO-DSGA (Geometric Neural Networks with Deep Symbiotic Genetic
Algorithms), the first framework to combine graph-based geometric understanding with
biologically inspired symbiotic optimization principles. This approach not only allows the
numerical re-characterization of existing airfoils but also facilitates the systematic search
and development of new aerodynamic geometries. Integrating artificial intelligence algo-
rithms into our methodology will enhance our ability to identify the most suitable airfoil
that is compatible with specific design objectives, such as maximizing the lift coefficient or
optimizing the lift-to-drag ratio (L/D) [6,7]. The article will not only focus on optimizing
existing airfoils but will also contribute to the creation of original aerodynamic designs. Var-
ious optimization techniques will be employed, including genetic algorithms that simulate
natural selection processes, gradient-based methods that utilize computational optimiza-
tion [3,8], and hybrid approaches that combine multiple strategies for enhanced results [1,9].
This comprehensive methodology enables the systematic analysis and customization of air-
foil designs by combining traditional methods with modern techniques to achieve targeted
design goals [10].

The overall goal of this article is to develop a robust airfoil design framework that fills
a critical gap in the existing literature by integrating geometric modeling, aerodynamic
data generation, and optimization steps into a consistent workflow [5]. The results of
this research will provide a fast and reliable infrastructure for airfoil design, ultimately
guiding designers to select appropriate airfoils early in the design process, thereby signifi-
cantly minimizing the engineering effort required throughout the project life cycle [9,11].
This paper presents a novel approach to airfoil design optimization that combines deep
learning techniques with advanced optimization algorithms for improved aerodynamic
performance prediction and optimization [1,2]. The proposed methodology addresses the
critical challenge of airfoil selection and optimization by integrating parametric geometry
modeling techniques with advanced machine learning approaches [5,7]. The system utilizes
representations of airfoil geometries processed through hybrid neural networks, which
combine traditional deep learning with physics-based networks, thereby enabling the
capture of geometric relationships that are meaningful for aerodynamic performance [4,11].
The optimization framework uses improved genetic algorithms and multi-task learning
approaches to systematically explore the design space while maintaining geometric feasi-
bility [2,5]. Experimental results show significant improvements in convergence rate and
solution quality compared to traditional optimization methods [9,10].

In [1], a groundbreaking method for airfoil shape optimization, driven by CNN-
PINN-DRL, was introduced, combining Convolutional Neural Networks (CNN), Physics-
Informed Neural Networks (PINN), and Deep Reinforcement Learning (DRL). Their ap-
proach demonstrates the potential of hybrid architectures in capturing both geometric



Appl. Sci. 2025, 15, 10882

30f34

features and physical constraints simultaneously. The method showed significant im-
provements in optimization efficiency while maintaining physical validity by integrating
governing equations into the neural network architecture. The authors in [3] developed an
innovative aerodynamic shape optimization approach using physics-informed hot-start
methods combined with modified metric-based proper orthogonal decomposition. This
work addresses the computational bottleneck in traditional optimization by providing
intelligent initialization strategies that leverage physical understanding. The integration of
appropriate orthogonal decomposition enables efficient dimensionality reduction while
preserving critical aerodynamic characteristics. In the study [4], advanced airfoil design is
achieved through physics-inspired neural network models that incorporate fundamental
aerodynamic principles directly into the network architecture. Their approach demon-
strates how domain knowledge can be embedded within neural networks to improve
both the accuracy and physical consistency of predictions. In [5], a comprehensive multi-
task learning framework for the aerodynamic computation of two-dimensional airfoils is
presented. This approach simultaneously predicts multiple aerodynamic parameters (lift
coefficient, drag coefficient, pressure distribution) while sharing learned representations
across tasks. The framework demonstrates superior performance compared to single-task
approaches, providing more robust predictions across varying operating conditions. The
authors in [6] introduced a Dirichlet Distribution-Based Ensemble Surrogate Model for
aerodynamic optimization, addressing uncertainty quantification in surrogate-based opti-
mization. Their methodology provides probabilistic predictions that capture both aleatory
and epistemic uncertainties, enabling more robust design decisions under uncertainty. The
transfer learning strategy allows rapid adaptation to new design spaces and operating
conditions. Recent advances in multi-fidelity modeling [12] demonstrate the potential for
combining data from multiple sources with varying computational costs and accuracies.
These approaches optimize the trade-off between computational efficiency and prediction
accuracy by strategically utilizing high-fidelity data where most needed.

In [8], a gradient-based aerodynamic optimization method utilizing deep learning
is presented, which directly incorporates gradient information into the neural network
training process. This approach enables more efficient optimization convergence and pro-
vides better sensitivity analysis capabilities compared to traditional gradient-free methods.
In [2], the authors explored airfoil optimization using deep learning models combined with
evolutionary algorithms for the design of large-endurance UAVs. Their hybrid approach
combines the global search capabilities of evolutionary algorithms with the local refinement
capabilities of gradient-based methods, achieving superior optimization performance. The
authors in [5] developed an aerodynamic optimization method for propeller airfoils based
on DBO-BP (Dung Beetle Optimizer-Back Propagation) and NSWOA (Non-dominated
Sorting Whale Optimization Algorithm), demonstrating the effectiveness of bio-inspired
optimization algorithms in aerodynamic design. The authors in [11] introduced a fast
prediction method for airfoil aerodynamic characteristics based on combined autoencoders.
Their methodology significantly reduces computational time for aerodynamic analysis
while maintaining high accuracy, making it suitable for real-time applications and de-
sign optimization loops. In [10], novel pressure-based optimization methods using deep
learning techniques were developed. This approach directly optimizes pressure distribu-
tions rather than geometric parameters, providing more direct control over aerodynamic
performance characteristics. In [7], a machine learning-based approach for predicting aero-
dynamic coefficients using deep neural networks and CFD data is presented. Their work
demonstrates the effectiveness of data-driven approaches in replacing computationally ex-
pensive CFD simulations for routine aerodynamic analysis. The study [13] introduced deep
learning approaches for airfoil aerodynamic-electromagnetic coupling optimization with
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random forest integration, addressing the increasing need for multiphysics optimization
in modern aerospace applications. The authors in [14] developed deep learning methods
for airfoil flow field simulation based on Unet++, demonstrating the potential for neural
networks to directly predict complex flow fields around airfoils, potentially replacing tra-
ditional CFD simulations for specific preliminary design applications under well-defined
operational constraints, including: (1) parametric design space exploration during early
conceptual phases where rapid flow field estimation is prioritized over high-fidelity accu-
racy, (2) real-time control system applications requiring sub-millisecond response times
where computational efficiency supersedes precision, (3) iterative optimization loops where
relative performance ranking is more critical than absolute accuracy, and (4) educational
and training scenarios where flow visualization and fundamental understanding take
precedence over certification-quality predictions.

While existing literature demonstrates significant progress in individual aspects of
airfoil optimization, a gap remains in comprehensive frameworks that effectively in-
tegrate geometric understanding, aerodynamic prediction, and optimization within a
unified system.

The novelties and contributions of the present study are summarized below:

e  Hybrid Geometric-Aerodynamic Neural Architecture: Novel integration of graph
neural networks for spatial geometric relationship processing with traditional deep
networks for global aerodynamic parameter handling, enabling simultaneous local-
global feature extraction;

e  Symbiotic Evolutionary Optimization: Revolutionary implementation of biological
symbiotic principles where design parameters achieve superior performance through
mutual enhancement rather than independent optimization, fundamentally transform-
ing traditional genetic operators;

e  Neural-Guided Genetic Operations: Intelligence-enhanced crossover and mutation
operators that leverage neural network predictions to guide evolutionary processes,
replacing random operations with performance-informed decisions;

e Dominant Feature Phenotyping: Automated identification and preservation of ge-
ometric features that consistently contribute to superior aerodynamic performance
across multiple design scenarios.

e  Mutation rates are dynamically adjusted based on neural network performance pre-
dictions and population diversity metrics. Regions of the design space with high
predicted improvement potential receive increased mutation attention.

e Local performance gradients and feature importance rankings influence mutation
directions. This intelligent guidance reduces the computational waste associated
with random mutations while maintaining the exploratory capability essential for
genetic algorithms.

o The GEO-DSGA integrates multi-objective optimization capabilities, maintaining
Pareto-optimal solution sets while exploring trade-offs between competing aerody-
namic objectives. The algorithm is designed for efficient parallel execution, with
sub-populations distributed across available computational resources. Load balancing
mechanisms ensure optimal resource utilization while maintaining
algorithmic integrity.

The research establishes a foundation for next-generation computational tools in
aerodynamic design, demonstrating the potential for artificial intelligence to significantly
enhance traditional engineering workflows while maintaining the reliability and accuracy
required for aerospace applications.

The remainder of this manuscript is organized as follows: Section 2 presents the
comprehensive methodology including geometric parameterization and neural network
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architectures, Section 3 details the proposed GEO-DSGA framework, Section 4 provides ex-
perimental validation and comparative analysis, and Section 5 concludes with contributions
and future research directions.

2. Materials and Methods
2.1. Airfoil Optimization

The evolution of airfoil design represents one of the most significant achievements
in aerodynamic engineering, spanning over a century of theoretical development, exper-
imental validation, and computational advancement. The significance of airfoil design
extends beyond aviation, influencing wind turbine technology, propeller design, and var-
ious other applications where fluid—structure interaction is critical. Understanding this
historical development provides valuable insights into the evolution of engineering design
methodologies and the role of technological advancement in enabling new approaches to
complex aerodynamic problems.

2.1.1. Historical Development and Theoretical Foundations

The systematic study of airfoils began long before the first powered flight, establishing
the fundamental principles that continue to guide modern aerodynamic design. Sir George
Cayley (1773-1857) is often credited as the father of aerodynamics, conducting extensive ex-
periments on wing shapes and establishing the fundamental principles of lift generation [1].
His seminal work, published in “On Aerial Navigation” (1809-1810), laid the theoretical
foundation for understanding the relationship between wing camber and lift production,
introducing concepts that remain central to airfoil design theory [15,16].

Cayley’s theoretical contributions included the identification of the four forces acting
on an aircraft (lift, drag, thrust, and weight) and the recognition that lift could be generated
through the combination of wing camber and angle of attack. His experiments with
cambered surfaces demonstrated that curved airfoils produced superior lift characteristics
compared to flat plates, establishing the fundamental principle that airfoil geometry directly
influences aerodynamic performance.

Otto Lilienthal (1848-1896) made significant contributions through his gliding experi-
ments and systematic documentation of the lift and drag characteristics of various wing
profiles. His book “Birdflight as the Basis of Aviation” (1889) provided the first compre-
hensive dataset of airfoil performance, based on over 2000 gliding flights [17]. Lilienthal’s
experimental methodology included the construction of detailed lift and drag polar dia-
grams, systematic variation in wing geometry parameters, and documentation of flight
performance characteristics. His work demonstrated that optimal airfoil design required
careful balance between lift generation and drag minimization, establishing the foundation
for modern multi-objective airfoil optimization approaches.

2.1.2. Theoretical Aerodynamics and Design Principles

The development of theoretical aerodynamics in the early 20th century provided
the mathematical framework necessary for systematic airfoil design. Ludwig Prandtl’s
boundary layer theory (1904) revolutionized the understanding of viscous flow effects,
explaining the mechanisms of drag generation and flow separation that are critical to airfoil
performance [18,19]. Prandtl’s lifting line theory further provided the theoretical basis for
understanding finite wing effects and the relationship between two-dimensional airfoil
characteristics and three-dimensional wing performance.

The Kutta-Joukowski theorem established the mathematical relationship between
circulation and lift generation, providing the theoretical foundation for potential flow
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methods that dominated early computational approaches to airfoil analysis [20,21]. The
theorem mathematically expressed the lift per unit span as:

L = pVl (1)

In Equation (1), where p represents fluid density, V denotes freestream velocity, and I
is the circulation around the airfoil.

Theodore von Karmén'’s contributions to boundary layer theory and turbulence mod-
eling provided the theoretical framework for understanding complex flow phenomena,
including transition, separation, and reattachment [22,23]. His work established the math-
ematical basis for modern computational fluid dynamics approaches to airfoil analysis
and optimization.

2.1.3. Experimental Methods and Wind Tunnel Development

The development of sophisticated experimental facilities enabled systematic investiga-
tion of airfoil performance characteristics under controlled conditions. The establishment
of major wind tunnel facilities, including those at the National Physical Laboratory in
Britain and the Langley Memorial Aeronautical Laboratory in the United States, provided
the infrastructure necessary for comprehensive airfoil testing programs.

Experimental methodologies evolved to include sophisticated measurement tech-
niques for pressure distribution analysis, boundary layer visualization, and wake surveys.
These experimental capabilities enabled validation of theoretical predictions and provided
the empirical data necessary for developing improved airfoil design methodologies.

The development of pressure measurement techniques, including the use of pressure
taps and manometry systems, enabled detailed analysis of surface pressure distributions.
These measurements provided insights into the relationship between airfoil geometry and
local flow characteristics, facilitating the development of design rules relating geometric
parameters to aerodynamic performance. Figure 1 represents the key geometric parameters
that define the shape of an airfoil.

Upper surface Mean camber line
1 e
Maximum thickness Trailing edge
Maximum camber
————————————— | bttt LU TS
s e = R e o )
Chord line
A
Lower surface
Location of
maximum thickness
Location of b
maximum camber
- Chord >

Figure 1. The key geometric parameters that define the shape of an airfoil [24].

Chord Line and Chord Length: The straight line connecting the leading edge to
the trailing edge, with the chord length being the distance between these points. This
serves as the reference dimension for normalizing other airfoil measurements. Mean
Camber Line: The locus of points halfway between the upper and lower surfaces, measured
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perpendicular to the chord line. This curved line defines the airfoil’s basic shape and
significantly influences its lift characteristics. Leading and Trailing Edges: The forward-
most and rearward-most points of the airfoil. The leading-edge shape (characterized
by the nose radius) affects stall behavior and pressure distribution, while the trailing
edge influences the Kutta condition for circulation. Maximum Thickness: The greatest
distance between the upper and lower surfaces, measured perpendicular to the chord
line. This parameter affects structural strength, drag characteristics, and the critical Mach
number. Location of Maximum Thickness: The chordwise position where maximum
thickness occurs, typically expressed as a percentage of chord length. Forward locations
(20-30% chord) are common for low-speed airfoils, while aft locations may be used for
specific applications. Maximum Camber: The greatest distance between the mean camber
line and the chord line, which directly influences the airfoil’s lift coefficient and zero-lift
angle of attack. Location of Maximum Camber: The chordwise position of maximum
camber, affecting the pressure distribution and moment characteristics. Forward camber
locations typically produce more negative pitching moments. Nose Radius: The curvature
radius at the leading edge, which influences the stagnation point location and pressure
gradient, affecting boundary layer development and stall characteristics.

2.2. Geometric Parameterization Methods
2.2.1. NACA Geometric Construction Method

The NACA method of defining airfoil shapes introduced a systematic geometric
construction approach using coordinate systems and mathematical relationships. The key
innovation was constructing airfoil profiles using a thickness envelope distributed around
a mean camber line, with thickness plotted perpendicular to the camber line slope. This
method provides a standardized approach for airfoil definition and serves as a baseline for
comparison and validation purposes.

Coordinate System Framework: The coordinate system is placed at the airfoil nose
with x and y distances defining the profile. The chordwise coordinate x varies from 0
to 1, representing the normalized chord length, while the y-coordinate represents the
perpendicular distance from the chord line.

Camber Line Definition: The mean camber line is defined as the locus of points
equidistant from the upper and lower surfaces of the airfoil. For NACA four-digit series
airfoils, the camber line is defined piecewise in Equations (2)-(5):

For 0 <x <p:
ye = (m/pH2px — x*] (2)
dyc/dx = @m/p?)[p — x] 3)

Forp<x<1:
ye=(m/(1 — p))(1 — 2p) + 2px — x*] (4)
dyc/dx = 2m/(1 — p)*) [p — x] (5)

where m is the maximum camber, p is the location of maximum camber, and t is the
maximum thickness.
The thickness distribution follows the NACA in Equation (6):

yi = (t/0.2) [0.2969/x — 0.1260x — 0.3516x> + 0.2843x> — 0.1015x"] (6)

The final airfoil coordinates are constructed using equations that account for camber
line slope angle 6:
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Upper surface represented in Equation (7):
Xy =X — yt sin 0 and yu =y + yt cos 6 (7)
Lower surface shown in Equation (8):
X1 =X+ Yy sin 8 and y; = y. — yt cos (8)
where 6 = arctan (dy/dy) represents the camber line slope angle.

2.2.2. Class-Shape Transformation (CST) Method

The Class-Shape Transformation method provides a mathematically robust and aero-
dynamically intuitive approach to airfoil parameterization. This method decomposes the
airfoil shape into class functions that define basic geometric characteristics and shape
functions that control detailed variations, offering superior flexibility and control over
traditional parameterization techniques.

The CST method represents airfoil coordinates through a multiplicative combination
of class and shape functions represented in Equation (9):

W) =CW) - SW) + - Arg ©)

where 1(1) represents the airfoil ordinate at chordwise position {, C() is the class func-
tion defining basic airfoil characteristics, S(1) is the shape function controlling detailed
geometric variations, and Atg accounts for finite trailing edge thickness.

The class function is constructed using Bernstein polynomials in Equation (10):

Cp) =Ny - 1 —p)N, (10)

where Nj and N, control the leading edge and trailing edge characteristics, respec-
tively. For conventional airfoils, Nj = 0.5 creates realistic leading-edge behavior, while
N» = 1.0 provides appropriate trailing-edge conditions.

The shape function utilizes Bernstein polynomial basis functions in Equation (11):

S(b) =X (i=0ton) Aj - Kni(W) (11)

where A; represents shape coefficients and K, ;(¥) are Bernstein basis polynomials shown
in Equation (12):
Kn, i) = !/t (0 =) -+ (1 =) @70 (12)

The CST method provides several computational and design advantages: (1) hierarchi-
cal control structure enabling multi-scale geometric manipulation, (2) inherent geometric
smoothness through Bernstein polynomial basis functions, (3) near-orthogonal parameter
behavior improving optimization convergence, and (4) intuitive parameter interpretation
facilitating designer interaction.

2.2.3. PARSEC Method

The PARSEC (Parametric Section) method offers aerodynamically meaningful pa-
rameters that directly correspond to performance-relevant geometric characteristics. This
approach provides intuitive design control for aerodynamic engineers by utilizing parame-
ters that have direct physical interpretation and correlation with aerodynamic behavior.

PARSEC employs eleven fundamental parameters that comprehensively define
airfoil geometry:
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1. rg: Leading edge radius—influences stagnation point behavior and pressure
recovery characteristics

2. Xup, Zyp: Upper surface crest location coordinates—control upper surface pressure
distribution and maximum velocity regions

3. Zxxup: Upper surface curvature at crest—influences adverse pressure gradient devel-
opment and boundary layer behavior

4. Xjow, Ziow: Lower surface crest location coordinates—determine lower surface loading
distribution and pressure gradients

5. Zxxow: Lower surface curvature at crest—affects lower surface boundary layer devel-
opment and separation characteristics

6.  warg: Trailing edge direction angle—influences Kutta condition satisfaction and circu-
lation establishment

7. Ay, Trailing edge thickness—affects base pressure coefficients and wake development

8. Prr: Trailing edge wedge angle—controls trailing edge flow behavior and pressure
recovery.

PARSEC parameters are related to airfoil coordinates through sixth-order polynomials
fitted to satisfy geometric constraints, as shown in Equation (13):

Z=ap+a;x+ arx’ + ag,x3 +agxt + a5x5 +agx® (13)

The polynomial coefficients are determined through a constrained optimization pro-

cess that satisfies the PARSEC parameter specifications. The constraint system is formulated
as in Equation (14):

[Al{a} = {b} (14)

where matrix [A] encodes geometric constraints derived from PARSEC parameters, and
vector {b} contains the target parameter values.

The PARSEC design space exhibits favorable mathematical properties, including
convexity in regions corresponding to realistic airfoil geometries and well-conditioned
parameter sensitivity characteristics that facilitate efficient optimization convergence.

2.2.4. Hybrid Bézier-PARSEC Method

The hybrid Bézier-PARSEC method combines the intuitive geometric control of Bézier
curves with the aerodynamically meaningful parameters of PARSEC, creating a versatile
parameterization approach that balances design flexibility with physical interpretation.

The hybrid approach utilizes Bézier curves for local geometric control while constrain-
ing global shape characteristics through PARSEC parameters. This dual-level parameter-
ization enables detailed shape refinement while maintaining aerodynamically relevant
geometric properties. Adaptive control point distribution strategies concentrate control
points in geometrically critical regions (leading edge, maximum thickness location, trailing
edge) while maintaining computational efficiency through sparse parameterization in less
critical areas.

Multi-segment continuity constraints ensure smooth geometric transitions, as shown
in Equations (15) and (16):

Bin_10-1)(1) = By (0) (C° continuity) (15)

B'n 1n1)(1)=B91,(0) (C' continuity) (16)

PARSEC constraints are incorporated as geometric optimization objectives within the
Bézier curve fitting process, ensuring that the resulting geometry satisfies both local control
requirements and global aerodynamic parameter specifications.
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2.2.5. Improved Geometric Parameter (IGP) Method

The Improved Geometric Parameter method represents an enhanced parameteri-
zation approach that addresses the limitations of traditional methods through adap-
tive parameter selection, hierarchical geometric representation, and optimization-guided
parameter weighting.

The IGP method dynamically selects geometric parameters based on their correla-
tion with aerodynamic performance metrics and optimization objectives. Parameters
demonstrating high sensitivity to target performance characteristics receive enhanced
representation and computational attention.

The method implements a multi-level geometric representation where global shape
characteristics are defined through primary parameters, while local geometric details are
controlled through secondary parameters. This hierarchical structure enables efficient
design space exploration at multiple geometric scales.

Parameter importance weights are continuously updated based on their contribution
to aerodynamic performance improvements, as in Equation (17):

wittD = Wi(t) + o - 0P/dp; - | AP (17)

where w; represents the weight for parameter i, p denotes performance metrics, and « is
the learning rate for weight adaptation.

The IGP method incorporates manufacturing and geometric validity constraints di-
rectly into the parameterization formulation, ensuring that all generated geometries satisfy
practical design requirements.

2.3. Graph Neural Network Architecture

The Graph Neural Network component processes geometric graphs generated from
parametric airfoil representations, extracting sophisticated local geometric relationships
and spatial dependencies that traditional neural networks cannot capture effectively.

Airfoil coordinate points are transformed into graph nodes containing comprehen-
sive geometric information, including position coordinates, local curvature, thickness
parameters, surface normals, and arc length measurements. Graph connectivity is estab-
lished through multiple relationship types: sequential edges connecting adjacent surface
points, proximity edges linking geometrically similar regions, feature edges connecting
points with correlated characteristics, and curvature edges relating points with similar
geometric properties.

The GNN implements a specialized message passing framework designed for geomet-
ric data processing, which is represented in Equation (18):

1 1 1
ml(]) = Pmessage (hz( )/ h]( )/ €ijs 1’1‘]‘) (18)

where hi(l) and h" represent node features at layer 1, ej encodes edge attributes capturing
geometric relationships, and rj; represents spatial relationships between nodes i and j.

Multi-head geometric attention mechanisms enable the network to focus on differ-
ent geometric aspects simultaneously. Each attention head processes specific geometric
relationships (curvature variations, thickness distributions, slope characteristics), enabling
comprehensive local feature extraction as represented in Equation (19):

Multihead(Q, K, V) = Concat [heady, ...... , head,| WO (19)
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The aggregation process operates hierarchically, combining immediate neighbor infor-
mation before progressively incorporating information from larger neighborhoods as in
Equation (20):

ntY = U(Ws(ell)f’ h]('l) + Wit AGGiocar ({mij}) + ngbalAccglOb”l(G)) (20)

Traditional Neural Network Integration

The traditional neural network component processes global aerodynamic parame-
ters and integrates GNN outputs through sophisticated fusion mechanisms, ensuring
comprehensive consideration of all performance-relevant factors.

Global parameters, including Reynolds number, Mach number, and angle of attack,
are processed through specialized encoding layers that capture nonlinear relationships
represented in Equation (21):

Gencoded = fencoded([Rer Ma, «, :Br . ]) (21)

The fusion strategy employs attention-based mechanisms that dynamically weight the
relative importance of local geometric features versus global aerodynamic parameters as in
Equation (22):

a; = softmax(W, tanh(Wih; + Wghg + b,)) (22)

The architecture implements residual connections preserving both local and global
information throughout the fusion process, as shown in Equation (23):

hfused = hiocal + hglobal + ffusion (hlocalr hglobal) (23)

2.4. Optimization Algorithm
Deep Symbiotic Genetic Algorithm

The Deep Symbiotic Genetic Algorithm represents a paradigmatic advancement in
evolutionary optimization, extending traditional genetic algorithms through integration of
machine learning principles and biological symbiotic relationships.

Symbiotic Relationship Modeling: The algorithm establishes a dynamic interde-
pendency matrix capturing cooperative relationships between design parameters as in
Equation (24):

I1(i, j, t) = all(i,j,t — 1) + ‘B.l/J(pi, pis t) + 7.©(per formance_gain) (24)

Dominant Feature Phenotyping: The system identifies and preserves geometric fea-
tures that consistently contribute to superior aerodynamic performance through feature
importance ranking, which is represented in Equation (25):

I(fi) = Y[w(k)-C(fi, P (25)
k
where C(f;,Py) represents correlation between feature f; and performance metric Py.
Neural Network Integration: The algorithm incorporates neural network predictions
to guide evolutionary operators through gradient-informed mutations represented in
Equation (26):

x; =Xx; + S.VNN(xi) +n.N (0, 0’2) (26)
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Multi-Objective Optimization: The framework seamlessly integrates multi-objective
optimization capabilities, maintaining Pareto-optimal solution sets while exploring trade-
offs between competing aerodynamic objectives.

2.5. Validation and Performance Assessment
2.5.1. Computational Fluid Dynamics Validation

High-fidelity CFD simulations provide primary validation for optimized airfoil de-
signs using industry-standard software with carefully configured parameters. Structured
and unstructured mesh generation techniques discretize computational domains with
appropriate boundary layer resolution y* < 1 to capture viscous effects accurately.

Advanced turbulence models, including k — w SST and Spalart-Allmaras models,
predict boundary layer behavior and flow separation characteristics. Model selection is
validated against experimental data for similar airfoil configurations.

Comprehensive evaluation includes lift coefficient (Cr), drag coefficient (Cp), and
pitching moment coefficient (Cyy) across the complete angle of attack ranges, providing
insights into load-carrying capability, drag characteristics, and stability properties.

2.5.2. Uncertainty Quantification

The framework implements comprehensive uncertainty quantification, distinguishing
between aleatoric uncertainty (inherent data noise) and epistemic uncertainty (model uncer-
tainty) through specialized output layers predicting both mean values and
uncertainty estimates.

Monte Carlo dropout techniques provide uncertainty estimates by sampling from
learned parameter distributions, enabling confidence interval estimation for predictions.

Uncertainty estimates are calibrated through temperature scaling and Platt scaling
techniques, ensuring that predicted confidence intervals accurately reflect
prediction reliability.

This comprehensive methodological framework establishes the foundation for en-
hanced airfoil design optimization through the synergistic integration of advanced geomet-
ric parameterization, hybrid neural network processing, evolutionary optimization, and
rigorous validation procedures.

3. Proposed GEO-DSGA Framework
3.1. Methodology

This research presents GEO-DSGA, a four-stage framework integrating geometric
representation, neural network processing, evolutionary optimization, and empirical val-
idation for intelligent airfoil design. The framework operates as a closed-loop system:
parametric geometry modeling feeds into hybrid neural network processing, which guides
evolutionary optimization, culminating in empirical validation with feedback integration.

The proposed enhanced airfoil design optimization framework integrates multiple
advanced computational techniques through a systematic four-stage methodology. This
section presents the theoretical foundations, mathematical formulations, and implemen-
tation details of each component within the hybrid geometric neural network and deep
symbiotic genetic algorithm framework.

The system architecture effectively highlights the proposed hybrid geometric neural
networks with deep symbiotic genetic algorithms (GEO-DSGA) system’s four key compo-
nents, each contributing to its overall functionality through interconnected computational
modules. The framework operates as a closed-loop optimization system where parametric
geometry modeling feeds into hybrid neural network processing, which subsequently
guides evolutionary optimization, culminating in empirical validation with feedback inte-
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gration. This integrated approach ensures that each component enhances the effectiveness
of the others while contributing to overall system performance.

e  Graph-Based Neural Processing — Performance Prediction;
e  Evolutionary Optimization — Design Space Exploration;
e  Empirical Validation — Feedback Integration.

Each stage provides essential inputs to subsequent stages while receiving feedback
from downstream processes, creating a self-improving design ecosystem.

Figure 2 illustrates the integration of geometric representation, neural network pro-
cessing, evolutionary optimization, and empirical validation for intelligent airfoil design.

Parametric Geometry
Modeling & Graph Construction

CST Method

1) =2V - (1) Ve

Bézier Curves

B)=IP-Buf)

PARSEC Method

* Node definition with parametric parameters

Geometric Graph Builder

* Node definition with geometric features

* Edge recognition in geometric graph

* Convert connectivity information
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Figure 2.
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The proposed Hybrid Geometric Neural Networks and Deep Symbiotic Genetic

3.1.1. Stage 1: Parametric Geometry Modeling and Graph Construction

The parametric geometry modeling stage establishes the foundation for intelligent
airfoil design by creating mathematically robust and computationally efficient representa-
tions of airfoil geometries. This stage transforms continuous geometric shapes into discrete,
parameter-driven models that facilitate systematic design space exploration while preserv-
ing essential aerodynamic characteristics and ensuring manufacturability constraints.

Theoretical Framework for Parametric Representation

The parametric geometry modeling approach addresses fundamental challenges in
airfoil design optimization by providing mathematically well-conditioned representations
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that maintain geometric smoothness, support design space exploration, and enable efficient
computational processing.

Airfoil geometries must satisfy stringent continuity requirements to ensure real-
istic aerodynamic behavior and manufacturability. The parametric representation en-
forces C2 continuity (continuous second derivatives) across the entire airfoil surface,
preventing unrealistic geometric discontinuities that could lead to flow separation or
manufacturing difficulties.

The continuity constraint is mathematically expressed in Equation (27):

(), _ ()
a2 = p I

(27)

where () represents the parametric curve and ¢; denotes parameter transition points.

The parametric representation balances design space richness with computational
tractability by carefully selecting parameter sets that capture essential geometric variations
while avoiding redundancy and ill-conditioning. The dimensionality reduction is achieved
through principal component analysis of geometric variations in existing high-performance
airfoil databases.

The parametric representation incorporates mathematical constraints that guarantee
geometrically valid airfoil shapes. These constraints include:

e  Closure constraint: Ensuring the airfoil forms a closed contour;

e  Self-intersection prevention: Mathematical conditions preventing curve self-intersection;
e  Thickness distribution bounds: Maintaining realistic thickness-to-chord ratios;

e Leading edge smoothness: Enforcing appropriate curvature at the leading edge.

Practical manufacturing limitations are embedded within the parametric representa-
tion through constraint functions that ensure:

e  Minimum manufacturable thickness tolerances;
e  Maximum curvature limitations for conventional manufacturing processes;
e  Material stress concentration factors at geometric discontinuities.

Class-Shape Transformation (CST) Method

The Class-Shape Transformation method provides a mathematically elegant and
aerodynamically intuitive approach to airfoil parameterization, offering superior control
over local and global geometric characteristics.

The CST method represents airfoil coordinates through a combination of class func-
tions and shape functions, providing independent control over overall airfoil characteristics
and detailed shape variations.

The CST formulation is expressed in Equation (28):

() =C(¥). S(¢) + ¢ - Arg (28)

where

() represents the airfoil ordinate at chordwise position ;
C(v) is the class function defining basic airfoil characteristics;
5(y) is the shape function controlling detailed geometric variations;

Arr accounts for finite trailing edge thickness.

The class function is defined using Bernstein polynomials, as shown in Equation (29):

Cly) =M . (1—y)" (29)
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where Nj and N control the leading edge and trailing edge characteristics, respectively.
For conventional airfoils, N1 = 0.5 creates realistic leading-edge behavior, while N, = 1.0
provides appropriate trailing-edge conditions.

The shape function utilizes Bernstein polynomial basis functions as Equation (30):

S(y) = gAi.Kn,Aw) (30)

where A; represents shape coefficients and Kj, ;('¥) are Bernstein basis polynomials shown
in Equation (31):

Kni(9) = [nt/ (it(n — i)t (1= g)" (31)

CST coefficients provide intuitive control over local geometric features. Lower-order
coefficients influence global shape characteristics, while higher-order coefficients control
detailed local variations. This hierarchical control structure enables efficient design space
exploration at multiple geometric scales. The Bernstein polynomial basis functions inher-
ently ensure smooth geometric transitions, eliminating the need for additional smoothness
constraints. This mathematical property significantly simplifies the optimization pro-
cess while guaranteeing aerodynamically acceptable geometries. CST parameters exhibit
near-orthogonal behavior, minimizing parameter interactions and improving optimization
convergence characteristics. This orthogonality reduces the complexity of the design space
landscape, facilitating more efficient evolutionary optimization.

Bézier Curve Parameterization

The Bézier curve approach provides intuitive geometric control through control point
manipulation, offering designers direct influence over airfoil shape characteristics while
maintaining mathematical rigor.

Bézier curves are defined through a set of control points that influence curve ge-
ometry through weighted basis functions. The mathematical representation is shown in
Equation (32):

B(t) =} Pi-By,i(t) (32)
i=0
where P; represents control points and By, j() are Bernstein basis functions.
Geometric Interpretation: Control points provide intuitive geometric meaning, where

e Initial and final control points define curve endpoints.
e Intermediate control points influence curve curvature and local shape characteristics.
e  Control point positioning directly correlates with geometric features.

The implementation utilizes adaptive control point distribution strategies that con-
centrate control points in geometrically critical regions (leading edge, maximum thickness
location, trailing edge) while maintaining computational efficiency through reduced con-
trol point density in less critical areas. Control point positions are influenced by local
curvature requirements, ensuring appropriate geometric representation fidelity. High-
curvature regions receive additional control points, while low-curvature sections utilize
sparse parameterization. Complex airfoil geometries are represented through multiple
Bézier curve segments with enforced continuity constraints at segment boundaries. This
approach provides enhanced local control while maintaining global geometric consistency.

The multi-segment continuity constraint is expressed in Equations (33) and (34):

Biy—1,n-1y(1) = By (0) (CO continuity) (33)
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Bl 1,-1y(1) = Biy1,(0) (Cl continuity) (34)

Geometric Graph Construction

The geometric graph builder transforms parametric airfoil representations into graph
structures suitable for Graph Neural Network processing, enabling the application of
advanced machine learning techniques to geometric analysis and performance prediction.

Airfoil coordinate points are transformed into graph nodes, each containing compre-
hensive geometric information:

Node(i) = {

position: (x;,z;),
local_curvature: k;
local_thickness: t;
surface_normal: n;
arc_length: s;
}
Graph connectivity is established through multiple relationship types:

Sequential edges: Connect adjacent points along the airfoil surface;
Proximity edges: Connect geometrically proximate points regardless of surface position;
Feature edges: Connect points with similar geometric characteristics;

Curvature edges: Connect points with correlated curvature properties.

The edge weight matrix W is defined in Equation (35):

=l

Wi = exp< 5 ).similarity(fi,fj) (35)

where (f; f;) quantifies geometric feature correlation between nodes i and j.
Graph-level attributes capture overall airfoil characteristics accessible to all nodes:
Graph_attributes = {
max_thickness: .y,
max_camber: Cyax,
leading_edge_radius: 71,
trailing_edge_angle: atr,
chord_length: ¢

}

The graph structure incorporates geometric information at multiple scales, from lo-
cal surface properties to global shape characteristics, enabling comprehensive geometric
analysis through neural network processing. The graph structure dynamically adapts to
geometric modifications during optimization, maintaining consistent connectivity patterns
while accommodating shape variations. The parametric geometry modeling stage thus es-
tablishes a mathematically rigorous and computationally efficient foundation for intelligent
airfoil design, providing multiple complementary geometric representations that facilitate
systematic design space exploration while ensuring geometric validity and aerodynamic
realism. Through the integration of CST, Bézier, and PARSEC parameterization methods
with advanced graph construction techniques, this stage enables seamless transition to sub-
sequent neural network processing and optimization stages while maintaining geometric
fidelity and design flexibility.



Appl. Sci. 2025, 15, 10882

17 of 34

3.1.2. Stage 2: Hybrid Neural Network Processing

The hybrid neural network processing stage represents a paradigmatic advancement in
computational aerodynamics, synergistically combining Graph Neural Networks (GNNs)
with traditional feedforward architectures to extract comprehensive geometric-performance
relationships from airfoil configurations. This innovative approach transcends the limi-
tations of conventional neural network architectures by simultaneously processing local
geometric relationships and global aerodynamic parameters, enabling unprecedented
accuracy in aerodynamic performance prediction.

Architectural Framework and Design

The hybrid neural network architecture is founded on the principle that aerody-
namic performance emerges from complex interactions between local geometric features
and global flow characteristics. Traditional neural networks excel at processing global
parameters but struggle with geometric relationship extraction, while Graph Neural Net-
works demonstrate superior capability in handling relational data but may overlook global
context. The proposed hybrid architecture leverages the complementary strengths of
both approaches.

Aerodynamic performance prediction requires simultaneous consideration of in-
formation at multiple spatial and temporal scales. Local geometric features such as
surface curvature and boundary layer development interact with global parameters,
including Reynolds number, Mach number, and angle of attack, through complex
nonlinear relationships.

The multi-scale information integration is mathematically expressed in Equation (36):

P = f(L(G)/ ®globul/‘¥intemction> (36)

where P represents aerodynamic performance metrics, L(G) denotes local geometric rela-
tionships extracted from the graph structure G, © o5, encompasses global flow parameters,
and Yiyseraction captures the nonlinear interactions between local and global information.

The hybrid architecture implements a sophisticated information fusion strategy that
preserves the distinct characteristics of local and global information while enabling mean-
ingful integration. This approach prevents information dilution that commonly occurs in
naive concatenation strategies.

The hybrid architecture employs parallel processing pathways that simultaneously
analyze geometric graphs and global parameters. These pathways operate independently
during initial processing stages, enabling specialized feature extraction, before converging
through attention-based fusion mechanisms.

The fusion of GNN outputs with traditional neural network results utilizes learnable
attention mechanisms that dynamically weight the relative importance of local geometric
features versus global aerodynamic parameters based on the specific prediction context.

The attention mechanism is formulated as Equation (37):

w; = softmax (WuTtanh(Wlhl + Wehg + ba)) (37)

where a; represents attention weights, ; and g denote local and global feature representa-
tions, and W,, W;, W, are learnable weight matrices.

Graph Neural Network Component

The Graph Neural Network component processes the geometric graphs generated in
Stage 1, extracting sophisticated representations of local geometric relationships and spatial
dependencies that traditional neural networks cannot capture.
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The GNN implements a specialized message passing framework designed for
geometric data processing. @ Messages between nodes encode local geometric
relationships, including curvature variations, thickness distributions, and surface
continuity characteristics.

The geometric message function is defined as Equation (38):

l 1 1
ml(]) = Ymessage (hz( )/h]( )/ €ijs rij) (38)
where hlg) and h](-l) represent node features at layer |, e;; encodes edge attributes (geometric
relationships), and r;; represents spatial relationships between nodes i and j.

Traditional message passing treats all edges uniformly. The proposed approach incor-
porates curvature-aware message weighting that emphasizes geometrically critical regions
such as leading edges, maximum thickness locations, and trailing edges.

The curvature-weighted message is expressed as Equation (39):

weighted l
mij 8 = ml(]) 'wcurvature(K,-,Kj) 'wproximity(d,-j) (39)
where k; and «; represent local curvatures at nodes i and j, and Wproximity(dyj) provides
distance-based weighting.

The GNN employs multi-head attention mechanisms specifically designed for geomet-
ric data. Each attention head focuses on different geometric aspects (curvature, thickness,
slope), enabling comprehensive local feature extraction represented in Equation (40).

Multihead(Q, K, V) = Concat [heady, ..., headh]WO (40)

where each head processes specific geometric relationships, as shown in Equation (41):

head; = Attention(QWiQ , KWK, vin) (41)

The aggregation process operates hierarchically, first combining immediate neighbor
information, then progressively incorporating information from larger neighborhoods. This
hierarchical approach captures geometric relationships at multiple scales.

The hierarchical aggregation is formulated as Equation (42):

hz(lﬂ) - U(Ws(el?f’ h;l) + Wl(olc)alAGGlocal ({mi}) + WégzbazAGGglobﬂl(G )) (42)
where o represents the standard ReLU (Rectified Linear Unit) activation function, defined
as o(x) = max(0, x), which introduces essential nonlinearity into the hierarchical aggregation
process while maintaining computational efficiency. The piecewise linear nature of ReLU
eliminates the computationally expensive exponential operations required by sigmoid-
based activations, thereby reducing both forward pass and backpropagation computational
costs—a significant consideration given the iterative nature of the optimization process and
the large-scale graph structures involved in airfoil geometric representation. where AGGy,y
aggregates immediate neighborhood information and AGGgjgp, incorporates graph-level
geometric characteristics.

The GNN explicitly encodes surface continuity information through specialized edge
features that capture tangent and normal vector relationships between adjacent surface
points. This encoding enables the network to understand geometric smoothness and
identify potential flow separation regions. The network learns correlations between local
geometric features and expected pressure distributions, enabling the prediction of local
flow characteristics based on geometric analysis alone.
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Traditional Neural Network Integration

The traditional neural network component processes global aerodynamic parame-
ters and integrates GNN outputs through sophisticated fusion mechanisms, ensuring
comprehensive consideration of all performance-relevant factors.

Global parameters (Reynolds number, Mach number, angle of attack) are processed
through specialized encoding layers that capture the nonlinear relationships between these
parameters and aerodynamic behavior.

The parameter encoding is expressed as Equation (43):

Gencoded = fencode([Re/ Ma, «, 5/ .- ]) (43)

where f,,c04. Tepresents a deep encoding network that transforms raw parameters into rich
feature representations.

The network explicitly models interactions between global parameters through tensor
decomposition techniques that capture higher-order parameter relationships, as shown in
Equation (44):

Interactioniensor = Z/\,(ur ® v ® wy) (44)
r

where A, represents interaction strengths and u,, v,, w, are parameter-specific factor vectors.

The fusion of GNN outputs with global parameter representations employs adaptive
mechanisms that adjust fusion strategies based on the current prediction context. For high
Reynolds number flows, the network may emphasize global parameter influence, while for
low Reynolds number flows, local geometric effects may receive higher weighting.

The architecture implements residual connections that preserve both local geometric
information and global parameter influence throughout the fusion process, preventing
information loss during integration.

The residual fusion is formulated as Equation (45):

hfused = hjocal + hglabal + ffusion (hlocul/ hglobal) (45)

where f55i0, learns optimal combination strategies while residual connections preserve
original information.

Performance Prediction Networks

The final component transforms fused representations into aerodynamic performance
predictions with associated uncertainty quantification, providing reliable and interpretable
results for optimization guidance.

The network simultaneously predicts multiple aerodynamic coefficients (lift, drag,
pitching moment) while modeling their interdependencies. This approach ensures consis-
tency between predicted values and captures trade-offs between different
performance metrics.

The multi-output prediction is formulated as Equation (46):

[CL; Cp,Cum ] = fpredict (hfused) (46)

With correlation constraints represented in Equation (47):

Constraint : |corr(Cr, Cp) — €Ot ipeoreticall < € 47)

The prediction network incorporates physics-informed constraints that ensure pre-
dicted values satisfy fundamental aerodynamic relationships. These constraints include
momentum conservation, energy balance, and boundary condition compatibility.
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The network distinguishes between aleatoric uncertainty (inherent data noise) and
epistemic uncertainty (model uncertainty) using specialized output layers that predict both
mean values and uncertainty estimates as in Equation (48).

Output * Bpredictedr Oaleatorics Oepistemic (48)

During inference, Monte Carlo dropout techniques provide uncertainty estimates by
sampling from the learned distribution of network parameters, enabling confidence interval
estimation for predictions. The uncertainty estimates are calibrated through temperature
scaling and Platt scaling techniques to ensure that predicted confidence intervals accurately
reflect prediction reliability.

Training Strategies and Optimization

The hybrid neural network requires specialized training strategies that account for the
complex architecture and diverse data types while ensuring robust
generalization capabilities.

The training process employs carefully balanced multi-task losses that prevent any sin-
gle prediction objective from dominating the learning process, as shown
in Equation (49):

Ltotar = AcL Ler +Acp Lep +Acm Lem + )\reg Lregularization (49)

where A coefficients are dynamically adjusted based on task difficulty and
convergence characteristics.

Advanced gradient balancing techniques ensure that gradients from different loss com-
ponents contribute meaningfully to parameter updates, preventing gradient interference
between GNN and traditional neural network components.

The GNN component employs graph-specific regularization techniques, including
graph dropout, edge dropout, and spectral regularization, that prevent overfitting to
specific geometric patterns while maintaining generalization capability.

Regularization terms enforce consistency between GNN predictions and tradi-
tional neural network predictions when processing equivalent information, ensuring
architectural coherence.

The training framework incorporates domain adaptation techniques that enable the
network to generalize across different airfoil families and operating conditions while
maintaining high prediction accuracy.

The training process implements curriculum learning strategies that progressively
introduce increasingly complex geometric configurations and challenging aerodynamic
conditions, facilitating stable learning progression.

Adversarial training techniques improve network robustness by training against
perturbations in both geometric representations and global parameters, ensuring reliable
performance under noisy or uncertain input conditions.

The architecture supports transfer learning from pre-trained models, enabling rapid adap-
tation to new airfoil families or operating conditions with minimal retraining requirements.

The hybrid neural network processing stage thus establishes a sophisticated compu-
tational framework that transcends traditional approaches by simultaneously leveraging
local geometric relationships and global aerodynamic parameters. Through the innovative
combination of Graph Neural Networks and traditional architectures, this stage enables
unprecedented accuracy in aerodynamic performance prediction while providing the in-
terpretability and uncertainty quantification essential for reliable optimization guidance.
The comprehensive training strategies and advanced optimization techniques ensure ro-
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bust generalization capabilities and practical applicability across diverse aerodynamic
design challenges.

3.1.3. Stage 3: Deep Symbiotic Genetic Algorithm Optimization

The Deep Symbiotic Genetic Algorithm (DSGA) represents a paradigm shift in evolu-
tionary Optimization for airfoil design, extending beyond traditional genetic algorithms
through the integration of advanced machine learning principles and biological symbi-
otic relationships. This sophisticated optimization framework addresses the inherent
limitations of conventional evolutionary approaches while leveraging deep learning in-
sights to guide the search process toward optimal aerodynamic configurations. The DSGA
framework is built upon the premise that superior airfoil designs emerge from complex
interdependencies between geometric parameters rather than independent parameter
optimization. This approach mirrors biological symbiotic relationships where multiple
entities benefit from cooperative interactions, translating this concept into the mathematical
optimization domain.

The DSGA establishes a dynamic interdependency matrix I1 that captures the coop-
erative relationships between design parameters. This matrix is continuously updated
throughout the optimization process, learning from successful parameter combinations
and identifying synergistic effects that enhance aerodynamic performance.

The interdependency matrix is defined as Equation (50):

I1(i, j,t) = aI1(i,j,t — 1) + B.9(pi, pj. t) + 7.D(per formance_gain) (50)

where ¢(p;, pjs t) represents the observed correlation between parameters p; and p; at
iteration t, and ®(per formance_gain) quantifies the performance improvement resulting
from their cooperative interaction.

Traditional fitness evaluation considers individual solutions in isolation. The DSGA
introduces symbiotic fitness evaluation, where the fitness of a solution depends not only
on its performance but also on its ability to contribute beneficial characteristics to other
solutions in the population.

The symbiotic fitness function is formulated as Equation (51):

Fs(x;) = F(x;) + AZjs [ (x5, %)) -F(x;)] (51)

where F(x;) represents the individual fitness of solution x;, u(x;x;) quantifies the sym-
biotic benefit that solution x; provides to solution x;, and A controls the influence of
symbiotic relationships.

The DSGA incorporates neural network predictions to guide evolutionary operators
intelligently. Rather than relying on random mutations and crossovers, the algorithm
leverages learned patterns from the neural network predictions to bias genetic operations
towards the promising regions of the design space. Traditional genetic algorithm mutations
operate randomly within parameter bounds. The DSGA implements gradient-informed
mutations that utilize performance gradients predicted by the neural network to direct
mutations toward regions of anticipated improvement.

The gradient-informed mutation operator is defined as Equation (52):

x; = x; +eVn(x) + W'N(O' 02) °

where Vyn(x;) represents the neural network-predicted performance gradient, ¢ is
the gradient step size, and 1.N (0, (72) introduces controlled stochasticity to maintain
population diversity.
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Dominant Feature Phenotyping

The dominant feature phenotyping mechanism represents a novel contribution to
evolutionary optimization, identifying and preserving geometric features that consistently
contribute to superior aerodynamic performance across multiple design scenarios and
operating conditions.

The DSGA employs sophisticated feature extraction techniques to identify recurring
geometric patterns in high-performing airfoil designs. These features are characterized at
multiple scales, from local curvature variations to global shape characteristics.

Feature vectors are constructed as Equation (53):

F= flocal/ fglohal/fgmdient/ ftopological (53)

where fj,cq captures local geometric properties (curvature, thickness distribution), foiepa
represents overall shape characteristics (camber, aspect ratio), foadient describes surface
gradient patterns, and fy,poiogicas €ncOdes connectivity and continuity properties.

Statistical analysis techniques identify correlations between specific geometric fea-
tures and aerodynamic performance metrics. The algorithm maintains a dynamic feature
importance ranking that evolves throughout the optimization process.

The feature importance metric is computed as Equation (54):

I1(f;) = Y Jw(k).C(fi, Pt)] (54)

k

where C(f;, Py) represents the correlation between feature fi and performance metric Pk,
and w(k) represents the weighting factor for different performance objectives.

Population Dynamics and Diversity

The DSGA implements sophisticated population management strategies that main-
tain genetic diversity while promoting convergence toward optimal solutions through
symbiotic interactions.

The algorithm maintains a hierarchical population structure consisting of multi-
ple sub-populations operating at different abstraction levels. Local sub-populations
focus on detailed geometric refinement, while global sub-populations explore broader
design space regions. Information exchange between sub-populations occurs through
controlled migration events and knowledge-sharing mechanisms. Elite solutions and
beneficial features are propagated across population boundaries while maintaining sub-
population specialization.

Selection mechanisms are modified to consider both individual fitness and symbiotic
contribution potential. Solutions that demonstrate the ability to enhance the performance of
other population members receive preferential selection treatment. The algorithm identifies
mutualistic relationships between solutions where paired combinations yield superior
performance compared to individual solutions. These pairings inform crossover operations
and guide population mating strategies.

The mutualistic benefit function is defined as Equation (55):

M(x;,x;) = max{O, F(hybfid(xi/xj) - m“x(P(x")’F(xf» } (59)

where hybrid(x;, xj) represents the optimal combination of features from solutions x;
and x;.
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3.1.4. Empirical Validation

The empirical validation stage represents the culmination of the intelligent airfoil
design framework, where theoretically optimized designs undergo rigorous computational
and experimental verification. This stage ensures the reliability and practical applicability
of the generated airfoil geometries while establishing a robust feedback mechanism that
continuously improves the entire design ecosystem.

Computational Fluid Dynamics (CFD) Validation

The CFD validation process employs high-fidelity numerical simulations to assess
the aerodynamic performance of optimized airfoil designs generated by the previous
stages. This computational verification serves as the primary validation mechanism before
potential experimental testing.

The CFD validation utilizes industry-standard computational fluid dynamics software
with carefully configured simulation parameters to ensure accuracy and reliability. The sim-
ulation environment incorporates structured and unstructured mesh generation techniques
to discretize the computational domain around the airfoil geometry. High-quality meshes
with appropriate boundary layer resolution (y+ < 1) are generated to capture viscous effects
accurately. Mesh independence studies are conducted to ensure solution convergence and
eliminate numerical errors arising from insufficient grid resolution. The CFD validation
employs turbulence models selected based on their demonstrated capabilities for specific
flow phenomena. The k-w SST (Shear Stress Transport) model, incorporating transitional
modeling capabilities, provides accurate prediction of boundary layer behavior, flow sep-
aration characteristics, and pressure-induced separation typical of airfoil flows [25,26].
The Spalart-Allmaras one-equation model, while computationally efficient and robust for
attached flows and mild adverse pressure gradients, has recognized limitations in accu-
rately predicting complex separation phenomena and transitional boundary layer behavior
without additional modeling enhancements [27,28]. The selection of turbulence models is
validated against experimental data for similar airfoil configurations to ensure predictive
accuracy. Appropriate boundary conditions are applied to simulate realistic operating envi-
ronments. Far-field boundary conditions maintain flow uniformity at sufficient distances
from the airfoil, while wall boundary conditions enforce no-slip conditions at the airfoil
surface. The simulations account for compressibility effects when operating at high Mach
numbers and include viscous effects throughout the entire operating envelope.

Performance Assessment and Benchmarking

The performance assessment phase establishes quantitative metrics for evaluat-
ing the effectiveness of the optimized airfoil designs against established baselines and
design objectives.

Optimized airfoil designs are systematically compared against well-established base-
line airfoils (NACA 0012; NACA 4412, RAE 2822) under identical operating conditions.
This comparison provides objective measures of performance improvement and validates
the effectiveness of the optimization process. The assessment considers multiple conflicting
objectives simultaneously, including maximum lift-to-drag ratio, minimum drag coefficient,
maximum lift coefficient, and moment coefficient characteristics. Pareto frontier analysis
identifies trade-offs between competing objectives and highlights the superior character-
istics of optimized designs. Performance evaluation spans the entire intended operating
envelope, including various Reynolds numbers, Mach numbers, and angle of attack ranges.
This comprehensive assessment ensures robust performance across diverse operating condi-
tions. This integrated methodology framework establishes a sophisticated ecosystem where
each component enhances the effectiveness of the others while contributing to overall sys-
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tem performance. The systematic relationships between stages create emergent capabilities
that surpass traditional single-technique approaches, enabling unprecedented accuracy
and efficiency in intelligent airfoil design.

4. Results and Discussion
4.1. Experimental Setup

The proposed Hybrid Geometric Neural Networks with Deep Symbiotic Genetic Al-
gorithms (GEO-DSGA) was trained using a carefully designed optimization protocol that
balances convergence speed, stability, and generalization performance. The training config-
uration was determined through extensive hyperparameter optimization using Bayesian
Optimization with Gaussian Process priors, ensuring optimal performance across diverse
airfoil geometries and flow conditions.

The experimental configuration is summarized in Tables 1-4. Table 1 presents the
dataset characteristics, Table 2 details the model architecture, Table 3 specifies the genetic
algorithm parameters, and Table 4 outlines the training configuration.

Table 1. Dataset Characteristics.

Parameters Specifications
Total Airfoil Geometries 10,000
Training Set 7000 (70%)
Validation Set 2000 (20%)
Test Set 1000 (10%)
NASA Geometric Parameters 11 X0, Xur, Z1.0, Z1E, ZUP, ZCLO, Zcupr, &TE, BTE, AZTE, 1)
Flow Conditions Range Re: 103108, M: 0.05-0.95, AoA: —20-20°
Airfoil Families 15 (NACA 4-digit, 5-digit, 6-series, Supercritical, etc.)

Table 2. Model Architecture Parameters.

Component Parameter Value
Graph Transformer Layers Number of Layers 6
Hidden Dimension (d_model) 512
Attention Heads 16
Dropout Rate 0.1
Node Features Dimension 8
Edge Features Dimension 4
Global Features Dimension 18
Maximum Nodes Nodes 200
Physics-Informed Layers Hidden Layers [256, 128, 64]
Fusion Mechanism Attention Heads 8
Key Dimension 64

Table 3. Genetic Algorithm Parameters.

Parameter Value Description
Population Size (Haploid) 100 Single chromosome individual
Population Size (Diploid) 100 Dual chromosome individuals

Elite Rate 0.1 Fraction of elite individuals

Crossover Rate 0.8 Probability of crossover
Mutation Rate 0.1 (adaptive) Initial mutation probability
Generations 100 Maximum evolutionary cycles

Selection Method Tournament Tournament size: 3
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Table 4. Training Configuration.

Parameter Value
Optimizer AdamW
Initial Learning Rate 1x1073
Weight Decay 1x1074
Learning Rate Schedule Cosine Decay with Restarts
Batch Size 32
Training Epochs 200
Mixed Precision FP16v
Gradjient Clipping 1.0

4.2. Performance Results

Table 5 demonstrates exceptional aerodynamic prediction accuracy achieved by the
proposed Hybrid Geometric Neural Networks with Deep Symbiotic Genetic Algorithms
(GEO-DSGA), with improvements ranging from 84.7% to 90.7% across all coefficients
and metrics compared to baseline approaches. The statistical validation confirms highly
significant performance gains (p < 0.001) with huge effect sizes (Cohen’s d > 2.8) across
all aerodynamic coefficients. The lift coefficient prediction accuracy (RMSE = 0.0089,
MAPE = 0.89%) represents a breakthrough in machine learning-based aerodynamic pre-
diction, achieving precision levels approaching wind tunnel measurement uncertainty.
The drag coefficient prediction (RMSE = 0.000341) provides exceptional accuracy cru-
cial for efficiency optimization applications, while the moment coefficient prediction
(RMSE = 0.00423, MAPE = 1.87%) approaches certification-quality accuracy requirements.
The consistent high correlation coefficients (R? > 0.989) across all aerodynamic coefficients,
combined with physically consistent error distributions and robust performance under
perturbations, establish the hybrid approach as a reliable and accurate tool for aerodynamic
analysis and design optimization. The preservation of fundamental aerodynamic relation-
ships while achieving superior numerical accuracy validates the physics-informed nature
of the learned representations. This exceptional prediction accuracy, coupled with com-
putational efficiency suitable for real-time applications (4.7 ms per prediction), positions
the Hybrid GNN as a transformative technology for aerodynamic design and analysis,
enabling new possibilities in interactive design tools, optimization algorithms, and control
system applications.

Table 5. Aerodynamic Prediction Accuracy.

Metric Ba;ei:&ziieg)iﬁ)ral Standard GNN H&;E:pdoiﬁ)l\l Improvement
Lift Coefficient (CL)
RMSE 0.0847 0.0421 0.0089 89.5% vs. Baseline
MAE 0.0672 0.0334 0.0071 89.4% vs. Baseline
R? Score 0.923 0.967 0.9923 7.5% vs. Baseline
MAPE (%) 8.34 4.12 0.89 89.3% vs. Baseline
Drag Coefficient (CD)
RMSE 0.00234 0.00156 0.000341 85.4% vs. Baseline
MAE 0.00187 0.00124 0.000287 84.7% vs. Baseline
R? Score 0.887 0.934 0.9891 11.5% vs. Baseline
MAPE (%) 12.67 8.43 1.94 84.7% vs. Baseline
Moment Coefficient
(CP)
RMSE 0.0456 0.0298 0.00423 90.7% vs. Baseline
MAE 0.0367 0.0241 0.00356 90.3% vs. Baseline
R2 Score 0.856 0.912 0.9867 15.3% vs. Baseline
MAPE (%) 15.23 9.87 1.87 87.7% vs. Baseline
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Table 6 presents a comprehensive quantitative assessment of the proposed Hybrid Ge-
ometric Neural Networks with Deep Symbiotic Genetic Algorithms (GEO-DSGA) against
contemporary state-of-the-art evolutionary optimization methodologies. The comparative
evaluation employs four critical performance metrics: convergence efficiency (mean gen-
erations to convergence), solution quality (best fitness achieved), optimization velocity
(convergence rate), and algorithmic reliability (success rate percentage).

Table 6. Optimization Performances vs. Proposed Hybrid GEO-DSGA.

Mean Best Fitness Success
Algorithm Reference Generations to Achieved Convergence Rate Rate (%) Year
Convergence
CNN-PINN-DRL Liuet ?11] (2024) 76.8 &£ 10.3 3.892 & 0.145 0.0089 = 0.0015 87.4 2024
Deep Learning Minaev et al.
CA (2024) [2] 725+ 9.7 4.123 + 0.134 0.0112 + 0.0018 89.6 2024
Multi-fidelity Wu et al. (2024)
DNN-GA [4] 68.3 = 89 4287 +0.128 0.0145 + 0.0021 91.2 2024
DNN-Enhanced Wu et al.
GA (2023) [29] 89.6 + 124 3.521 4+ 0.187 0.0067 + 0.0012 82.7 2023
Hybrid © K) 342478 4.896 - 0.089 0.0234 + 0.0031 96.8 2025
GEO-DSGA ur wor . . . . . . .

Liu et al.’s [1] CNN-PINN-DRL approach successfully integrated physics-informed
neural networks with deep reinforcement learning, achieving 87.4% success rates. Si-
multaneously, Minaev et al.’s [2]. Deep Learning GA specialized for UAV applications
demonstrated 89.6% reliability, while Wu et al.’s [4] multi-fidelity approach achieved 91.2%
success through intelligent data fusion strategies.

The incorporation of neural network components into evolutionary algorithms marked
a significant paradigmatic shift. Wu et al.’s [29] DNN-Enhanced GA demonstrated the
viability of hybrid approaches, achieving 82.7% success rates while reducing convergence
requirements compared to classical methods.

The proposed GEO-DSGA represents a fundamental advancement beyond additive
hybrid approaches, implementing biological symbiotic principles that model coopera-
tive parameter relationships. This paradigmatic shift enables 96.8% success rates while
dramatically reducing computational requirements.

Table 7 demonstrates exceptional cross-family generalization performance of the pro-
posed Hybrid GEO-DSGA, achieving 94.8% to 98.7% accuracy across diverse airfoil families
with improvements of 7.8% to 31.5% over baseline methods. The statistical validation con-
firms significant performance gains (p < 0.001, Cohen’s d = 3.20) with robust confidence
intervals supporting practical deployment. The generalization analysis reveals that the
hybrid architecture successfully learns universal aerodynamic-geometric relationships that
transfer effectively across airfoil families. The inverse correlation between improvement
magnitude and baseline performance (r = —0.84) indicates particular strength in handling
challenging geometric configurations where traditional methods struggle. The superior
performance for underrepresented families (Laminar Flow: 94.8% with only 8% training
data) validates the model’s ability to extrapolate beyond training distributions, crucial for
practical engineering applications involving novel designs. The synergistic architectural
effects (+2.8% beyond individual contributions) confirm the value of the integrated hybrid
approach for generalization tasks. This cross-family validation establishes the hybrid GNN
as a robust, generalizable solution for aerodynamic prediction across diverse geometric
configurations, supporting its deployment in real-world design optimization scenarios
where encounters with novel airfoil families are inevitable.
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Table 7. Cross-Family Generalization.
g . Training Data Test .

Airfoil Family (%) Accuracy Baseline Improvement
NACA 4-digit 25.0 98.7% 89.3% +10.5%
NACA 5-digit 15.0 97.9% 85.7% +14.2%
NACA 6-series 20.0 98.3% 91.2% +7.8%
Supercritical 10.0 96.1% 78.4% +22.6%
Laminar Flow 8.0 94.8% 72.1% +31.5%
Custom Profiles 12.0 95.7% 76.8% +24.6%
Transonic 10.0 96.4% 81.3% +18.6%

Table 8 demonstrates that the proposed Hybrid GEO-DSGA achieves substantial com-
putational efficiency improvements across all measured performance dimensions. The
66.4% training time reduction, 39.3% memory savings, 28.6% FLOPs reduction, and 58.6%
energy efficiency improvement collectively establish the method’s practical superiority and
scalability advantages. These performance improvements, validated through rigorous sta-
tistical analysis and consistent across multiple hardware configurations, demonstrate that
the hybrid approach not only achieves superior predictive accuracy but does so with sig-
nificantly enhanced computational efficiency. This combination of improved performance
and reduced computational requirements addresses key barriers to industrial adoption
and enables broader application of advanced machine learning techniques in aerodynamic
design optimization.

Table 8. Computational Performance.

. . Hybrid
Metric Baseline GEO-DSGA Improvement
Training Time (hours) 24.7 8.3 66.4% reduction
GPU Memory Usage (GB) 11.2 6.8 39.3% reduction
FLOPs per Forward Pass 2.34 x 10° 1.67 x 10° 28.6% reduction
Energy Consumption (kWh) 45.6 18.9 58.6% reduction

Table 9 demonstrates that neural attention mechanisms provide reliable, interpretable,
and physically consistent measures of geometric parameter importance in aerodynamic
design. The attention weight hierarchy, led by leading edge radius (18.47%), trailing edge
thickness (16.23%), and upper crest position (14.56%), shows strong alignment with es-
tablished aerodynamic principles while revealing nonlinear parameter interactions not
captured by traditional sensitivity methods. The statistical validation confirms the ro-
bustness and reliability of attention-based feature importance (p < 0.001 for all rankings,
CV < 25% for stability). The strong correlation with alternative interpretability methods
(p > 0.72) and physical validation through CFD analysis establishes attention weights as
trustworthy indicators for design optimization prioritization. This interpretability analysis
validates the physics-aware nature of the hybrid neural network while providing practical
insights for aerodynamic design optimization, establishing attention weights as reliable
indicators of geometric parameter importance in airfoil performance determination.



Appl. Sci. 2025, 15, 10882 28 of 34
Table 9. Geometric Feature Importance Analysis Attention Weight Analysis.
NASA Parameter Mean Attention Weight Std Dev Importance Rank
r (Leading Edge Radius) 0.1847 0.0234 1
AZTE (Trailing Edge Thickness) 0.1623 0.0198 2
XUP (Upper Crest Position) 0.1456 0.0287 3
ZUP (Upper Crest Ordinate) 0.1289 0.0245 4
XLO (Lower Crest Position) 0.1134 0.0213 5
Z1O (Lower Crest Ordinate) 0.0987 0.0234 6
BTE (Trailing Edge Wedge Angle) 0.0834 0.0156 7
ZCUP (Upper Crest Curvature) 0.0567 0.0134 8
oTE (Trailing Edge Direction) 0.0523 0.0098 9
ZCLO (Lower Crest Curvature) 0.0456 0.0123 10
ZTE (Trailing Edge Ordinate) 0.0284 0.0087 11

Figure 3 illustrates the symbiotic parameter relationships identified by the Deep Sym-
biotic Genetic Algorithm (GEO-DSGA) through its interdependency matrix analysis. This
network visualization reveals the complex cooperative interactions between NASA geo-
metric parameters that contribute to superior aerodynamic performance, representing a
fundamental advancement in understanding parameter synergies in airfoil design opti-
mization. The leading edge radius (r) demonstrates significant symbiotic relationships with
both the upper crest position (Xyp, edge weight = 0.8) and trailing edge thickness (AZtg,
edge weight = 0.5). This multi-parameter interaction pattern reflects the fundamental role
of leading edge geometry in establishing the overall pressure distribution along the airfoil
surface. The strong r-Xyp relationship indicates that optimal leading edge curvature must
be coordinated with upper surface peak location to achieve favorable pressure gradients
and delay flow separation.

Symbiotic Parameter Relationships

XUP OAZTE

Figure 3. The symbiotic relationships of proposed Geometric Neural Networks with Deep Symbiotic
Genetic Algorithms (GEO-DSGA).

The trailing edge thickness (AZtg) exhibits symbiotic relationships with multiple
parameters, including the upper crest ordinate (Zyp, edge weight = 0.7) and leading edge
radius (r, edge weight = 0.5). This connectivity pattern demonstrates the global influence
of trailing edge geometry on overall airfoil performance, particularly regarding circula-
tion establishment and wake characteristics. The AZtg-Zyp relationship is particularly
significant for achieving optimal pressure recovery and minimizing form drag. Table 10
clearly demonstrates the validation results of the CFD turbulence model, confirming its
effectiveness and accuracy.
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Table 10. CFD Turbulence Model Validation Results.

Turbulence Model

Cp Distribution

RMSE CL Error (%) CD Error (%) Separation Prediction

k-w SST 0.0234 1.2% 3.4% Excellent

Spalart-Allmaras 0.0289 1.8% 5.7% Good (attached flows)

Relatve Chord Length yic

The CFD validation employs turbulence models selected based on comprehensive
validation studies against experimental data for NACA 0012 and RAE 2822 airfoils across
Reynolds numbers from 3 x 10° to 6 x 10°. The k-w SST model demonstrated superior
accuracy in pressure distribution prediction (RMSE = 0.0234) and separation behavior com-
pared to Spalart-Allmaras (RMSE = 0.0289), establishing k-w SST as the primary validation
tool while maintaining Spalart-Allmaras for computational efficiency benchmarking in
attached flow scenarios. The k-w SST model demonstrated superior performance in predict-
ing pressure-induced separation and transitional boundary layer behavior characteristic
of airfoil flows, justifying its selection as the primary turbulence model for optimization
validation. The Spalart-Allmaras model served as a computational efficiency benchmark
for attached flow validation cases.

Figure 4 represents the results for the leading edge radius (r), trailing edge thickness
(AZTE), and upper crest position (Xyp), showing excellent correlation between ground
truth and neural network predictions. The RMSE values of 0.0018 for AZtp and 0.0021 for r
confirm the framework’s superior capability in capturing critical geometric features that
significantly influence airfoil performance. This aligns with the attention weight hierarchy,
where r (0.1847) and AZg (0.1623) received the highest importance rankings, validating
the model’s physics-informed learning approach.

1: Leading Edge Radius AZTE: Trailing Edge Thickness XUP: Upper Crest Position

RMSE: 0.0019 — Ground Truth 016 RMSE: 0.0027 oA — Ground Truth

+ NN Prediction + NN Prediction
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Figure 4. The geometric features fitting analysis based on 7, AZ1g, and Xyp parameters.

Figure 5 shows the fitting analysis for Xpo, Z10, and B1g parameters, demonstrating
consistent predictive accuracy across surface geometric characteristics. The smooth conver-
gence between predicted and actual values confirms the model’s ability to capture complex
geometric relationships while maintaining manufacturing feasibility constraints. The
RMSE values ranging from 0.0019 to 0.0027 for these parameters support the framework’s
robustness in handling diverse geometric features.
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Figure 5. The geometric features fitting analysis based on X o, Z1 o and g parameters.

Figures 6 and 7 show the results for otg, Zcro, Z1E, Zup, and Zcyp parameters,
showing the framework’s capability in accurately modeling local curvature variations
and directional characteristics. The higher RMSE values (0.0028-0.0035) for some cur-
vature parameters reflect the inherent complexity of capturing second-order geometric
derivatives, yet remain within acceptable engineering tolerances. The experimental results
demonstrate statistical significance with confidence levels exceeding 95% for all parameters.
The consistent performance across the 11 NASA parameters, combined with the physics-
consistent error distributions, establishes the hybrid approach’s reliability for practical
aerospace applications.
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Figure 6. The geometric features fitting analysis based on «tg, Zcr o and Ztg parameters.
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Figure 7. The geometric features fitting analysis based on azyp, and Z¢cyp parameters.
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The experimental results validate the framework’s suitability for real-world airfoil
design applications. The sub-0.004 RMSE performance across all geometric parameters
approaches the precision required for certification-quality aerodynamic analysis, sup-
porting the paper’s claims regarding industrial applicability and reliability for aerospace
engineering workflows.

This comprehensive experimental validation confirms that the Hybrid GEO-DSGA
framework successfully achieves its design objectives while maintaining the physics-
informed characteristics essential for trustworthy aerodynamic design optimization.

Table 11 presents a comprehensive quantitative evaluation of the proposed hybrid
geometric neural networks with the deep symbiotic genetic algorithms (GEO-DSGA)
framework against established state-of-the-art methodologies in aerodynamic coefficient
prediction. The comparative analysis employs standardized performance metrics to assess
prediction accuracy across three critical aerodynamic parameters: lift coefficient (CL), drag
coefficient (CD), and pressure coefficient (CP).

Table 11. Comparative studies between years 2020-2025.

Method Reference CL-RMSE CD-RMSE  CP-RMSE ()S‘;Zifl Year
CNN-Based Chen et al. (2020) [30] 0.01450 0.00089 0.00789 96.2 2020
Standard GNN Peng et al. (2022) [31] 0.0134 0.00076 0.0067 96.8 2022
Physics-Informed NN  Sharma et al. (2022) [32] 0.0125 0.00068 0.0059 97.1 2022
Multi-fidelity DNN Wu et al. (2024) [4] 0.0115 0.00051 0.0048 97.8 2024
Combined
Autoencoder Wang et al. (2024) [7] 0.0112 0.00049 0.0046 98.0 2024
Deep Learning GA Minaev et al. (2024) [2] 0.0103 0.00043 0.0040 98.4 2024
Ensemble Networks Parvu et al. (2025) [33] 0.0098 0.00040 0.0038 98.6 2025
Hybrid GEO-DSGA This Work 0.0089 0.000341 0.00423 98.7 2025

(Ours)

The initial period established baseline performance with Chen et al.’s [30] CNN-based
approach achieving Root Mean Square Error (RMSE) values of 0.01450 for lift coefficient,
0.00089 for drag coefficient, and 0.00789 for pressure coefficient, resulting in an overall
performance score of 96.2%. This seminal work demonstrated the fundamental viabil-
ity of deep learning techniques for aerodynamic parameter estimation, establishing the
computational framework for subsequent methodological developments.

Peng et al.’s [31] implementation of standard Graph Neural Networks showed in-
cremental improvements, reducing CL-RMSE to 0.0134 and achieving marginal gains
in CD-RMSE (0.00076) and CP-RMSE (0.0067), resulting in an overall score of 96.8%.
This advancement highlighted the potential of graph-based architectures for capturing
spatial relationships in aerodynamic data, representing a 0.6% improvement over the
CNN baseline.

The concurrent development by Sharma et al. [32] of Physics-Informed Neural Net-
works (PINNs) demonstrated superior performance with CL-RMSE of 0.0125, CD-RMSE
of 0.00068, and CP-RMSE of 0.0059, achieving an overall score of 97.1%. This approach
successfully integrated fundamental fluid dynamics principles with neural network ar-
chitectures, establishing the critical importance of domain knowledge incorporation in
aerodynamic modeling.

Wu et al.’s [4] multi-fidelity deep neural networks with transfer learning capabilities
achieved CL-RMSE of 0.0115, CD-RMSE of 0.00051, and CP-RMSE of 0.0048, resulting
in a 97.8% overall score. This work demonstrated the effectiveness of leveraging data at
multiple fidelity levels for enhanced prediction accuracy.
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Wang et al.’s [7] combined autoencoder architecture further advanced the state-of-the-
art with CL-RMSE of 0.0112, CD-RMSE of 0.00049, and CP-RMSE of 0.0046, achieving 98.0%
overall performance. The methodology’s success stems from its ability to learn compressed
representations while preserving aerodynamically relevant geometric features.

Minaev et al.’s [2] deep learning genetic algorithm approach, specifically tailored for
large-endurance UAV applications, achieved CL-RMSE of 0.0103, CD-RMSE of 0.00043,
and CP-RMSE of 0.0040, resulting in 98.4% overall accuracy. This work demonstrated
the potential of evolutionary optimization combined with deep learning for specialized
aerospace applications.

The most recent contribution by Parvu et al. [33] introduced ensemble neural network
approaches that achieved CL-RMSE of 0.0098, CD-RMSE of 0.00040, and CP-RMSE of 0.0038,
with 98.6% overall accuracy. This methodology leverages multiple model architectures to
improve prediction robustness and reliability.

The superior performance of the hybrid GNN approach can be attributed to several
key innovations: The incorporation of biological symbiotic principles enables intelligent
parameter optimization that transcends traditional evolutionary approaches. The neural
network architecture captures complex spatial relationships inherent in airfoil geometries.
The hybrid framework simultaneously processes local geometric features and global aero-
dynamic parameters, and the methodology achieves optimal convergence characteristics
while maintaining computational efficiency.

5. Conclusions

This research presents an advancement in computational aerodynamics through the
development of a novel Hybrid Geometric Neural Network integrated with Deep Sym-
biotic Genetic Algorithms (GEO-DSGA) for enhanced airfoil design optimization. The
paper introduces the first successful integration of graph neural networks with symbiotic
genetic algorithms for aerodynamic design optimization. This hybrid approach transcends
traditional limitations by simultaneously processing local geometric relationships through
graph structures while optimizing global aerodynamic parameters through biologically
inspired evolutionary algorithms. The experimental results confirm the effectiveness of
the proposed multi-task learning framework for analyzing airfoil profiles. The training
process achieved convergence across all objective functions while maintaining excellent
generalization performance. The model successfully learned complex aerodynamic relation-
ships while preserving geometric constraints and providing reliable uncertainty estimates,
making it suitable for practical applications in aerospace engineering.

Future research will focus on extending the graph neural network architecture to
analyze three-dimensional geometric relationships. This includes accounting for spanwise
variations and tip effects that significantly influence wing performance. Additionally, the
research will explore integrating structural analysis capabilities to simultaneously optimize
aerodynamic performance and structural integrity, considering weight constraints, flutter
characteristics, and fatigue life requirements.
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