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Abstract: Multimodal sentiment analysis faces a number of challenges, including modality
missing, modality heterogeneity gap, incomplete datasets, etc. Previous studies usually
adopt schemes like meta-learning or multi-layer structures. Nevertheless, these methods
lack interpretability for the interaction between modalities. In this paper, we constructed
a new dataset, SM-MSD, for sentiment analysis in social media (SAS) that differs signifi-
cantly from conventional corpora, comprising 10K instances of diverse data from Twitter,
encompassing text, emoticons, emojis, and text embedded in images. This dataset aims to
reflect authentic social scenarios and various emotional expressions, and provides a mean-
ingful and challenging evaluation benchmark for multimodal sentiment analysis in specific
contexts. Furthermore, we propose a multi-task framework based on heterogeneous graph
neural networks (H-GNNs) and contrastive learning. For the first time, heterogeneous
graph neural networks are applied to multimodal sentiment analysis tasks. In the case of
additional labeling data, it guides the emotion prediction of the missing mode. We conduct
extensive experiments on multiple datasets to verify the effectiveness of the proposed
scheme. Experimental results demonstrate that our proposed scheme surpasses state-of-
the-art methods by 1.7% and 0 in accuracy and 1.54% and 4.9% in F1-score on the MOSI
and MOSEI datasets, respectively, and exhibits robustness to modality missing scenarios.

Keywords: multimodal sentiment analysis; datasets; contrastive learning; heterogeneous
graph neural networks

1. Introduction

Multimodal sentiment analysis plays a crucial role in understanding emotional tenden-
cies from diverse sources of information, such as text, images, and emojis. Its application
in social scenarios and evaluation systems provides valuable insights into how users
express emotions, which is vital for enhancing user experience and improving decision-
making processes. For example, Chandrasekaran et al. [1] studied the application of
multimodal sentiment analysis in social media and proposed specific methods for this
domain. Zhang [2] and You [3] analyzed multimodal posts published on platforms like
Weibo and YouTube to study user behavior. Kaur et al. [4] argued that stock prediction and
product recommendation heavily rely on sentiment analysis to make better decisions.

The significance of multimodal sentiment analysis lies in its ability to integrate and
analyze diverse emotional expressions across multiple modalities. In practical applications,
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such as automatic processing of customer complaints, sentiment analysis can effectively
summarize sudden and serious problems according to the emotions of users, and list
the priority of the problems to be solved, so as to accelerate the processing efficiency. In
recommendation systems, incorporating multimodal sentiment analysis can enhance the
understanding of users” emotional preferences by analyzing sentiment in user reviews and
interactions. This leads to more personalized recommendations. Furthermore, integrating
sentiment analysis into intelligent customer service systems can improve the understanding
of user needs, allowing for more accurate service responses by analyzing the emotional
tone of user inquiries.

Some traditional multimodal sentiment analysis methods (will be introduced in related
work) are based on examples of feature-level fusion and do not make full use of the
complementary and correlated information between modalities. In order to improve the
complementary and associated information between modalities, some recent works have
introduced attention mechanisms or a graph neural network to establish associations
between modalities. However, they still have two unanswered questions, missing modality
and fusion strategy, which makes the exchange of information less effective.

Missing modality refers to the fact that not all modalities are included in the data,
which affects the performance of multimodal tasks. Traditional completion methods use
autoencoders or generative adversarial networks to recover missing modalities, but require
a large amount of data and the quality is difficult to guarantee. Strategies such as contrastive
learning or meta-learning can improve the generalization and robustness of completion
methods, but still require analysis of the generated modalities, adding uncertainty.

Fusion strategy refers to how to effectively utilize the feature information between
and within different modalities in multimodal data. Transformer-based methods use the
attention mechanism to solve this problem, but do not fully consider the specificity and
dynamics of the relationship between modalities. The graph neural network has also begun
to be applied in the field of multimodal sentiment analysis, providing new ideas for multi-
modal alignment and fusion, and has achieved brilliant results. However, the graph neural
network does not take into account the hierarchical relationship and weight distribution
between modalities, resulting in insufficient and effective information exchange.

To address the issues mentioned above, we propose a graph neural network-based
approach for multimodal sentiment analysis, which can adaptively learn hierarchical
relationships and weight assignments among modalities, and can still maintain high perfor-
mance when some modalities are missing. We use a contrastive learning strategy to achieve
a weak alignment of data labels, splicing the completed labels onto node representations.
We transplant the modality fusion problem into a heterogeneous graph, transform it into a
node fusion problem, model the feature complementarity and dependence of multimodal
data by automatically extracting meta-paths and graph convolutions, add virtual node
aggregation modalities information, use H-GNNs to obtain node representations, and
finally build a joint loss function for optimization, as shown in Figure 1.

We also built a new dataset for sentiment analysis in social media (SAS), which
covers 10K pieces of multimodal data, including pictures, emojis, text, and other forms of
information. Each piece of data is labeled with 16 emotional categories and 3 emotional
polarities, using a variety of labeling methods to ensure the quality and consistency of the
data. This dataset aims to address the diversity and complexity of data in social scenarios.
Our main contributions and main problems solved are as follows:

*  We have created a novel dedicated scene dataset, including 10K data, pictures, emojis,
text, and other multimodal data, and carry out fine-grained annotations, includ-
ing 16 kinds of emotional annotations and 3 kinds of polarity annotations, aim-
ing to optimize a social scene sentiment analysis task. Compared with previous
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multimodal emotion analysis datasets, SM-MSD incorporates a rich collection of
emoji data, which enhances its comprehensiveness and informativeness. This makes
SM-MSD particularly well suited for sentiment analysis tasks in social scenarios,
providing higher-quality data support for research in this field. It is available at
https:/ /github.com/MR-YQZ/Social-Media-MultiSent-Dataset-SM-MSD- (accessed
on 8 November 2024).

*  We propose a multi-task framework that combines methods from heterogeneous

graph neural networks (H-GNNs) and contrastive learning. The framework utilizes
a contrastive learning strategy to achieve a weak alignment of data labels of differ-
ent modalities, reconstruct semantic information of heterogeneous modalities, and
complete emotional labels of missing modalities. At the same time, the framework
adopts a multimodal data fusion and representation method based on heterogeneous
graphs, uses meta-path extraction and graph convolutional networks to connect and
aggregate information of different modalities, and introduces virtual nodes and atten-
tion mechanisms to fuse different information. The information on the meta-path can
improve the fusion effect and representation ability.

*  Our performance outperforms previous state-of-the-art models on multiple datasets,
offering significant improvements and providing more accurate and reliable support
for advancing research in this field.
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Figure 1. Our model first maps the data of different modes to different feature spaces, learns the
representation of each emotion in each mode based on fine-grained modal labeling, generates the
label of missing modes based on the existing modes, and finally aggregates the features of all
modes through virtual nodes for each meta-path between modes as fusion features to complete the
downstream classification task. The * in the picture of feature extraction is a symbol for a tone marker.

2. Related Works
2.1. Multimodal Sentiment Analysis Datasets

In order to adapt to various application scenarios, researchers have constructed
datasets for multimodal sentiment analysis [5]. CMU-MOSI [6] is a multimodal senti-
ment analysis dataset. This dataset is a collection of YouTube monologues, providing
sentiment annotations across modalities such as text, audio, and video. The sentiments
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are marked as positive, negative, and neutral, and the value is between [—3, 3]. The CMU-
MOSEI [7] dataset is an improvement on it. It is a large-scale emotion analysis and emotion
recognition dataset. It mainly focuses on the speaker’s facial expressions and contains three
annotations from YouTube monologue videos, namely, emotion, emotion, and personality
traits. Compared with CMU-MOS], its sentiment annotations are more detailed. In social
media platforms, in addition to text, audio, and video, emojis, memes, and other elements
play an important role in expressing sentiment. However, these data are often overlooked
in existing sentiment analysis datasets. Furthermore, the language used in social media is
more colloquial, diverse, and influenced by internet and regional cultures, which existing
datasets fail to fully reflect. For example, users frequently use abbreviations, slang, and
tone markers on social media, and traditional datasets often lack the treatment of these
features, leading to a reduced accuracy in sentiment analysis results. In addition, most of
the existing datasets use coarse-grained annotation methods, which cannot meet the needs
of fine-grained sentiment analysis.

2.2. Multimodal Sentiment Analysis Methods

Multimodal sentiment analysis mainly focuses on using multiple resources to predict
human emotions [8]. The main challenge lies in modality fusion. Unlike traditional meth-
ods that only use a single modality, multimodal sentiment recognition aims to combine
information from multiple sources [9] to improve the understanding and perception of
human emotions. Previous multimodal approaches help to exploit complementary infor-
mation across modalities. For example, Zadeh et al. [10] propose tensor fusion to explicitly
capture interactions involving unimodal, bimodal, and trimodal data. Hazarika [11] pro-
poses a novel framework, MISA, which projects each modality into two distinct subspaces,
reducing inter-modal differences and capturing unique features.

In addition, existing methods can be broadly categorized based on their fusion tech-
niques and modality representations:

*  Tensor outer products or low-rank tensors to fuse features from different modalities:
TEN and LMF [12];

¢  Factorization methods to decompose multimodal representations into different com-
ponents: MFM [13] and FDMER [14];

e Attention mechanism to capture correlations and weights between different
modalities: MISA;

¢  Canonical correlation analysis to coordinate different modalities into one hyperspace:
ICCA [15].

Similarly, the node classification baselines commonly used in previous models are di-
vided into the following categories according to the basic principles and application scenarios:

*  Exploit the spectral properties of graphs to define graph convolution operations:
GCN [16] and GAE [17];

*  Exploit the spatial structure of the graph to define graph convolution operations:
GAT [18], GIN [19], GTN [20], etc.;

¢  Handle heterogeneous graph data with many types of nodes and edges: HAN [21].

For node classification, HAN is the state-of-the-art (SOTA) model. HAN first extracts
high-order semantic relations between different types of nodes in heterogeneous graphs
according to the meta-path, and then uses the graph attention network to propagate and
aggregate information on each meta-path, obtaining the node information expressed on
each meta-path. Finally, the meta-path representation is fed into a hierarchical attention
network, whose output is used for classification.

For multimodal sentiment analysis, the SOTA model is FDMER (Disentangled
Representation Learning for Multimodal Emotion Recognition). FDMER is a feature
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decomposition-based method for multimodal emotion recognition. FDMER first extracts
public and private features from text, audio, and visual modalities, and then obtains ef-
fective multimodal representations. Finally, the multimodal representation is fed into a
Canonical Correlation Analysis (CCA) network, whose output is used for prediction. The
above methods are based on examples of feature-level fusion and do not make full use of
the complementary and correlated information between modalities. In order to improve the
complementary and associated information between modalities, some recent works have in-
troduced attention mechanisms to establish associations between modalities. Tsai et al. [22]
introduce a multimodal transformer to model unaligned language sequences, improving
the integration of text and other modalities like images or audio. Garg et al. [23] discuss
the use of multimodality in NLP applications and emphasize the need for effective fusion
strategies across different data types. Zadeh et al. [24] further explore memory fusion for
multi-view sequential learning, leveraging sequential data across different modalities for
improved understanding. Hazarika et al. [25] present ICON, an interactive conversational
memory network, which uses memory mechanisms to detect emotions across modalities
in conversational contexts. However, these models can only describe the relationship
between different data. The absence of a quantitative measurement will restrict the impact
of subsequent interactions between modalities.

2.3. Incomplete Multimodal Data

In practical applications, multimodal data often have certain modes missing [26]. For
example, on social media, users may only post text or pictures without speech. Multimodal
task performance can be severely degraded by the missing number of modalities. For
example, a piece of text might convey an angry tone, but if the speaker’s facial expression
is a playful smile, the context changes significantly. In this case, while the text may suggest
anger, the facial expression and tone of voice may reveal a more nuanced sentiment, such as
sarcasm or joking. Therefore, only through multimodal fusion can we effectively combine
these modalities to make a more accurate prediction of sentiment, especially in social
scenarios where emotions are often expressed in complex and contradictory ways.

In order to solve the problem of missing modes, some methods focus on the recon-
struction of missing modes, that is, using existing modes to predict missing modes [27,28],
but it is very complicated to use due to the huge amount of calculation of the generated
model [29]. In a previous work, Ngiam proposed a variational autoencoder-based model
that can reconstruct missing visual information from text and audio information, and uses
adversarial learning to improve the reconstruction quality [30].

The above methods are examples based on fusion at the feature level and do not
address the missing modality problem. In order to improve the problem of missing modes,
some recent works try to use other existing modal information to reconstruct or predict the
missing modal information [31], but these models require a large amount of labeled data,
or can only deal with a single missing mode; this will impact the subsequent interactions
between modalities.

2.4. Heterogeneous Graph Neural Networks

The heterogeneous graph neural network (H-GNN) is a graph neural network (GNN)
method designed for heterogeneous graphs, and has been widely applied. For instance,
Zeng et al. [32] propose an in-domain self-supervision method for heterogeneous graph
convolution, enhancing multimodal sentiment analysis by exploiting the complementarity
of different modalities. Similarly, Lu et al. [33] apply H-GNNSs for aspect sentiment analysis,
leveraging heterogeneous graphs to capture domain-specific information for better senti-
ment predictions. Other works, such as that by Linmei et al. [34], introduce heterogeneous
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graph attention networks, which utilize attention mechanisms to weigh the importance of
different modalities in semi-supervised settings, further improving performance in tasks
like short text classification. These advancements are supported by foundational works
in graph-based learning, such as GraphSAGE by Smith [35]. Shi et al. [36] also extend
heterogeneous graph embeddings and attention mechanisms to improve sentiment analy-
sis tasks, showcasing the effectiveness of heterogeneous graph-based models in handling
multimodal data. In traditional homogeneous graphs, the nodes and edges must be of the
same type, which prevents modeling different types of nodes from different modalities.
However, in heterogeneous graphs, nodes and edges can come from different domains or
have different semantics. H-GNN can simultaneously process information from multiple
modalities (such as text, images, and audio) and efficiently fuse them through the graph
structure. This allows H-GNN to effectively capture the complex relationships between
different types of nodes [37-39], making it highly suitable for sentiment analysis tasks in
multimodal scenarios.

In recent years, some researchers have extended graph neural networks [40-44] to the
field of multimodal sentiment analysis. For example, Yang et al. propose a Multimodal
Temporal Graph Attention Network (MTGAT) [45], which converts non-aligned multi-
modal sequences [46] into graphs with heterogeneous nodes and edges, using a multimodal
temporal attention mechanism [47] and dynamic pruning and readout strategies to encode
and decode graphs.

Although the above method is a typical example of HGNN-based multimodal sen-
timent analysis [10], it does not fully address the alignment, correspondence, refinement,
and dynamization issues between modalities.

3. Dataset
3.1. Data Collection

It took about 3 months for the crawler to grab the tweets on the top page of Twitter.
Selenium and a simulated sliding page, a fiddler capture tool, capture the request and
response from the background of Twitter. Our data, SM-MSD, are inside the response.
There is a json string in it, and there is a corresponding link to download the data. There
are about 4-5 w every day, and 100 w of data are obtained.

We use the VGG19 pre-training model to roughly screen out non-emoji pictures,
95% of which are coarsely screened; manually fine-screen pictures and texts to obtain
graphic-text dual-modal data; and manually remove 40%. Next, complex data processing
is performed, using tools such as regular expressions to extract emoji from the text and
using the PaddleOCR platform and manual correction to obtain the embedded text in the
emoticon package. So far, all four modal data have been obtained. The process is illustrated
in Figure 2. VGG19 is used when Sampling and Filtering “Noisy” refers to “Emoji”, tools
such as regular expressions are used when “Emoji” points to “Text”, PaddleOCR is the
part of Sampling and Filtering indicated by dotted lines, and the small man represents the
artificial part.
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Figure 2. The process of collecting, filtering, and labeling our datasets.
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3.2. Feature Extraction

Text and emoji. Since emoji can be represented by a special token, we regard emoji
processing as text processing. In order to extract the features of text data, we use the
“paraphrase-MiniLM-L6-v2” model provided by the SentenceTransformer library, that is,
use and train Good BERT models to encode text.

Text in meme. We use PaddleOCR to extract text from pictures. It is an OCR tool
library based on Paddle, which contains a variety of OCR scene application models, and
supports Chinese and English number combination recognition, vertical text recognition,
and other functions. Using PaddleOCR’s OCR method, you can input the path of the image
or the NumPy array, and output a list containing the text detection and recognition results.
Each result contains two information of text content and confidence.

Meme. To classify memes by content, we divide them into static and dynamic cate-
gories based on whether they contain animation or not. For static memes, we use a 2D
CNN to extract the visual features of the image. For dynamic memes, we use a motion
vector-based method to select a few frames of images with large content changes, and then
use the C3D model to learn the spatio-temporal features of the video.

3.3. Annotation

Build a multimodal fine-grained dataset, mark each modality separately, and mark
the same data from multiple modal perspectives. Each piece of data has three types of
annotations: text, picture, and comprehensive.

Labeling categories are divided into two categories according to polarity and emotion.
The polarity is marked as positive, neutral, and negative. Choose 1 from 3, and the mood
is marked as happy Joy, sad Sad, afraid of fear, angry, surprised, disgusted, and confused
Confused’s 16 multiple choices.

The annotations were completed by 10 researchers with excellent English. In the
polarity annotation, -1 means negative, 0 means neutral, and 1 means positive. The average
value given by the 10 annotators is taken as the final annotation. The emotional annotations
given by the 10 annotators are discarded according to their distribution, and the reserved
values are the final annotations.

We use a semi-automated approach to improve the size and quality of the dataset,
provide labeled data with an active learning strategy, and prioritize the most controversial
data, that is, more valuable data. The principle can be explained as follows.

Suppose there are N pieces of unlabeled data, and there are M base models, and
each base model can give a category prediction for each piece of data. We define a voting
function v(u;), which is used to calculate the number of votes of different categories for
each piece of data in all base models. We define a difference function d(u;), which is used to
calculate the difference between the largest number of votes and the second-largest number
of votes for each piece of data in all base models. Our goal is to select K pieces of data with
the largest difference for labeling, that is, to solve the following optimization problem:

d(u; 1
SQ%T:KES (1) (1)

This problem can be approximated by a greedy algorithm, that is, each time the one
with the largest difference is selected from the unlabeled data and added to the label set
until reaching K.

3.4. Statistics and Analysis

For the labeled data, we use the method of merging similar labels to improve the label
imbalance problem, and use the cleanlab tool to clean up dirty data. Finally, 10K graphic
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data were obtained. The modal distribution is shown in Tables 1 and 2. The sentiment
distribution of different modalities is shown in Figure 3, and the polarity distribution is
shown in Figure 4.
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Figure 3. The sentiment distribution of different modalities.
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Figure 4. The polarity distribution of different modalities.

Table 1. Modality number.

Modality Text Emoji Meme Inner Text
Number 9.6 K 32K 9.6 K 51K
Polarity Ratio
Negative 34.29% 34.96% 18.69% 24.14%
Neutral 25.71% 28.46% 28.04% 34.48%
Positive 40.00% 36.59% 53.27% 41.38%
Sentiment Ratio
Joy 7.34% 13.54% 4.13% 5.24%
Sarcastic 11.58% 12.65% 9.32% 1.26%
Surprise 2.04% 10.78% 2.65% 1.84%
Anger 2.50% 10.68% 2.63% 5.59%
Sadness 4.19% 9.15% 3.35% 3.40%
Relaxed 4.42% 8.62% 3.41% 7.93%
Confused 11.85% 6.50% 5.01% 8.33%
Grateful 1.81% 4.61% 4.02% 0.95%
Fear 9.22% 4.08% 9.25% 10.46%
Proud 5.49% 3.88% 2.67% 1.12%
Neutral 511% 3.16% 5.88% 4.50%
Caring 10.41% 2.43% 2.87% 9.82%
Anyway 3.34% 2.38% 7.73% 8.95%
Longing 1.71% 2.31% 3.82% 10.21%
Malice 4.03% 2.09% 12.94% 9.20%
Disgust 7.97% 1.94% 7.32% 5.37%

Hilarious 6.99% 1.21% 13.00% 5.82%
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Table 2. Another view of modality number.

Modality Polarity Sentiment
Overall 9.6 K 32K
Text 34.29% 34.96%
Inner text 25.71% 28.46%
Emoji 40.00% 36.59%
Meme 40.00% 36.59%

3.5. Case Analysis

Figure 5 is a piece of data in SM-MSD, including Twitter text, emoji of laughing and
crying, emoji of a man covering his face, meme in GIF form, and text inside a picture.
Figure 5 shows the following from top to bottom: tweet, text in picture, two emojis, meme
in GIF form.Tweets and emojis are saved in the data set as text, text in picture as picture,
and meme in GIF form as GIF. From when annotating different modals, we can only see
the corresponding modal data; that is, we cannot see the emoji information in the sentence
when annotating text, and when annotating pictures, the text area is covered to ensure that
the annotations of different modals are completely standalone; all modals are only visible
when combined. In addition, the fine-grained annotations for each modality have both
polarity and sentiment criteria.

Men : ugh I hate when women plays games and act all mysterious
Also men : omg I love the excitement of a mysterious woman! ...
* cough * Steven * cough *....

WHY DO MEN HAVE TO
& _BEHAVE LIKE THIS

WHY.DO M IWHY DO IWHY|DO,MEineaWHY DO MEN HAVE TO
_ BEHAVE BEHAVES (BEHAVE PSS BEHAVE LIKE THIS

Figure 5. Example of our dataset, SM-MSD. * is a symbol for a tone marker.

3.6. Data Source

This dataset was constructed by collecting publicly accessible data from Twitter. Data
acquisition was performed using the Twitter API and includes publicly visible tweets and
related information.

3.7. Data Processing

Data collection. Information in the dataset was obtained through automated scripts
from Twitter. These data include tweet text, author information, and posting dates, among
other details.

Data anonymization. Personal information of authors has been de-identified to protect
their privacy. No specific user identification information is included.

Text cleaning. Text within the data has been processed and cleaned to remove sensitive
or personal information while retaining information about topics and sentiments.

3.8. Data Usage Limitations

Legal purpose. This dataset is intended for legal purposes only, including research,
analysis, and education. The use of data should comply with relevant legal regulations and
ethical guidelines.
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Privacy and ethics. Individuals using this dataset are expected to adhere to principles
of user privacy and ethics. It should not be used for harassment, discrimination, privacy
infringement, or any other unethical activities.

Data sharing. This dataset should not be used to create or perpetuate bias, inequality,
racial, gender, or other inequality issues. Measures should be taken in research and analysis
to mitigate these biases.

Transparency. Individuals or organizations using the dataset should provide transpar-
ent reports explaining how they are using the data and their research purposes.

Data protection. All individuals or organizations using the dataset should take
measures to ensure data security to prevent unauthorized access or leakage.

4. Methodology
4.1. Model Quverview

The goal of our model is to better fuse different modal representations of heterogeneous
data and alleviate the performance degradation caused by missing modalities. The core
idea is to use contrastive learning to generate pseudo-labels to “complete” the missing data
of each modality, and then apply a two-level fusion method of node and meta-path to fuse
the “completed” data. The overall structure is shown in Figure 1.

Feature extraction. The input of our model consists of four types of data: text, emoji,
meme, and inner text. In the first part of the process, as shown in the upper left of Figure 1,
feature extraction is performed on these four types of data. Through this step, the features
of each modality are extracted and represented as embeddings.

Partition. The data are divided into two categories: complete modalities and missing
modalities, as shown in the upper middle of Figure 1. This partition is based on whether
data from a particular modality are missing or available. The incomplete modalities are
separated and will undergo a different processing flow.

Complete. The complete modal data are used to train a model for modality completion,
as shown in the upper-right section of Figure 1. The model learns to generate pseudo-labels
and complete the missing parts of the data. This enables the system to predict the missing
modality data, thus “complete” the missing data of each modality. When this step is
completed, all the data have all the modes (original or “completed”).

Prediction. A heterogeneous graph neural network (H-GNN) is used to model multi-
modal data and their relationships, as shown in the bottom part of Figure 1. This model
aggregates features using meta-paths and adds a virtual node that associates all modal-
ities, facilitating the fusion of information from different meta-paths. The fused node
representations are then used to perform sentiment classification tasks.

The following details the core modules in the “complete” and “prediction” sections:
“contrastive learning based on multimodal data completion” and “heterogeneous graph
neural networks”.

4.2. Contrastive Learning Based on Multimodal Data Completion

Sample division. For each data instance, we assess the presence or absence of modal-
ities, categorizing the data into two sets: one consisting of complete modalities and the
other of incomplete modalities. The data with complete modalities are utilized for training
and testing the learning framework, while the trained model is employed to complete the
missing modalities. Let the dataset with complete modalities contain N samples, each fea-
turing three modalities: text, audio, and image. We denote the states of the ith sample as T;,
A;, and I;, respectively. Each sample is assigned a synthetic emotion label Y; € 1,2, ..., K,
where K represents the number of emotion categories [48]. Assuming that the image modal-
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ity is absent [49], our objective is to complement the labels of the image modality using a
contrastive learning approach [50].

Base learner. For each emotion k € 1,2,..., K, we define a binary classifier f;(T, A),
where the input consists of text and audio modalities, and the output provides a probability
indicating whether the image modality corresponds to emotion k [51]. For each sample
(Ti, A Y;), if Y; = k, we set Zx = 1; otherwise, we set Z; = 0. This results in a binary
label matrix Z € 0, 1V*X for the image modality [52]. In this context, positive examples are
defined as data that share the same modalities and synthetic sentiments as the current in-
stance but differ in the missing modalities. For the case where the image modality is absent,
we consider data whose images correspond to emotion A as positive examples for classifier
A, while those whose images do not correspond to A are treated as negative examples.

Contrastive loss function. The goal of contrastive learning is to maximize the simi-
larity between positive examples and minimize the similarity between negative examples.
We utilize cosine similarity to evaluate this similarity. For each emotion k, we define the
contrastive loss function L; as follows:

exp(sim(vy(T;, A;), vk (T, Ay)))

Ly =— N X
¥imy exp(sim(v(Ti, Ai), vk (Tj, Aj)))

Zixlog

)

z| =
=

Il
_

1

where (T, A ) is a positive sample that shares the same modalities and synthetic emotions
as (Tj, A;) but differs in the image modality. The purpose of this loss function is to maximize
the similarity between positive examples and minimize it between negative examples. To
train the classifier fi(T, A), we minimize the contrastive loss function L; using stochastic
gradient descent. After training, the classifier f;(T, A) can be applied to predict whether any
missing image modality data (T, A) correspond to emotion k. Specifically, we compute the
output probability pi(T, A) of fi(T, A). This allows us to derive the emotional distribution
p1(T,A), p2(T,A),...,px(T, A) for the image modality. The emotion associated with the
maximum probability is taken as the predicted emotion for the missing data, represented as

Y(T,A) = argmaxkellzp_”ka(T,A) (3)

The predicted label is concatenated as an additional dimension in the feature vector,
thus ensuring that all modalities of each data instance are complete and enabling effective
multimodal alignment.

4.3. Heterogeneous Graph Neural Networks

Heterogeneous graph neural networks (H-GNNSs) are used for feature fusion of mul-
timodal data, mapping data into heterogeneous graphs, combining artificial rules and
automatic algorithms to obtain meta-paths, using graph convolutional networks to prop-
agate and aggregate information; and increasing virtual nodes fuse information from
different meta-paths, use an attention mechanism to calculate weights, use virtual nodes to
represent the fusion of multimodal data, expand the number of meta-paths, and improve
the fusion effect of long-distance related neighbors.

Graph embedding. This module describes how we convert each Twitter data into a
heterogeneous graph node. Since different tweets contain different data types, each tweet
contains a different number of nodes. A heterogeneous graph is constructed for all data
G = (V,E), where V is the set of nodes and E is the set of edges. Eachnode v € V has a
type ¢ € I';, and each edge e € E has a type ¢, € I',. I';, and I, are a node type set and an
edge type set, respectively. Each node v also has a feature vector x, € R, where d is the
feature dimension.
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Generate reformed graph. Our dataset implements fine-grained labeling, that is,
labeling all modalities of each piece of data, and there is also a labeling for the entire piece
of data. The virtual node is defined as v*, and there is an edge connected to all modal
nodes, and the type of this edge is ¢,+. The state information is fused and passed to other
nodes, and its eigenvector x,+ can be initialized to the average value of all modal node
eigenvectors or other methods.

We define a meta-path P as a sequence of adjacent edge types, such as P = ¢,; —
P2 — -+ — @, which can be used to represent a semantic relationship between
two nodes.

We define a heterogeneous graph neural network H as a function, which can map
the feature vector x, of each node v to a low-dimensional vector h, € RF , where k is
the embedding dimension, and its goal is to enable &, to capture the structural and non-
structural information of v.

Aggregation. The graph neural network has a unique aggregation idea; that is, nodes
are aggregated according to the meta-path [53]. The fusion of different types of data
is achieved by sequentially aggregating adjacent nodes to itself. We assume that the
heterogeneous graph neural network H consists of L layers, and each layer is a process of
information aggregation and transformation. Level I can be expressed as

) = fO (xz,, {hi}*” u€ Nv}) (4)

(1)

where /1y is the embedding vector of node v in layer I, f(!) is the information aggregation
and transformation function of layer /, and Nj is the set of neighbor nodes of node v,
including the virtual node v*. We can define different neighbor node sets N according to
different meta-paths P; for example, N}f = {u ‘U € Ny, Pluo) = P } represents the set of
neighbor nodes connected with node v by meta-path P.

In this way, we can obtain the embedding vector hg,l) of each node in each layer, and the

output héL) of the last layer is the final embedding vector for v. We can use this embedding

vector for tasks like multimodal sentiment analysis [52,54].

4.4. Objective Optimization
Suppose that there are N multimodal data samples {x;}Y ;, each sample x; contains

M modes {xgm) M, the target task is y;, and the loss function L is designed to measure

the error between the virtual node feature z; output by H-GNNs and the target task y;. We
use the following cross-entropy loss function [55]:

N
L=~ L wlog f(20) + (1 -y log(1 — £(z) ®)

Among them, f(z;) is a logistic regression function, which is used to map the virtual
node feature z; to the (0,1) interval, indicating the probability that x; belongs to a certain
category. The logistic regression function is defined as

1

f(zi> = 1 —l—exp(—zi)

(6)

Explanation: The first term, y; log f(z;), corresponds to cases where the sample x; truly
belongs to the target class (y; = 1). The closer f(z;) is to 1, the smaller the loss. The second
term, (1 —y;)log(1 — f(z;)), corresponds to cases where the sample x; does not belong to
the target class (y; = 0). The closer f(z;) is to 0, the smaller is the loss.
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5. Experiments
5.1. Datasets

Since our task is essentially a node classification task, we choose not only multimodal
sentiment datasets but also node classification datasets in graph neural networks.

CMU-MOSI. CMU-MOSI is a multimodal sentiment analysis dataset containing
93 video comments; each comment has a feature representation of voice, text, and facial ex-
pression and a label of emotional polarity (positive, negative, or neutral). The MOSI dataset
is commonly used in multimodal emotion recognition and multimodal sentiment analysis.

CMU-MOSEI. CMU-MOSEI is a multimodal emotion and sentiment analysis dataset
that provides data of multiple modalities such as video, audio, text, and facial expressions.
The CMU-MOSEI dataset is a dataset of video reviews, where each review is labeled with
an emotional polarity and six basic emotions. The CMU-MOSEI dataset is commonly used
in tasks such as multimodal emotion recognition, multimodal sentiment analysis, and
multimodal machine learning.

5.2. Experimental Setup

We conduct all experiments on an Ubuntu 18.04.2 LTS server with an Intel(R) Xeon(R)
CPU E5-2680 v4 @ 2.40 GHz, 256 G RAM, and 8 NVIDIA GeForce RTX 3090-24GB, sourced
from the Procurement Office of Beijing University of Posts and Telecommunications, Beijing,
China. We implement our model with Python 3.7.6 and PyTorch 1.7.0 with the framework of
Deep Graph Library (DGL). The baselines are implemented from the original released codes
or from the official implementation by DGL. Since the operations between the modules are
additive, the additional computational cost is minimal, only introducing a slight constant
overhead compared with other models. For a dataset setup, we evaluated our method
on two datasets, MOSI and MOSEI. The data of the datasets are divided into the training
set, the test machine, and the verification set according to the fixed 8:1:1 ratio. Finally,
ACC, Precision, Recall, and F1 are used to evaluate the performance of our model and
other models.

5.3. Results

The results on CMU-MOSEI and CMU-MOSI datasets are shown in Table 3. In these
two datasets, our model achieves the best performance in all indicators and exceeds
the baseline. In the results, we can see that our model is a structural attention fusion
model, which performs better than the simple attention model. This is an encouraging
result, because it means that the effect of model fusion is better after adding the structural
information of data.

5.4. Ablation Studies

The importance of modality. We remove a single mode to explore the change of
model performance. When the text mode is removed, the performance of the model
drops significantly, which shows that the text mode is dominant in the task of multimodal
sentiment analysis. When emoji and internal text are removed, a similar situation occurs,
but the decline is smaller than that of text. A reasonable explanation is that image features
are more complicated and redundant than text features. In addition, no matter which mode
is removed, the performance of the model will decline to varying degrees, which shows
that each mode has played its own role in multimodal sentiment analysis. The results are
shown in Table 4.
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Table 3. Comparison on multimodal sentiment analysis benchmark.
MOSI
Model .
Accy 1 Precision Recall F11
Ours 85.12 +0.28 83.73 +£0.47 82.61 +0.54 84.32 +£0.29
TFN 80.04 £1.27 79.22 +1.46 78.63 +0.51 80.78 £0.99
LMF 82.53 £1.35 73.74 +1.39 7559 +1.44 79.97 £ 0.67
MFM 81.73£0.26 80.89 £0.75 79.42 £0.50 78.65 £ 0.08
ICCN 83.07 £1.29 82.25+0.90 81.86 £0.71 83.04 +£0.11
MISA 82.49 £0.34 83.57 +0.50 80.75+0.78 81.69 £ 0.63
FDMER 83.68 +£0.33 80.91 +0.52 73.19 £ 0.86 78.72 +0.27
MOSEI
Model .
Accy 1 Precision Recall F11
Ours 86.14 +£0.33 87.41 +0.45 88.29 +0.53 86.34 +0.28
TFN 82.52+0.79 76.27 +£1.32 80.48 +1.46 78.15+0.33
LMF 82.06 £1.34 80.92 +0.40 80.02 +0.39 79.12+£0.30
MFM 84.45+0.34 83.11 £0.78 82.28 £0.92 80.36 = 0.13
ICCN 80.25 + 0.08 83.01 +1.36 85.94 + 0.63 82.22 +£0.78
MISA 84.57 £0.32 80.95 +0.11 85.17 £ 0.76 82.31 £0.36
FDMER 86.17 £0.75 80.83 +0.99 83.01 £0.37 81.85+0.09
Table 4. Results of studies on SM-MSD.
Ours Multimodal Sentiment Analysis
Model
HCL TFN LMF ICCN MISA
Accst 7324+035 6621£057 6936+059 69.11+0.64 70.04+£0.37
Precision 7253 +£0.65 6586+028 68.17+0.09 6773+0.62 6823+045
Recall 7031+1.15 66.83+0.74 67.62+031 68424048 69.61+0.87
F11 74.01+0.67 65794+097 67.84+129 67564047 6647 +0.51

The importance of fine-grained modal annotation. We compare the effects of senti-
ment analysis using fine-grained modal labeling (labeling each mode and comprehensive
mode) and coarse-grained modal labeling (labeling only comprehensive modes) to evaluate
the effect of fine-grained modal labeling on improving the alignment and fusion between
modes. We find that fine-grained modal labeling can bring better emotional analysis effect
than coarse-grained modal labeling. This shows that fine-grained modal labeling can
enhance the alignment and fusion between modes so that the model can make better use of
multimodal information for emotion recognition. The results are shown in Table 4.

The importance of contrastive learning. We compare the efficiencies and complexities
of contrastive learning and other methods. We find that contrastive learning can bring
better emotional analysis effect than no modal completion.

Contrastive learning does not require generating additional modality data but directly
uses existing data for learning. This saves time and computational resources for data
generation and makes better use of available information.

Avoiding information loss: Through contrastive learning, you can minimize modality.
Methods that generate modality data may introduce noise or information loss, while
contrastive learning typically better preserves the features of the original data.

Computational efficiency: Generating modality data requires significant computa-
tional resources, whereas contrastive learning is usually more computationally efficient as
it relies on existing data.
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Practical applicability: Contrastive learning can be more easily applied in practical
scenarios as it does not require generating additional data, which is an advantage for
certain applications.

The results are shown in Table 5. Improved generalization: Contrastive learning helps
the model learn relationships between multiple modalities, aiding better generalization to
new data. Generating modality data methods often performs poorly when dealing with
new data as they struggle to capture complex relationships between multimodal data.

Table 5. Results of ablation studies on SM-MSD.

Model Accs T Precision Recall F11t
Ours 73.24 + 0.32 72.53 + 0.74 70.31 £+ 0.58 74.01 + 0.93
Importance of modality
w/o Text 53.41 +0.42 52.69 +0.78 49.27 +0.21 41.37 +0.45
w /o0 Emoji 69.21 +0.09 68.47 +0.37 67.94 +0.46 66.25 +0.84
w/0 Meme 69.58 - 0.37 67.98 - 0.69 70.11 £0.83 70.29 4 0.50
w/o Inner Text 70.52 +0.73 71.29 +0.05 68.43 +-0.28 67.19 +0.16
Importance of fine-grained modal annotation
w /o T-Label 71.47 +£0.28 72.38 £0.73 69.83 +£0.57 71.25+0.49
w /o E-Label 71.76 £0.78 73.58 +£0.27 71.04 +0.34 72.34 +0.18
w /o0 M-Label 72.09 +0.31 70.71 £ 0.03 71.59 +0.42 72.21 +£0.25
w /o I-Label 71.94 4+ 0.98 72.41 +0.85 69.73 +0.59 71.18 £ 0.51

The importance of modal completion. We randomly discard the modes to evaluate
the effect of modal completion on improving data integrity and utilization. We find that
modal completion can bring a better emotional analysis effect than no modal completion.
This shows that modal completion can improve the integrity and utilization of data so that
the model can better deal with the situation of missing modes. On both datasets, the effect
of sentiment analysis with modal completion is significantly better than that without modal
completion. The results are shown in Table 6.

Table 6. Results of contrastive learning on two benchmarks.

MOSI MOSEI
Model . .
Accy T Precision Recall F11

HCL 85.12 +0.28 84.32 +0.29 86.14 +0.33 86.34 +0.28
20% data missing

CL 85.08 +-0.19 83.25 +-0.43 85.72 +0.51 85.16 +-0.37

w/oCL 80.15+0.22 80.97 +0.49 83.91 +0.27 84.18 +0.31
40% data missing

CL 84.65+0.14 83.23 £0.26 81.37 £0.44 82.27 +0.53

w/oCL 75.58 +0.13 74.62 + 0.54 75.14 +0.28 72.91 +0.37
60% data missing

CL 73.89 +0.34 69.68 £+ 0.55 70.28 +£0.22 70.93 £+ 0.41

w/oCL 59.97 +-0.26 53.52 +-0.31 56.37 +-0.21 57.29 +-0.48
80% data missing

CL 62.18 +0.29 61.38 +£0.21 66.31 £+ 0.49 60.41 4+ 0.39

w/oCL 48.29 +0.47 4397 +£0.22 50.26 £ 0.39 51.38 +0.31
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6. Conclusions and Future Work

In this paper, a multimodal sentiment analysis method based on a graph neural net-
work is proposed, which can adaptively learn the hierarchical relationship and weight
distribution between modes and maintain high performance when some modes are miss-
ing. We transplant the modal fusion problem to heterogeneous graphs and transform it
into a node fusion problem. We model the feature complementarity and dependence of
multimodal data by automatically extracting meta-paths and graph convolution products,
and add virtual nodes to aggregate modal information. On the MOSI and MOSEI datasets,
accuracy improvements were 1.7% and 0%, respectively, and F1-score improvements were
1.54% and 4.9%, respectively, compared with the current best models. We also created a
novel special scene dataset, including 10K data, images, and EMOJI text, and made fine-
grained annotation, which is helpful in promoting the optimization of sentiment analysis
tasks in social scenes.

Limitations: This work has certain limitations, including the exclusion of other types
of multimodal data, such as video and audio. Additionally, we did not conduct a detailed
analysis of the information conveyed by different meta-paths, nor did we explore more
comparative learning strategies or loss function designs.

Future work: In the future, we plan to expand our dataset to include more diverse
multimodal data sources. We will also explore more effective strategies for meta-path
extraction and investigate novel graph convolution network structures to further enhance
the performance of our method.
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