% applied sciences

Article

On Explainability of Reinforcement Learning-Based Machine
Learning Agents Trained with Proximal Policy Optimization
That Utilizes Visual Sensor Data

Tomasz Hachaj

check for
updates
Academic Editors: Eleonora Iotti, Joao

M. E. Rodrigues and Pedro Couto

Received: 17 October 2024
Revised: 30 December 2024
Accepted: 5 January 2025
Published: 8 January 2025

Citation: Hachaj, T.; Piekarczyk, M.
On Explainability of Reinforcement
Learning-Based Machine Learning
Agents Trained with Proximal Policy
Optimization That Utilizes Visual
Sensor Data. Appl. Sci. 2025, 15, 538.
https:/ /doi.org/10.3390/
app15020538

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/lice
nses/by/4.0/).

and Marcin Piekarczyk *

Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering,
AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland; thachaj@agh.edu.pl
* Correspondence: mpiekarczyk@agh.edu.pl

Abstract: In this paper, we address the issues of the explainability of reinforcement learning-
based machine learning agents trained with Proximal Policy Optimization (PPO) that
utilizes visual sensor data. We propose an algorithm that allows an effective and intuitive
approximation of the PPO-trained neural network (NN). We conduct several experiments
to confirm our method’s effectiveness. Our proposed method works well for scenarios
where semantic clustering of the scene is possible. Our approach is based on the solid
theoretical foundation of Gradient-weighted Class Activation Mapping (GradCAM) and
Classification and Regression Tree with additional proxy geometry heuristics. It excels in the
explanation process in a virtual simulation system based on a video system with relatively
low resolution. Depending on the convolutional feature extractor of the PPO-trained neural
network, our method obtains 0.945 to 0.968 accuracy of approximation of the black-box
model. The proposed method has important application aspects. Through its use, it is
possible to estimate the causes of specific decisions made by the neural network due to the
current state of the observed environment. This estimation makes it possible to determine
whether the network makes decisions as expected (decision-making is related to the model’s
observation of objects belonging to different semantic classes in the environment) and to
detect unexpected, seemingly chaotic behavior that might be, for example, the result of
data bias, bad design of the reward function or insufficient generalization abilities of the
model. We publish all source codes so our experiments can be reproduced.

Keywords: reinforcement learning; proximal policy optimization; explainability; GradCAM;
decision tree; visual sensor; semantic data

1. Introduction

According to up-to-date surveys on artificial intelligence (AI) methods [1-4], those
approaches entered numerous areas, prompting a strong focus not only on the efficiency and
effectiveness but also on the interpretability and explainability (XAI) of systems. In some
sensitive applications, XAl issues are a primary concern already at the stage of making
design decisions and selecting the appropriate machine learning (ML) algorithm, especially
in the field of so-called human-centered Al [5,6], where learning models are designed to
enable reliable human-centric evaluations. In particular, the issue of explainability and
interpretability in machine learning is crucial in many critical systems where understanding
why the model made a particular decision is desirable and even required for ethical, legal,
or security reasons as it is discussed in papers [7,8].

Appl. Sci. 2025, 15,538

https://doi.org/10.3390/app15020538

https://doi.org/10.3390/app15020538
https://doi.org/10.3390/app15020538
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1390-9021
https://orcid.org/0000-0003-3699-9955
https://doi.org/10.3390/app15020538
https://www.mdpi.com/article/10.3390/app15020538?type=check_update&version=1

Appl. Sci. 2025, 15, 538

2 of 26

In principle, both AI and XAI paradigms are closely related, and the essential dif-
ferences relate to the different approaches to analysis and the level of understanding of
how a particular model works. According to [9,10], Interpretable ML refers to models
humans naturally understand without additional tools or explanations. An interpretable
model should be simple and transparent, allowing the understanding of how decisions are
made by directly analyzing its internal structures or critical decision variables. Examples of
this type of interpretable algorithm include statistical-based algorithms with well-known
principles [11] like linear regression, decision trees, or logistic regression. These models
allow an intuitive interpretation of how input variables affect outcomes.

1.1. State of the Art

The term explainable ML (see [12]) refers to intrinsically complex and opaque models
(so-called black-box models) where tools or methods explain their operation. As it is
described in surveys [13,14], this approach uses explanations to understand predictions,
relying on external techniques and tools [9] since the model itself is not directly interpretable.
As today’s architectures and algorithms become increasingly complex and sophisticated,
they require additional explanation mechanisms to be more effective and predictive.

The explainability and interpretability of the algorithms are essential in real-life sys-
tems that have a key impact on people’s lives, health, finances, security, or civil rights.
It makes it possible to build trust in the technology, ensure compliance with regula-
tions, and avoid potential risks arising from erroneous or unjustified decisions made
autonomously by such systems.

Because the methodology in this field has been developing rapidly in recent years,
a wide variety of techniques are used in XAl to understand how ML models make decisions.
According to the literature, as many “black-box” models utilize deep neural networks or
decision tree ensembles like random forest [15,16], it is especially those approaches that
are in the scope of XAl We can divide XAl approaches into different categories based on
their nature and application: model-agnostic, which allow using the same methodology to
compare various “black-box” approaches [17-19], or model-specific [20] techniques that
work based on the details of the specific black-box model structures. The choice between
those two XAls depends on knowledge of the model’s internal architecture, access to the
knowledge about how a machine learning model makes individual (local) predictions
(see [21,22]) or which features are most responsible for the model output (see [22,23]).

Popular XAI techniques used in this area include LIMEs (Local Interpretable Model-
agnostic Explanations) [24] which create a surrogate model such as linear regression,
SHAPs (Shapley Additive Explanations) [25] that decompose the output of a model by the
sums of the impact of each feature, Anchors [26] that find a decision rule that “anchors”
the prediction sufficiently, Partial Dependence Plots (PDPs) [27] which show whether
the relationship between the target and a feature is linear, monotonic, or more complex,
Individual Conditional Expectation (ICE) Plots [28] that show how the instance’s prediction
changes when a feature changes, Feature Importance [29], Linear Model Coefficients [30],
and Counterfactual Explanations [31]. Visual-based explanation of an image-domain ML
model can be achieved with Saliency Maps [32] or Grad-CAM (Gradient-weighted Class
Activation Mapping) [33].

Reinforcement learning (RL) [34] and its deep learning variants (DRLs) [35] are very
popular branches of ML methods and serve in various fields for practical applications, espe-
cially where problems are dynamic and sequential. DRL is an agent-based model in which
the algorithm learns to make optimal decisions based on the rewards and punishments it
receives for its actions. Its adaptability is particularly evident in robotics (teaching robots
to navigate unfamiliar terrain or perform specialized tasks), computer games (training

Appl. Sci. 2025, 15, 538

30f26

artificial players [36] such as AlphaGo [37]), autonomous vehicles (taking actions in real
time), and optimizing complex decision-making processes in industrial systems.

In reinforcement learning, explanation of the process is complicated because the agent
acts sequentially and bases its decisions on multiple stages of interaction. In practice,
approaches are used in this regard which can be divided into several groups of techniques,
including, among others, the following ones:

e policy explanation: local policy approximations [38—40], i.e., approximating the agent’s
policy with simpler models such as decision trees or using feature importance method-
ology to assess the impact of individual features on the agent’s decisions.

* trajectory analysis: the use of saliency maps [41] to analyze which elements of the
environment are vital to an agent’s decision-making or LIME metrics [42] to show in
specific cases what actions have the highest probability in a given state.

e visualization techniques: the use of GradCAM (in vision neural models) [43,44] to
identify which parts of the image have the most influence on the agent’s decisions,
or Heatmaps of state-action pairs [45] to observe which state-action pairs are most
frequently selected.

¢ model distillation (indirect inference): training of a simpler model (e.g., a decision
tree) [46] whose task is to mimic the performance of a more complex RL agent on the
assumption that a simpler model is more straightforward to interpret and can provide
more comprehensible information about the agent’s decisions.

Detailed surveys on RL method explanation can be found in papers [47-50].

1.2. Novelty of This Paper

Based on the literature review from the above section, the topic of the explainability of
machine learning models in reinforcement learning is actual and worth further investiga-
tion. Despite intensive research in this area, many open research problems exist, such as
explaining the operation of training methods that use image data as input. In this work, we
address the issues of the explainability of reinforcement learning-based machine learning
agents trained with Proximal Policy Optimization (PPO) [51] that utilizes visual sensor
data, which, to our knowledge, still needs to be sufficiently researched. We propose an
algorithm that allows an effective and intuitive approximation of the PPO neural network.
We also conduct several experiments to confirm our method’s effectiveness.

The rest of the paper is organized in the following way: in Sections 2.1-2.5, we
introduce mathematical principles of Proximal Policy Optimization and GradCAM, which
are used to introduce proposed explaining model presented in Sections 2.3 and 2.4. In
Section 2.6, we present the experiment settings used to prove the effectiveness of the
proposed solution. Section 3 shows the experiments described in Section 2.6. Section 4
critically discusses the results showing the proposed method’s strengths and limitations.
Final Section 5 summarizes the paper and indicates possible future research directions.

2. Materials and Methods

At the beginning of this section, we discuss a neural network (NN) of an agent trained
with Proximal Policy Optimization (PPO) [52] with visual (image) input. Then, we revise
a GradCAM method for image explanation. Later, we introduce a proposed method for
explaining a PPO-generated NN with decision trees [53] trained with features generated by
applying proxy geometry and semantic scene segmentation with GradCam weights.

Appl. Sci. 2025, 15, 538

4 of 26

2.1. The Neural Network of an Agent Trained with Proximal Policy Optimization with Visual
(Image) Input

In Figure 1, we present an illustration of agent-environment interaction in reinforce-
ment learning. In this machine learning scenario, agents can act in the environment and
acquire observations. The goal of an agent is to maximize reward.

Action Reward

Obsdrvations

Environment

_

Figure 1. Illustration of agent—environment interaction in reinforcement learning.

Applying the reinforcement learning model of the agent system based on the Proximal
Policy Optimization algorithm [54] has become very popular in recent years. This algorithm
approximates the value of the on-policy action-state pair function. We define the value of
the On-Policy Action—Value Pair Function Q (s, a) as the expected value of the cumulative
reward function in case we start the calculation from state s, perform action a and always
follow strategy 7

Q7 (s,a) = Ez~nR(T)|s0 = 5,80 = a 1)

We define the value of the Optimal Value Function V*(s) as the expected value of the
cumulative reward function in case we start the calculation from state s and always follow
the optimal strategy:

V*(s) = max EtnR(T)|sg =)

We define the value of the Optimal Action-Value Function Q* (s, a) as the expected value of
the cumulative reward function in case we start the calculation from state s, perform action
a and always follow the optimal strategy:

Q*(s,a) = max EtrnR(T)|s0 =s,a0 =a 3)

Algorithms in the strategy optimization group define it as 77y (als). Optimization of ¢ is
performed directly by the gradient algorithm based on the gradient ascent with respect to
J(7p) (the expected value of strategy 77) or its local approximation.

The practical implementation of PPO-trained agent control is defined in the form
of a neural network (NN), which we call the brain of an agent, consisting of two parts:
the feature extraction module and the decision module. Figure 2 presents two example
agent brains. These two example agents make decisions based on image data encoded in
three-dimensional tensors. Image data are processed by a convolutional neural network
(or any other feature extractor), reshaped to match the size of decision layers, and then
processed by classification layers to commit decisions on agents’ behavior. In Figure 2,
the left network uses a “Simple” encoder that uses two convolutional layers, and the right
uses a “Nature” network proposed in [35]. The rest of the NN is nearly identical in both
cases. The convolutional network reported in [35] is an image features extractor for a fully
connected neural network able to replace a human player in the decision-making process
in 49 benchmark games. The “Simple” network is a smaller variation of the “Nature”
approach. These two architectures are state-of-the-art brains for PPO-trained agents in

Appl. Sci. 2025, 15, 538

50f26

8= 100000000

[sub_output_o

8100000000

the very popular ML agents library in the Unity virtual environment. For this reason, we
decided to conduct our experiments on these two architectures. The action is performed
with two fully connected layers with Sigmoid activation functions (the number of layers
might vary depending on the problem). The final action of the agent is returned with several
output layers (the number of outputs depends on the problem); in Figure 2, there are three
output layers. In the case of classification tasks, there is often a Softmax layer following
each output; it is removed here for clarity. As can be seen, there is also one additional input
in both networks called “action_masks”, a special case of NN implementation for the ML
Agents library in Unity. This input allows resetting selected network outputs.

:ab570 J

batchx3x128x128

obs_0

batchx3x128x128

LeakyRelu

LeakyRelu

W 32x16xdxd
B3

LeakyRelu LeakyRelu

Reshape

shape 2

B 16x6272 B 16:9216
cis cis

LeakyRelu LeakyRelu

B 1616

cie

Sigmoid

action_masks

Sigmoid

B=1
5100000000

Sub_output 0|

B 3416 #
B=1
c3 {
B= 100000000

Sub_1_output_0

Sub_1_output_0 Sub_2_output_0 Sub_2_output_0

(a) (b)

Figure 2. This figure presents two example agent brains trained with PPO consisting of convolutional
image feature extractor and classification layers constructed by two 16-neuron layers. The names
of the individual network elements are derived from the notation according to the ONNX data
exchange standard (Open Neural Network Exchange, https://onnx.ai/onnx/ [accessed on 9 October
2024]). Gemm is matrix multiplication, Mul is element-wise multiplication, and Slice produces a
slice of the input tensor along axes. Visualization was performed using Onnx-modifier software
https://github.com/ZhangGe6/onnx-modifier [accessed on 9 October 2024]. (a) Agent’s NN
with “Simple” convolutional feature extractor. (b) Agent’s NN with “Nature” convolutional feature
extractor [35].

https://onnx.ai/onnx/
https://github.com/ZhangGe6/onnx-modifier

Appl. Sci. 2025, 15, 538

6 of 26

2.2. GradCAM for Image Processing Layer Explanation

GradCAM [33] is among the most popular algorithms for visually explaining convolu-
tional neural networks. This is a gradient-based approach that is based on the assumption
that the areas of the last convolutional layer of the network whose values vary the most as a
result of stimulating the network with a signal representing an object belonging to that class
have the most significant influence on the classification of an object into a particular class.
In practice, GradCAM computes the average of the gradient values and uses them in linear
combination with the output of the last convolutional layer. In the linear combination, only
the sum’s non-negative components are considered. The resulting feature relevance map
is often scaled to an interval of values [0, 1] and then interpolated and superimposed on
the input image. This second step is because convolutional features retain spatial infor-
mation about the input signal. After overlaying the relevance map, GradCAM marks the
areas of the input image that are most significant for classification into a particular class.
The algorithm can be written as follows: suppose we have an input image I that can be
classified into C classes. Each class is represented by a separate output from the y. network.
Suppose the last convolutional layer of the network consists of K filters; each filter returns
a resultant image (feature set) with a resolution of n x m. We calculate the weights wy, for
the given class ¢ and the kth output of the last convolutional layer as follows:

n m ay©
T

C
w
k n-m

(4)
where y© is an output of the neural network that corresponds to classification of an input I
toclassc, Ai‘ is a feature with coordinates (i, j) of the kth output of the last convolutional
layer, k € [1,...,K],c € [1,...,C]. Finally, the GradCAM map M° generated for class c is
computed as follows:

K
M° = Scaleyq 1 (max(0,) _ wf - AF)))
k=1

where Scaley ;) scales input tensor values to range [0, 1] linearly.

GradCAM can be directly applied to convolutional neural networks where the last
convolutional layer can be indicated. In particular, GradCAM can be applied to the example
Simple and Nature feature extractors shown in Figure 2.

2.3. Decision Trees, Proxy Geometry and Semantic Scene Segmentation

An informative way to represent an algorithm is to describe it as a flowchart containing
control instructions such as loops, conditional statements, etc. An alternative approach
is to use a special case of the block diagram as what can be considered a decision tree.
A representation of a deep model in the form of a decision tree can meet the requirements
for an explanation for a black-box machine learning model because we can estimate its
accuracy (how well an explanation predicts unseen data), fidelity (explanations ought to be
close to the predictions of the explained) and comprehensibility (explanations should be
understandable to humans) [53]. Using a decision tree to explain an algorithm that relies
on visual data is more complex. Several factors influence this:

* Inputimage to the model, even if it is not high-resolution, for example, 48 x 48 pixels,
contains 2304 features. This is far too many to build an explanation of the model.

e Individual pixels are not a semantic interpretation of what is in the image. What is
interpretable is their position relative to each other. The convolution layer, acting as
a multi-cascade image filter, analyzes the textures and mutual position of graphic
primitives in the image.

Appl. Sci. 2025, 15, 538

7 of 26

Therefore, to make the vision model explainable as a decision tree, it is necessary to reduce
the number of features and replace visual information, which is based on colored pixels,
with semantic information, which is based on types (classes) of objects located in specific
areas of the input image.

The limitation of the number of features should be tuned so that the new set of features
retains information about the spatial position of objects in the image and is easy to interpret
for human cognitive interpretation. The labels of individual features should also be easy
to identify. To meet all these requirements, we use a proxy geometry known for creating
visual human-computer interfaces [55] based on dividing the space into up to (3 x 3)
parts whose names are based on geographic directions. Depending on the resolution of
the (n x m) GradCAM map M¢, there may be several combinations of the set of proxy
geometries, which we show in Figure 3. The type of proxy geometry is calculated according
to Algorithm 1 by executing it for the values n and m, and the proxy region borders thus
built are stored in variables borders,, borders,,, respectively. The naming convention for
the individual features that are in matrix F is as in Figure 3. This algorithm does not
consider the size of the input image I but the resolution of M¢. This is because if M has
a relatively small resolution, after scaling it to the resolution of I and extracting features
from it in the rest of the algorithm, interpolation of map values during resampling may
result in the assignment of objects from different areas of M to one proxy geometry
area. If the resolution of M€ is much smaller than the resolution of the image, this can
result in an erroneous averaging of the excitation areas of M° into several adjacent proxy
geometry areas.

1x1 3x1 3x2 3x3
North | North North North
Center North West | East West North East
2x1
Center West | East West Center| East
North
South | South South South
South West | East West South | poqt
South
2x3
1x2 North North
West North East
West | East
South South
West South East

Figure 3. Proxy geometry we used in proposed method.

The next important step is to extract the semantic information from the input image,
in other words, segmenting the objects that make up the observed scene. This is an intuitive
approach: to understand the operation of the decision-making process based on the image
content, the user does not derive relevant information from the color values in the observed
proxy geometry area but is rather interested in the types of objects that the algorithm
observes. It is therefore necessary to provide a semantic segmentation of the observed
scene to the explanatory algorithm. Another machine learning algorithm can be used for

Appl. Sci. 2025, 15, 538

8 of 26

this, for example, [56-59], or if the algorithm is tested in a virtual environment, data can
be obtained directly from it. Nowadays, reinforcement learning model evaluation in the
virtual environment is a common and much cheaper approach than building a real-life
prototype [60,61], so we can assume that it is possible to obtain semantic data directly from
the virtual environment. In Figure 4, we show an example visualization of the virtual world
as seen by an agent (first column) and a semantic segmentation of the objects visible in the
scene (second column).

Algorithm 1: Generate proxy geometry

Data: Input: n or m—width or height of the convolution filter output (see
Equation (4)).
Result: borders,,, borders,,—lists that contains at most four borders each of the
proxy geometries that split section of length 1 or m, respectively, into at
most three regions, where symmetric regions have the same length, F—a
matrix of zeros with size determined by borders,, borders,,. It has at least
size (1 x 1) and at most (3 x 3).
// Helper procedure
BeginProc(b): // Initialize list of borders.
borders « [0];
// € is a value (0.001), || is rounding down,
// try to split section in % and % of its length.
by + L% + EJ;
bl — LZTw + €J,‘
for p € [by, by, b] do
if p — borders[len(borders)] > 0 then
| borders.append(p)
end
a<+0;
end
// Correct borders position.

if b = 4 then
‘ borders[3] = borders[3] + 1;
end
else
‘ borders[2] = borders[4] — borders[3];
end

return borders;

EndProc(b);

borders, = Proc(n);

borders,, = Proc(m);

// Generate matrix of zeros with size determined
// by proxy geometry size

F « [0] (#borders, —1) x (#bordersy, 71);
return F, borders,,, borders,,

Appl. Sci. 2025, 15, 538

9 of 26

—
———.-.

(d) (e) ()

Figure 4. In this Figure, in each row, we present the triplet of the input image corresponding to

semantic segmentation and visualization of the Agent’s position (white capsule shape) towards the
blue platform. (a) Input image. (b) Semantic segmentation of the input image. (c) Bird-eye view
of the scene. (d) Input image. (e) Semantic segmentation of the input image. (f) Bird-eye view of
the scene.

After creating the proxy geometry and performing segmentation, we can proceed
with feature generation. The algorithm that generates features is shown in Algorithm 2.
It involves performing GradCAM for an image I and then a weighted summation of the
pixels that belong to each semantic object class within each proxy geometry segment.
The weights are determined based on the GradCAM values after any additional correction
is made by powering up with an exponent (« > 1) and a threshold t € [0,1]. The use
of (a,t) is intended to filter the GradCAM map from values characterized by a small
network gradient. The higher the « value, the more the map values close to 0 are reduced,
and map values equal to 1 remain unchanged. The weighted sums within each segment
are scaled such that the sum for each class in the segment is divided by the weighted sum
of the pixels in all classes in that segment. Following this approach, the proxy geometries
within each segment are then scaled by dividing each feature by the weighted sum of all
pixels in the segment. Ultimately, therefore, each feature has a value in the range of [0, 1],
and the sums of feature values within a segment are 0 if for each pixel in that segment
M¢(I) is 0 or 1 otherwise. We name the individual features according to the name of the
segment and the name of the semantic class to which the pixels in the segment belong.
For example, suppose the proxy geometry is of size (2 x 1) {North, South}, and there are
three semantic classes {Class1, Class2, Class3}. The set defined in this way has (2-3 = 6)
features named {North_Class1, North_Class2, North_Class3, South_Class1, South_Class2,
South_Class3}. In the case of proxy geometry of size (3 x 2) {NorthWest, NorthEast,
West, East, SouthWest, SouthEast}, and there are two semantic classes {Class1, Class2}, we
have (62 = 12) features named {NorthWest_Class1, NorthWest_Class2, NorthEast_Class],
NorthEast_Class2, West_Class1, West_Class2, East_Class1, East_Class2, SouthWest_Classl1,
SouthWest_Class2, SouthEast_Class1, SouthEast_Class2}.

Appl. Sci. 2025, 15, 538 10 of 26

Algorithm 2: Generate image features using proxy geometry

Data: Input: [—image, NN—neural network model computed with PPO (see Section 2.1),
S definition of all semantic classes that are possible to find in input images.

Result: F, C—a matrix of features and classification results of NN for image I.

// Perform classification of input image with NN

C <+ NN(I);

// Perform semantic segmentation of I, [and [° have same resolution.

IS < SemanticSegmentation(I);

// Initialize empty list of features

F getsa;
// For each output of the network
forc € Cdo
// Compute GradCAM of input image
me < M(I);

// Interpolate values of m‘ to match the resolution of I
// (we use nearest neighbour interpolation).

M, i0q < Interpolate(me, Is);

C
resize
// Initialize matrix of features F.

F., bordersy, bordersy, < Algorithm 1(n, m);

// Split I’ into regions according to bordersy, borders,,

// Issplitted has exactly the same number of segments as F

Issplittgd <« Split(I°, bordersy, bordersy,)$ // Split miesized into regions according
to borders,, bordersy,

// mgplitted has exactly the same number of segments as F,

mgp“md < Split(I°, bordersy, mS, ;. ..);

// For each segment in I§plitted
i=1;

// Iterate through all indexes of I:plitted and m;plitted
3 ; S

while i < #Isplitted do
// For each semantic class in S

fors € Sdo
// Count all pixels in image segment that belong
// to class s, the sum is weighted by (mgplitted)a

// with threshold t

forj, k € I:plimd do
F.[i,s]+ =
{ if MGppigeai kD™ <8 Lipeli k) €5 then (myy 40, kI
else 0
end
end

// Scale features among i, to be at range [0,1]
fors € Sdo
. F.[i8]
Felins] < o2t

end
end

// Append features to list of all features
F+— FUEF;

end
return F,C

Appl. Sci. 2025, 15, 538

11 of 26

2.4. PPO Model Approximation with Decision Tree-Based Naive Method and with
GradCam Weights

As presented in Section 2.3 as the result of applying Algorithms 1 and 2, we obtain
a pair F,C, which is a set of features and classification results of the NN model. This
information is sufficient to use them as a training dataset for the CART (Classification And
Regression Tree) decision tree model to approximate the original NN [62]. In the case of
the classification model, we use a Gini-Simpson index (Gini) for the splitting criterion.
Gini impurity estimates the probability of incorrect labeling of a random sample element
if classified randomly and independently according to the distribution of classes in the
training dataset. CART performs locally optimal decisions at each split and minimizes the
following loss function:

#C
H(Q)) =) _pj(1—p)) (6)

where Q; is data at node j and p]‘? is the probability of correct assignment of all elements of
class c to class ¢ in dataset Q.

Decision trees generated by the CART algorithm are easy to analyze due to nicely
explainable splitting criteria. We can also use them to track not only numbers but also
particular instances of data samples that decide on certain tree splits. That information can
be used during classification to justify the classifier’s decision. Summing up, the NNs in
Section 2.1 are explained using an approximation CART model with features generated
as presented in Section 2. If we look closely into Algorithm 2, we can notice that it might
also be possible to generate the features set from training data using proxy geometry and
semantic classification I° without GradCam map M¢(I). This approach is called a Naive
Method. The Naive Method has the same algorithm as Algorithm 2, but the GradCAM
map is replaced by a matrix with the exact dimensions as GradCAM but filled with ones.
Thanks to that, all pixels in the semantic image have the same weight and are of the same
importance for further feature generation.

PPO-trained NNs can have more than one output. In most cases, this means that based
on a specific input signal, an agent might perform more than one action simultaneously.
In that case, each input-output relation has to be approximated by a separate decision tree.
In Figure 5, we present a block diagram summarizing the proposed methodology.

Simulation Features extraction Tree (CART) generation

Neural Network "Brain"
(model to be explained)

Ob:servations, Explanation of "Brain"
oL >| GradCAM
Features,
Proxy actions

geometry

Actions Observations

Environment

Figure 5. A block diagram summarizing the proposed methodology. At first, during the simulation,

we gather observations and actions of the agent. Then, with the help of GradCAM and proxy
geometry (see Algorithm 1), features are generated (see Algorithm 2). Those features and the agent’s
actions are used to create an approximation of the neural network brain of an agent in the form of a
decision tree (CART).

Appl. Sci. 2025, 15, 538

12 of 26

2.5. Computational Complexity and Comparison with Other Methods

The computational complexity of the proposed algorithm depends on the number of
decisions an agent performs during each step, which is equal to the number of outputs of
brain network #C, number of semantic classes (objects types) #S, input image resolution
#I and number of observations we acquired to generate CART #obs. The complexity of
GradCAM depends on the resolution of image I, #I, and equals O(#I). Then, for each
semantic class in S, we count all pixels in the image segment that belong to class s € S. That
operation has complexity O(#S - #I). Suppose the proxy geometry has a size equal to 9,
which is the highest possible value. Due to this, there are 9 - #S features. The computational
complexity of creating CART is O(9 - #S - #obs - log (#obs)) ~ O(#S - #obslog, (#obs)) and
we have to create a CART tree for each network output #C. Finally, the computational
complexity of our approach is O(#C - (#I + #S - #I + #S - #obs - log, (#obs))) ~ O(#C - #S -
(#I + #obs - logy (#obs))).

As can be seen, the computational complexity of our approach does not exceed the
computational complexity of generating CART #C times, provided that #I < #obs; if
#obs < #I, it becomes polynomial. This complexity allows a relatively fast generation of
approximation of explained models.

Our approach utilizes decision tree formalism, which makes it similar to policy ex-
planation approaches [38—40]. However, that method cannot be directly applied to visual
data to produce explainable (understandable to the user) descriptions due to the high
dimensionality of images. Similarly to visualization techniques, we also apply a Grad-
CAM [43,44]; however, the explanation is not only based on visual feedback but also
generates rules in the form of CART that govern the behavior of an agent. Our solution also
uses a knowledge distillation approach [46] in which a black-box brain provides training
data (feature-based knowledge) for its easy-to-interpreted approximation. To summarize,
our method incorporates several elements from already established approaches and creates
a single, easy-to-interpreted tree-based solution, thanks to which it can be applied in the
domain of explaining the action of an agent collecting visual data, which none of the above
methods can achieve individually.

2.6. Experiment Setting

To evaluate our approach, we performed experiments using a Unity Real-Time Devel-
opment Platform (Unity) utilizing Unity Machine Learning Agents Toolkit (ML-Agents).
The Agent’s task was to find a gold rotating cylinder (Collectible) positioned on a blue box
(Platform). The Agent had to jump on the Platform to collect the Collectible. Collecting the
Collectible under the time limit indicated the success of the training episode. Agent and
Platform were modeled as rigid bodies that moved on a green floor (Ground). A simulation
also included a blue sky (Sky). There were constraints on the time when the Agent must
reach the target and the constraint on maximum distance from Collectible. When that
distance was exceeded, the training episode ended in failure. The Agent could perform
three actions, within which there were several mutually exclusive movements: backward,
forward or no movement (Backward, Forward, Stop), turn left, right or no turn (Left, Right,
Stop), jump or not to jump (Jump, Ground). The Agent collected RGB data using a visual
sensor (camera). We considered six different camera resolutions: (48 x 48), (56 x 56),
(64 x 64), (96 x 96), (128 x 128), (192 x 192) and two feature-generating network archi-
tectures: “Simple” and “Nature” (see Section 2.1). The network making decisions about
Agent movement consisted of two layers of 16 neurons, each with a Sigmoid activation
function. The networks we used can be seen in Figure 2 (they had an additional Softmax
layer after each output). The problem of decision-making by the Agent was a classification
process. We ran 6 - 2 = 12 experiments involving training the Agent for the six camera

Appl. Sci. 2025, 15, 538

13 of 26

resolutions and two convolutional NNs. For each of the 12 possible configurations, we
generated decision trees explaining the Agent’s NN performance using Algorithm 1 and
Algorithm 2 with the methodology presented in Section 2.4. We used both the Naive
Method and GradCAM-based method with all combinations of « and t parameter values in
rangesaw = 1,2,3,5and t = 0,0.1,0.2,0.3,0.4, 0.5. Details of the environment configuration
needed to reproduce the experiment are in the source codes, which can be downloaded
from https:/ /github.com /browarsoftware/ppo_explanation [accessed on 9 October 2024].

3. Results

The proposed method for explaining reinforcement learning-based machine learning
agents trained with Proximal Policy Optimization was evaluated on a PC computer with
Intel i7 2.3 GHz, 32 GB RAM, GeForce RTX 3050 GPU running Windows 11 OS. We used
Unity engine 2021.3.18f1 and MI Agents 2.0.1 for machine learning. The framework for
agent training was Python 3.9 with libraries Torch 2.2.2, Tensorboard 2.17.1, mlagents 0.30.0,
mlagents-envs 0.30.0, gym 0.26.2. For model explanation, we used Python 3.10, tensorflow
2.8, keras 2.8, scikit-learn 1.5.2, onnx 1.14.1, onnx2kears 0.0.24 (https://github.com/gmali
venko/onnx2keras [accessed on 9 October 2024]). Ml Agents generate a network in Onnx
format that has to be converted to the Keras NN model to enable numerical differentiation
of the network graph.

We performed all 12 experiments described in Section 2.6. A total of 15 - 10° episodes
were enough for each evaluated NN model to obtain 100% efficiency in solving the problem
of acquiring a Collectible object by an Agent. The plot with Cumulative Reward value
during PPO training is presented in Figure 6. The vertical axis presents the number of
training steps, while the vertical axis presents the cumulative reward of an agent. After
training the agents so that each configuration had 100% efficiency, we generated recordings
of 1000 consecutive images from that Agent’s visual sensor and the corresponding semantic
segmentations for those images. We used these images and segmentations to generate
explanations according to our proposed method and validation with the leave-one-out test.
In other words, each CART tree was trained on 999 images and validated on one, and the
validation process was repeated 1000 times for each tree. A detailed description of the
experiment setup can be found in Section 2.6.

Cumulative Reward value during PPO

e |
0
o
B
% Network
o Nature, 48x48
2 <2 Nature, 56x56
] © — Nature, 64x64
35 Nature, 96x96
e Nature, 128x128|
8 —— Nature, 192x192
To) Simple, 48x48
o Simple, 56x56
! Simple, 64x64
— Simple, 96x96
Simple, 128x128
— Simple, 192x192
Qe
T

T T T T
0 500000 1000000 1500000

Step

Figure 6. The plot of Cumulative Reward value during PPO training steps (episodes).

https://github.com/browarsoftware/ppo_explanation
https://github.com/gmalivenko/onnx2keras
https://github.com/gmalivenko/onnx2keras

Appl. Sci. 2025, 15, 538

14 of 26

(b)48 x48 ()56 x56 (d)64x 64 (€)92x92 (128 x 128 (g) 192 x 192

(a) Semantic

glIlF-I

()48 x 48 (j)56x56 (k)64 x 64 1)92x92 (m)128 x 128 (n) 192 x 192

h) Input

(b)48 x 48 ()56 x56 (d)64x 64 ()92x92 (£ 128x 128 (g) 192 x 192

- NS5

(1)48 x 48 (j)56 x56 (k) 64 x 64 D92 x92 (m)128 x 128 (n) 192 x 192

(a) Semantic

h) Input

In Figures 7 and 8, we present example GradCAM results for various Agent NNs
differing with a resolution of the image sensor. All agents use a “Simple” convolutional
features embedder. In (a), the semantic clustering of the input image (h) is presented.
The first row presents the GradCAM color-coded map generated as the response of the NN
for the input image (h). The second row shows the same GradCAM map but is imposed
onto the input signal. The darker the region, the smaller the value on the map. The bright
areas correspond to a value of one on the GradCAM map.

Figure 7. Example GradCAM results for various Agent NNs differing with a resolution of the image
sensor. All agents use a “Simple” convolutional features embedder. (a) The semantic clustering of the
input image (h). The first row presents the GradCAM color-coded map generated as the response of
NN for input image (h). The second row shows the same GradCAM map but is imposed onto the
input signal. The darker the region, the smaller the value on the map. The bright areas correspond to
a value of 1 on the GradCAM map.

Figure 8. Example GradCAM results for various Agent NNs differing with a resolution of the image
sensor. All agents use a “Simple” convolutional features embedder. (a) Semantic clustering of the
input image (h). The first row presents the GradCAM color-coded map generated as the response of
NN for input image (h). The second row shows the same GradCAM map but is imposed onto the
input signal. The darker the region, the smaller the value on the map. The bright areas correspond to
a value of 1 on the GradCAM map.

In Figures 9-11, we present a CART explanation generated by the proposed GradCAM-
based method for the Agent’s NN with (64 x 64) input image signal, “Simple” convolu-
tional feature embedder, and (« = 1,t = 0.3) parameters of Algorithm 2. Those trees
explain the rules of front-back, left-right, and jumping motion, respectively. Instances
of classes among certain features are presented in color-coded bars. The black arrow
positioned under the horizontal axis indicates the splitting threshold.

Appl. Sci. 2025, 15, 538

15 of 26

185

0
0.0000

.

221

0 0
069 100

S_Platform

A
o

0.0000 0.0409 0.0818 0.000 0.217

NW_Collectible £ W_Sky

/| [\

Font

lohul

ns

0.0000.182

%

514

['Stop', 'Front', 'Back']
[Stop
I Front
[Back

C_Platform

293

0
0.3923

E_Ground
|
}

0.7229

1
0

1.000

E Platform

\

n=22
Front.

QQ

n=21
Stop

1.000

/ | C_Collectible
‘ } \
Lﬁn— 9

\>

1

0 1

S_Ground
o H
438
0.000 0.756 1.000 0d
C_Platform o b 1

C_Collectible

Figure 9. CART explanation generated by the proposed GradCAM-based method for Agent’s NN
with (64 x 64) input image signal, “Simple” convolutional feature embedder and (« = 1, = 0.3)

parameters of Algorithm 2. This particular tree explains the rules of forward-backward motion.

The size of the tree is limited to maximal depth of 4. Instances of classes among certain features are

presented in color-coded bars. The black arrow positioned under the horizontal axis indicates the

splitting threshold.

0
0.0000

313

0

0.0000 0.3471

C_Ground

0.000

0.2830 0.4108

E Collectible

L

0.0000 0.4335 0.7145

SE_Collectible

~ {

. | /
N 66
o M 0
0 0.000 0527 1.000

C_Platform S_Ground

-
L —

810«

0.000

0

53
28

0.446

A\
N

n=195
Stop

1.000

n=5
Left

['Stop’, 'Left’, 'Right']
[Stop
o Left

0.7931 E==IRight

0.302

C Sky

1.000

u

W_Platform W_Platform
\ T
\l B | \
NN . N T |
' 0.0000 G 00000 03307 0769 Right
W_Ground W Ground
/'/ \ / \
b VA
O Rk e U

n=303
Left

Figure 10. CART explanation generated by the proposed GradCAM-based method for the Agent’s
NN with (64 x 64) input image signal, “Simple” convolutional feature embedder and (« = 1, = 0.3)
parameters of Algorithm 2. This particular tree explains the rules of left-right motion. The size of the
tree is limited to maximal depth of 4. Instances of classes among certain features are presented in color-
coded bars. The black arrow positioned under the horizontal axis indicates the splitting threshold.

Appl. Sci. 2025, 15, 538

16 of 26

684

['Ground", ‘Jump'l
[Ground
0 == jump
0.000 0577 1.000

S_Platform

724
124
DLI:L:_‘—,f
0 0.000 0.236 1.000

0.0000 b 202 S_Ground
SE_Sky
/ \ /
604 \
\ 3
rg 0 LD_DTD—D_D_,7
o Jump 0.00000.1476 0.7250

3 1 W_Ground
SE_Ground Jump |\
/v A
[N [\

‘ ‘ 9 9

n=5
Jump, Ground

Figure 11. CART explanation generated by the proposed GradCAM-based method for Agent’s NN
with 64 x 64 input image signal, “Simple” convolutional feature embedder and (« = 1, = 0.3)
parameters of Algorithm 2. This particular tree explains the rules of jump motion. Instances of classes
among certain features are presented in color-coded bars. The black arrow positioned under the
horizontal axis indicates the splitting threshold.

Figure 4 in each row presents the triplet of the input image (view from the Agent’s
camera), its semantic (object class-based) segmentation and visualization of the Agent’s
position (represented by a white capsule shape) towards the blue platform (a bird-eye
view of the scene). Figures 12-14 present the decision process (predictions) of the CART
tree generated by the proposed GradCAM-based method for Agent’s NN with (64 x 64)
input image signal, “Simple” convolutional feature embedder, (¢ = 1, = 0.3) on images
from Figure 4. The orange arrow under the horizontal axis indicates the actual feature
value. These figures show an explanation of the decision-making process for a single-agent
camera reading. They contain single tree paths from trees shown in Figures 9-11.

In Tables 1 and 2, we present the results of statistical cross-validation analysis of our
proposed method; best results are marked bold. We utilized the leave-one-out accuracy test
of various configurations of the Agent’s NN explanation method presented in Section 2.4.
Rows represent various parameter settings, and columns represent the resolution of the
input image. Results are averaged values of all correct classifications of three possible agent
actions (motion, rotation, jumping) over all possible decisions, which means the following:

Py + Py + Pj
be—FNfb—FPl,-i-Nlr-l-pj—FNj

ACC = 7)

where Pgy, Py, Pj are positive decisions (true positive + true negative) and N v Niy Nj are
negative decisions (false positive + false negative) for forward-backward, left-right and
jump decisions appropriately.

Appl. Sci. 2025, 15, 538

17 of 26

S_Ground
S]

Prediction
Front

(@)

} 514
I
e |
['Stop', 'Front', 'Back’] }
Stop |
1 Front }
[Back } 0 by
I
|

S_Ground
S]

Prediction
Front

(b)

['Stop’, 'Front’, 'Back']

[1Stop
[Front
[0 Back

Figure 12. This Figure presents the decision process (predictions) of the CART tree generated by

the proposed GradCAM-based method for Agent’s NN with (64 x 64) input image signal, “Simple

”

convolutional features embedder, (« = 1, = 0.3) on images from Figure 4. The orange arrow

under the horizontal axis indicates the actual feature value. This Figure shows an explanation of the

decision-making process for a single agent camera reading. It contains a single tree path from the tree

shown in Figure 9. (a) Prediction for input image from Figure 4a. (b) Prediction for input image from

Figure 4d.

Appl. Sci. 2025, 15, 538

18 of 26

A
0.0000 0.3471 0.7931

A
0.000®.0692 0.4108
E_Collectible

Prediction
Stop

@)

['Stop', 'Left’, 'Right']

Stop
Left
Right

A i
0.0000 0.3471 07931
C_Ground

I

I

|

I

I

I

I

I

} A A

| 0.0000 0.2830 0.4108
| E_Collectible
. ¢

I
I
|
I
I
I
I
I
i
I
| SE_Collectible
L

A
0.0000 04335 07145

T I
64 —~
| L |
I I
I I
I I
I I
['y }
| ° oy
| C_Platform |
L I

A
0.0000 0.1850 0.4108 |
E_Collectible |

A A
00000 02727 07931

Prediction
Stop

(b)

['Stop', ‘Left’, 'Right']

Stop
[Left
[Right

Figure 13. This Figure presents the decision process (predictions) of the CART tree generated by the

proposed GradCAM-based method for the Agent’s NN with (64 x 64) input image signal, “Simple

”

convolutional features embedder, (¢« = 1, = 0.3) on images from Figure 4. The orange arrow

under the horizontal axis indicates the actual feature value. This Figure shows an explanation of the

decision-making process for a single Agent camera reading. It contains a single tree path from the

tree shown in Figure 10. (a) Prediction for input image from Figure 4a. (b) Prediction for input image

from Figure 4d.

Appl. Sci. 2025, 15, 538 19 of 26

i
|

|

|

| | ['Ground', Jump']
I 1 Ground

| = jump

|

|

|

A
0.000 0577 1.000

i
I

I

| .
| C'Ground’, Jump’]

i) Ground
I

i

I

I

I

Jump
0.000 0577

A
0.000 0236 1.000

SE_Ground
L __SE x | \

Ground Jump

(a) (b)

Figure 14. This Figure presents the decision process (predictions) of the CART tree generated by the
proposed GradCAM-based method for the Agent’s NN with (64 x 64) input image signal, “Simple”

convolutional features embedder, (¢« = 1, = 0.3) on images from Figure 4. The orange arrow

under the horizontal axis indicates the actual feature value. This Figure shows an explanation of the

decision-making process for a single Agent camera reading. It contains a single tree path from the

tree shown in Figure 11. (a) Prediction for input image from Figure 4a. (b) Prediction for input image

from Figure 4d.

Table 1. Results of the leave-one-out accuracy test of various configurations of the Agent’s NN

explanation method presented in Section 2.4. Rows represent various parameter settings, and columns

represent the resolution of the input image. All results are for “Simple” convolution feature extraction.

48 x 48 56 X 56 64 X 64 96 X 96 128 x 128 192 X 192
Naive 0.945 0.961 0.963 0.962 0.967 0.932
a=1t=0 0.959 0.977 0.976 0.968 0.962 0.941
«=1t=0.1 0.953 0.982 0.976 0.969 0.968 0.944
a=1t=0.2 0.955 0.984 0.976 0.967 0.970 0.943
a=1;t=03 0.949 0.982 0.982 0.961 0.955 0.93
«=1t=04 0.942 0.981 0.976 0.959 0.948 0.93
a=1t=05 0.944 0.977 0.976 0.966 0.946 0.935
a=2;t=0 0.944 0.978 0.976 0.967 0.966 0.945
x=2t=0.1 0.946 0.98 0.976 0.964 0.958 0.941
a=2;t=02 0.952 0.982 0.974 0.96 0.937 0.938
a=2;t=03 0.944 0.969 0.977 0.954 0.935 0.929
x=2t=04 0.931 0.965 0.972 0.941 0.943 0.919
a=2t=05 0.937 0.971 0.962 0.942 0.928 0.918
a=3t=0 0.947 0.975 0.974 0.973 0.96 0.945
«=3t=0.1 0.953 0.984 0.973 0.961 0.945 0.931
a=3t=02 0.941 0.968 0.972 0.95 0.941 0.929
a«=3t=03 0.935 0.968 0.968 0.936 0.936 0913
«=3t=04 0.934 0.97 0.955 0.938 0.922 0.917
a«=3t=05 0.927 0.97 0.935 0.911 0.918 0.901
a=5t=0 0.953 0.971 0.973 0.968 0.951 0.944
«=51t=0.1 0.934 0.968 0.97 0.941 0.94 0.922
a=51t=02 0.934 0.971 0.96 0.935 0.928 0.917
a«=51t=03 0.929 0.968 0.948 0.916 0.922 0.901
x=5t=04 0.914 0.966 0.928 0.9 0.911 0.9
a=51t=05 0.896 0.959 0.901 0.846 0.913 0.891

Appl. Sci. 2025, 15, 538

20 of 26

Table 2. Results of the leave-one-out accuracy test of various configurations of the Agent’s NN
explanation method presented in Section 2.4. Rows represent various parameter settings, and columns
represent the resolution of the input image. All results are for “Nature” convolution feature extraction.

48 X 48 56 X 56 64 X 64 96 X 96 128 x 128 192 X 192

Naive 0.919 0.953 0.944 0.911 0.961 0.956
a=1t=0 0.911 0.963 0.953 0.921 0.968 0.967
a=1t=0.1 0.917 0.966 0.961 0.926 0.965 0.962
a=1;t=02 0.922 0.97 0.95 0.919 0.967 0.966
«=1t=03 0.914 0.97 0.953 0.908 0.964 0.964
a=1t=04 0.917 0.972 0.95 0.893 0.963 0.961
a=1t=05 0.915 0.962 0.956 0.874 0.957 0.954
x=2t=0 0.911 0.962 0.949 0.921 0.968 0.963
a=2t=0.1 0.918 0.973 0.957 0.912 0.961 0.963
a=2;t=02 0.913 0.972 0.955 0.876 0.959 0.951
«=2t=03 0.92 0.965 0.946 0.874 0.951 0.954
a=2;t=04 0.912 0.961 0.939 0.872 0.955 0.952
a=2t=05 0.918 0.934 0.937 0.863 0.947 0.949
«=3t=0 0.911 0.963 0.957 0.915 0.96 0.966
a=3t=0.1 0.911 0.97 0.953 0.878 0.959 0.953
a=3t=02 0.919 0.963 0.947 0.874 0.958 0.952
«=3t=03 0.917 0.957 0.937 0.863 0.948 0.949
a=3t=04 0.913 0.907 0.935 0.858 0.947 0.95
a«=3t=05 0913 0.922 0.933 0.844 0.939 0.942
a=5t=0 0.911 0.966 0.947 0.911 0.961 0.962
a=51t=0.1 0.914 0.964 0.943 0.869 0.953 0.948
a=51t=02 0.917 0.907 0.937 0.864 0.945 0.945
«=51t=03 0.914 0.921 0.935 0.847 0.937 0.947
a=51t=04 091 0.925 0.928 0.834 0.938 0.944
a=51t=05 0.905 0.926 0.935 0.819 0.931 0.935

4. Discussion

As can be seen in Figure 6, all tested configurations of NNs trained with the PPO
algorithm established 100% effectiveness in solving the problem described in Section 2.6
after no more than 15 - 10° episodes. For an observer who visually compares individual
Agents’ actions, they behaved similarly in a virtual environment. At first, they made rota-
tional movements until they did not find the Platform/Collectible object. They then moved
toward it by jumping at the right moment, which allowed them to reach the Collectible
object. However, each of these networks worked in a slightly different way. An important
factor was that we used two feature extractors, “Simple” and “Nature”, which differed
in the number of layers and the resolution of the last convolution layer. Also, the data
coming from the input vision sensor varied significantly in resolution, from (64 x 64) up
to (192 x 192). Thus, it was natural that the feature image extractor that provided differ-
ent input data determined the inference by the following fully connected neural layers
with sigmoid activation functions (see Figure 2). Example performance visualizations of
convolution neural with various input image resolution networks processed by seman-
tic segmentation and GradCam for the same input image can be seen in Figures 7 and 8.
Aware of a certain simplification, we call the area of the GradCAM map where the averaged
gradient obtained the most significant value in this discussion the area observed by the
Agent. In some cases, such an observable area was those portions of the map where the
entire Platform or Collectible the Agent was aiming at was located. This situation happened
in Figures 7c,g and 8e. However, this was not the general rule. Sometimes the observed area
included only a portion of the target, for example, in Figures 7f and 8g, or the target and a
portion of its surroundings, as in Figures 7d,e and 8b—d,f or did not observe the area at all
and observed only its surroundings like in Figure 7b. By GradCAM’s assumption, these

Appl. Sci. 2025, 15, 538

21 of 26

areas were the most influential in separating images into the different classes of activity
performed by the Agent.

Based on the results in Tables 1 and 2, we can conclude that our proposed method
allowed an efficient approximation of the decision made by the neural network. For the
Naive Method, the accuracy of approximation was in the range of 0.932 (for a resolution
of (192 x 192)) to 0.967 (for a resolution of (128 x 128)) for the “Simple” convolutional
embedder and 0.911 (for a resolution of (96 x 96)) to 0.961 (for a resolution of (128 x 128))
for the “Natural” convolutional embedder. The use of GradCAM-based feature extraction
allowed further improvement of NN approximation results. The GradCAM-based method
had the best accuracy of approximation in the range of 0.945 (for a resolution of (192 x 192))
to 0.984 (for a resolution of (56 x 56)) for the “Simple” convolutional embedder and 0.922
(for a resolution of (48 x 48)) to 0.968 (for a resolution of (128 x 128)) for the “Natural”
convolutional embedder. The use of GradCAM resulted in an improvement in NN approxi-
mation relative to the Naive method of about 0.01 to 0.02. Most often, our method had the
highest approximation values for « = 1 and a low value of t € 0.1,0.2,0.3. This means that
to achieve good approximation, there is no need for additional modulation or thresholding
of M° map. Also, no relationship was observed between the resolution of the input signal
and the accuracy of approximation.

The decision trees that were generated using the method described in Section 2.4
were relatively easy to interpret. In the case of the experiment described in Section 2.6,
we obtained three trees for each parameter setting, examples of which can be seen in
Figures 9-11. They approximated the NN decision classifying forward-backward mov-
ing, left-right turning, and jumping, respectively. Example decision paths of these trees
are shown in Figures 12-14. The decision paths should be analyzed in conjunction with
Figure 4, which shows the input image to the NN network. In Figure 12 for both images,
the decision to move forward was made. As can be seen, such a decision was made when
the Central part of proxy geometry was occupied by an object of class Platform, the South
part of the geometry was occupied by an object of class Ground, there was a low number
of pixels of Collectible class in the Center, and there were pixels of class Ground in the
South-East. In other words, the Agent moved forward if there was Ground under its “legs”
and a Platform and a Collectible in front of it. In Figure 13, in both cases, the decision
was “Stop”, which means there was no turn in the left or right directions. As can be seen,
the decision was based on the statistic that Agents did not turn if both to the left and right
of the Agent there were not a sufficiently large number of pixels belonging to the Platform
and Collectible classes. Figure 14 shows the situation when the Jump was not made (a) and
when the Agent jumped (b). As can be seen, the Jump was not executed because in the
South area, there were not enough pixels belonging to the Platform class, and in the South
East direction, there were no pixels belonging to the Sky class, but there were pixels of the
Ground class. As can be seen in tree (b), the Agent performed the Jump action when there
was a Platform object and relatively few pixels of the Ground class in the South area, in the
region very close to the Agent. The Agent decided to jump when it moved close enough to
the Platform.

Plotting CARTS as they are in Figures 12-14 where, in addition, we present histograms
of the values of each feature in the training set, visualizes how often a given case occurred
in the observed environment. The experiment showed that the rules generated by the
CART tree were not only characterized by a high level of accuracy but were relatively easy
for humans to interpret and led to intuitive conclusions.

We can safely say that the high value of the ACC is the most important indicator
that signalizes the successful approximation of a black-box model with its explainable
equivalent. The « and t parameters of the proposed method has to be tuned experimentally;

Appl. Sci. 2025, 15, 538

22 of 26

however, experiments showed that those values should have rather low values. In our
experiment, ¢ did not exceed 2, while « did not exceed 0.2. That other aspect is the
relation between the maximal depth of CART and the possibilities of interpreting and
understanding the rules contained in this tree by humans. The process of understanding
and interpretation is directly related to the individual abilities of each person to analyze
this type of conditional systems, but for sure the deeper the tree, the less understandable
it becomes.

While dealing with scenarios with multiple actions or decisions, the depth of the
decision tree may increase, making rule interpretation more complex. This fact is an
inevitable consequence of using a complex decision system in agent control. The more
possible actions an agent can take and the more semantic object classes can be distinguished
in the environment, the more complex the agent control algorithm and, consequently,
the decision tree that describes it usually becomes. To simplify the interpretation process,
the tree size can be limited by specifying its maximum depth and the minimum number of
samples required to split an internal node. This is a trade-off between the accuracy of the
model’s description using the decision tree and the complexity of the tree, understood as
its depth. A Gini impurity may estimate the overall fitting of the CART on the leaves of a
decision tree.

Our method was evaluated in low-resolution visual systems with the highest consid-
ered resolution equaled (192 x 192). The range of considered resolutions was determined
by two factors. The first is the memory limitations of the hardware: the higher the camera’s
resolution, the larger the input layers of the network (see Figure 2). When camera resolution
increases, it becomes necessary to reduce the batch during training, and network learning
becomes longer. The second factor was the lack of the dependence of Cumulative Reward
value during PPO from the camera’s resolution. As shown in Figure 6, the resolution
did not have a decisive effect on agent performance—regardless of the camera resolution,
each agent completed the task. The camera’s high resolution does not critically affect the
complication of the obtained explanation using the CART tree. First, the resolution of the
analyzed image is not directly the resolution of the input image, but rather the resolution
of GradCAM, or the last convolution layer of the feature extractor. In the case of our
experiments, for (48 x 48) resolution, GradCam had a resolution of (4 x 4), for (56 x 56)—
(5% 5), for (64 x 64)—(6 x 6), for (96 x 96)—(10 x 10), for (128 x 128)—(12 x 12) and
for (192 x 192)—(20 x 20), which is much smaller than the input resolution of the camera.
In addition, the heuristics we assumed use a proxy geometry with a maximum resolution
of 3 x 3 (see Figure 3). In summary, if we consider the image transmitted from the camera,
the most significant factor in terms of the complexity of the decision tree is the number of
semantic classes visible in the image, an issue we discussed earlier in this section.

5. Conclusions

Our proposed method works well for scenarios where semantic clustering of the scene
is possible. It is based on the solid theoretical foundation of the GradCAM and CART with
additional proxy geometry heuristics. It excelled in the explanation process in a virtual
simulation system based on video data with relatively low resolution. It performs very
well in multimedia systems, such as computer games or simulations, with a clearly defined
Agent’s goal and few semantic classes. It can be used to provide an in-depth analysis of
NN action rules generated in the PPO process by decision tree approximation. The rules
generated by the CART tree are not only characterized by a high level of accuracy but are
relatively easy for humans to interpret and lead to intuitive conclusions.

Our proposed method also has some limitations. First, if an agent can perform
many possible actions (for example, a dozen quantized rotation directions), this could

Appl. Sci. 2025, 15, 538 23 of 26

increase the depth of the decision tree and the difficulty of rule interpretation. Also, many
semantic classes could cause difficulties in interpreting the tree due to the increasing
complexity of the rules. The method proposed in the paper was tested and validated in a
specific virtual environment. It has to be remembered that in many scenarios, the virtual
environment is a basic and only environment where vision-based reinforcement learning
algorithms operate, for example, in medical applications such as landmark detection,
object tracking, image registration [63] or in computer games [35]. The generalization
ability of the proposed algorithm in complex real-world environments remains an open
question; however, currently used virtual reality systems have high rendering quality,
creating almost photorealistic and physics-accurate simulation environments. For this
reason, it can be anticipated that the application of the currently popular virtual-to-real-
world transfer learning paradigm, which involves training a system used in the real world
based on virtual /synthetic data [64], may allow the application of our algorithm for non-
virtual objects. The issue of applying the solution proposed in this work to real-world and
especially robotics applications is a promising research topic worth pursuing. Another
interesting issue is the possibility of completely replacing the deep learning model with
an explainable equivalent. This would be useful when an explainable equivalent would
have virtually identical performance to the neural network approach. In our case, this
would also require creating a fast, real-time, lightweight, and mobile GradCAM algorithm
implementation, which is a technological challenge at the moment.

Author Contributions: Conceptualization, T.H.; methodology, T.H.; software, T.H.; validation, M.P.
and T.H; formal analysis, TH. and M.P; investigation, T.H.; resources, T.H.; data curation, T.H.;
writing—original draft preparation, T.H. and M.P,; writing—review and editing, T.H. and M.P;
visualization, T.H.; supervision, T.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Source codes can be downloaded from https://github.com/browarsof
tware/ppo_explanation [accessed on 9 October 2024].

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.

Ding, W.; Abdel-Basset, M.; Hawash, H.; Ali, A.M. Explainability of artificial intelligence methods, applications and challenges:
A comprehensive survey. Inf. Sci. 2022, 615, 238-292. [CrossRef]

Gilpin, L.H.; Bau, D.; Yuan, B.Z.; Bajwa, A.; Specter, M.; Kagal, L. Explaining explanations: An overview of interpretability
of machine learning. In Proceedings of the 2018 IEEE 5th International Conference on Data Science and Advanced Analytics
(DSAA), Turin, Italy, 1-3 October 2018; pp. 80-89.

Holzinger, A.; Saranti, A.; Molnar, C.; Biecek, P.; Samek, W. Explainable Al methods—A brief overview. In Proceedings of the
International Workshop on Extending Explainable Al Beyond Deep Models and Classifiers; Springer: Berlin/Heidelberg, Germany, 2022;
pp- 13-38.

Lin, Y.S.; Lee, W.C,; Celik, Z.B. What do you see? Evaluation of explainable artificial intelligence (XAI) interpretability through
neural backdoors. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore,
14-18 August 2021; pp. 1027-1035.

Rong, Y.; Leemann, T.; Nguyen, T.T.; Fiedler, L.; Qian, P.; Unhelkar, V.,; Seidel, T.; Kasneci, G.; Kasneci, E. Towards human-centered
explainable ai: A survey of user studies for model explanations. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 46, 2104-2122.
[CrossRef] [PubMed]

McDermid, J.A.; Jia, Y.; Porter, Z.; Habli, I. Artificial intelligence explainability: The technical and ethical dimensions. Philos.
Trans. R. Soc. A 2021, 379, 20200363. [CrossRef] [PubMed]

https://github.com/browarsoftware/ppo_explanation
https://github.com/browarsoftware/ppo_explanation
http://doi.org/10.1016/j.ins.2022.10.013
http://dx.doi.org/10.1109/TPAMI.2023.3331846
http://www.ncbi.nlm.nih.gov/pubmed/37956008
http://dx.doi.org/10.1098/rsta.2020.0363
http://www.ncbi.nlm.nih.gov/pubmed/34398656

Appl. Sci. 2025, 15, 538 24 of 26

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.
35.

Spartalis, C.N.; Semertzidis, T.; Daras, P. Balancing XAI with Privacy and Security Considerations. In Proceedings of the
European Symposium on Research in Computer Security, The Hague, The Netherlands, 25-29 September 2023; pp. 111-124.
Akhtar, M.A K.; Kumar, M.; Nayyar, A. Privacy and Security Considerations in Explainable Al In Towards Ethical and Socially
Responsible Explainable Al: Challenges and Opportunities; Springer: Berlin/Heidelberg, Germany, 2024; pp. 193-226.

Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable Al: A review of machine learning interpretability methods.
Entropy 2020, 23, 18. [CrossRef]

Ghosh, A.; Kandasamy, D. Interpretable artificial intelligence: Why and when. Am. J. Roentgenol. 2020, 214, 1137-1138. [CrossRef]
Hastie, T.; Tibshirani, R.; Friedman,].H.; Friedman,].H. The Elements of Statistical Learning: Data Mining, Inference, and Prediction;
Springer: Berlin/Heidelberg, Germany, 2009; Volume 2.

Marcinkevics, R.; Vogt, J.E. Interpretable and explainable machine learning: A methods-centric overview with concrete examples.
Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2023, 13, €1493. [CrossRef]

Rawal, A.; McCoy, J.; Rawat, D.B.; Sadler, B.M.; Amant, R.S. Recent advances in trustworthy explainable artificial intelligence:
Status, challenges, and perspectives. IEEE Trans. Artif. Intell. 2021, 3, 852-866. [CrossRef]

Minh, D.; Wang, H.X,; Li, Y.F; Nguyen, T.N. Explainable artificial intelligence: A comprehensive review. In Artificial Intelligence
Review; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1-66.

Speith, T. A review of taxonomies of explainable artificial intelligence (XAI) methods. In Proceedings of the 2022 ACM Conference
on Fairness, Accountability, and Transparency, Seoul, Republic of Korea, 21-24 June 2022; pp. 2239-2250.

Dwivedi, R.; Dave, D.; Naik, H.; Singhal, S.; Omer, R.; Patel, P; Qian, B.; Wen, Z.; Shah, T.; Morgan, G.; et al. Explainable AI (XAI):
Core ideas, techniques, and solutions. ACM Comput. Surv. 2023, 55, 1-33. [CrossRef]

Gianfagna, L.; Di Cecco, A. Model-agnostic methods for XAL In Explainable AI with Python; Springer: Berlin/Heidelberg, Germany,
2021; pp. 81-113.

Darias,].M.; Diaz-Agudo, B.; Recio-Garcia, J.A. A Systematic Review on Model-agnostic XAI Libraries. In Proceedings of the
ICCBR Workshops, Salamanca, Spain, 13-16 September 2021; pp. 28-39.

Saeed, W.; Omlin, C. Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities. Knowl.-Based
Syst. 2023, 263, 110273. [CrossRef]

Abusitta, A.; Li, M.Q.; Fung, B.C. Survey on explainable ai: Techniques, challenges and open issues. Expert Syst. Appl. 2024,
255,124710. [CrossRef]

Le, T.T.H,; Prihatno, A.T.; Oktian, Y.E.; Kang, H.; Kim, H. Exploring local explanation of practical industrial Al applications: A
systematic literature review. Appl. Sci. 2023, 13, 5809. [CrossRef]

Aechtner, J.; Cabrera, L.; Katwal, D.; Onghena, P.; Valenzuela, D.P,; Wilbik, A. Comparing user perception of explanations
developed with XAl methods. In Proceedings of the 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Padua,
Italy, 18-23 July 2022; pp. 1-7.

Saleem, R.; Yuan, B.; Kurugollu, F; Anjum, A.; Liu, L. Explaining deep neural networks: A survey on the global interpretation
methods. Neurocomputing 2022, 513, 165-180. [CrossRef]

Ribeiro, M.T.; Singh, S.; Guestrin, C. “ Why should i trust you?” Explaining the predictions of any classifier. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13-17 August
2016; pp. 1135-1144.

Lundberg, S. A unified approach to interpreting model predictions. arXiv 2017, arXiv:1705.07874.

Ribeiro, M.T.; Singh, S.; Guestrin, C. Anchors: High-precision model-agnostic explanations. In Proceedings of the AAAI
Conference on Artificial Intelligence, New Orleans, LO, USA, 2-7 February 2018; Volume 32.

Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189-1232. [CrossRef]
Goldstein, A.; Kapelner, A.; Bleich,].; Pitkin, E. Peeking inside the black box: Visualizing statistical learning with plots of
individual conditional expectation. J. Comput. Graph. Stat. 2015, 24, 44-65. [CrossRef]

Breiman, L. Random forests. Mach. Learn. 2001, 45, 5-32. [CrossRef]

Freedman, D.A. Statistical Models: Theory and Practice; Cambridge University Press: Cambridge, UK, 2009.

Wachter, S.; Mittelstadt, B.; Russell, C. Counterfactual explanations without opening the black box: Automated decisions and the
GDPR. Harv. JL Tech. 2017, 31, 841. [CrossRef]

Simonyan, K. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv 2013,
arXiv:1312.6034.

Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations From Deep Networks
via Gradient-Based Localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy,
22-29 October 2017.

Sutton, R.S. Reinforcement learning: An introduction. In A Bradford Book; MIT Press: Cambridge, MA, USA, 2018.

Mnih, V.; Kavukcuoglu, K; Silver, D.; Rusu, A.A.; Veness,].; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A K,;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529-533. [CrossRef]

http://dx.doi.org/10.3390/e23010018
http://dx.doi.org/10.2214/AJR.19.22145
http://dx.doi.org/10.1002/widm.1493
http://dx.doi.org/10.1109/TAI.2021.3133846
http://dx.doi.org/10.1145/3561048
http://dx.doi.org/10.1016/j.knosys.2023.110273
http://dx.doi.org/10.1016/j.eswa.2024.124710
http://dx.doi.org/10.3390/app13095809
http://dx.doi.org/10.1016/j.neucom.2022.09.129
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1080/10618600.2014.907095
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.2139/ssrn.3063289
http://dx.doi.org/10.1038/nature14236

Appl. Sci. 2025, 15, 538 25 of 26

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.
58.

59.

Tesauro, G. Td-gammon: A self-teaching backgammon program. In Applications of Neural Networks; Springer: Berlin/Heidelberg,
Germany, 1995; pp. 267-285.

Silver, D.; Huang, A.; Maddison, C.J.; Guez, A ; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,
V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484-489. [CrossRef]
Sutton, R.S.; McAllester, D.; Singh, S.; Mansour, Y. Policy gradient methods for reinforcement learning with function approxima-
tion. Adv. Neural Inf. Process. Syst. 1999, 12, 1057-1063.

Shah, H.; Gopal, M. Fuzzy decision tree function approximation in reinforcement learning. Int. J. Artif. Intell. Soft Comput. 2010,
2,26-45. [CrossRef]

Silva, A.; Gombolay, M.; Killian, T.; Jimenez, I.; Son, S.H. Optimization methods for interpretable differentiable decision trees
applied to reinforcement learning. In Proceedings of the International Conference on Artificial Intelligence and Statistics, PMLR,
Online, 26-28 August 2020; pp. 1855-1865.

Wang, C.; Aouf, N. Explainable Deep Adversarial Reinforcement Learning Approach for Robust Autonomous Driving. IEEE
Trans. Intell. Veh. 2024, 1-13. [CrossRef]

Shukla, I.; Dozier, H.R.; Henslee, A.C. Learning behavior of offline reinforcement learning agents. In Proceedings of the Artificial
Intelligence and Machine Learning for Multi-Domain Operations Applications VI, National Harbor, MD, USA, 22-26 April 2024;
Volume 13051, pp. 188-194.

He, L.; Nabil, A.; Song, B. Explainable deep reinforcement learning for UAV autonomous navigation. arXiv 2020, arXiv:2009.14551.
Sarkar, S.; Babu, A.R.; Mousavi, S.; Ghorbanpour, S.; Gundecha, V.; Guillen, A.; Luna, R.; Naug, A. Rl-cam: Visual explanations
for convolutional networks using reinforcement learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, Vancouver, BC, Canada, 17-24 June 2023; pp. 3861-3869.

Metz, Y.; Bykovets, E.; Joos, L.; Keim, D.; El-Assady, M. Visitor: Visual interactive state sequence exploration for reinforcement
learning. In Proceedings of the Computer Graphics Forum, Los Angeles, CA, USA, 6-10 August 2023; Wiley Online Library:
Hoboken, NJ, USA, 2023; Volume 42, pp. 397-408.

Hatano, T.; Tsuneda, T.; Suzuki, Y.; Imade, K.; Shesimo, K.; Yamane, S. GBDT modeling of deep reinforcement learning agents
using distillation. In Proceedings of the 2021 IEEE International Conference on Mechatronics (ICM), Kashiwa, Japan, 7-9 March
2021; pp. 1-6.

Hickling, T.; Zenati, A.; Aouf, N.; Spencer, P. Explainability in deep reinforcement learning: A review into current methods and
applications. ACM Comput. Surv. 2023, 56, 1-35. [CrossRef]

Puiutta, E.; Veith, EM. Explainable reinforcement learning: A survey. In Proceedings of the International Cross-Domain
Conference for Machine Learning and Knowledge Extraction, Dublin, Ireland, 25-28 August 2020; pp. 77-95.

Wells, L.; Bednarz, T. Explainable ai and reinforcement learning—A systematic review of current approaches and trends. Front.
Artif. Intell. 2021, 4, 550030. [CrossRef]

Milani, S.; Topin, N.; Veloso, M.; Fang, F. Explainable reinforcement learning: A survey and comparative review. ACM Comput.
Surv. 2024, 56, 1-36. [CrossRef]

Williams, R.J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 1992,
8,229-256. [CrossRef]

Feng, Q.; Xiao, G.; Liang, Y.; Zhang, H.; Yan, L.; Yi, X. Proximal Policy Optimization for Explainable Recommended Systems.
In Proceedings of the 2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS), Chengdu,
China, 28-30 October 2022; pp. 1-6. [CrossRef]

Blanco-Justicia, A.; Domingo-Ferrer,]. Machine Learning Explainability Through Comprehensible Decision Trees. In Proceedings
of the Machine Learning and Knowledge Extraction, Canterbury, UK, 26-29 August 2019; Holzinger, A., Kieseberg, P, Tjoa, A.M.,
Weippl, E., Eds.; ACM: Cham, Switzerland, 2019; pp. 15-26.

Schulman, J.; Wolski, F; Dhariwal, P; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

Niu, Y.-E; Gao, Y,; Zhang, Y.-T.; Xue, C.-Q.; Yang, L.-X. Improving eye—computer interaction interface design: Ergonomic
investigations of the optimum target size and gaze-triggering dwell time. J. Eye Mov. Res. 2019, 12. [CrossRef]

Asgari Taghanaki, S.; Abhishek, K.; Cohen, J.P.; Cohen-Adad, J.; Hamarneh, G. Deep semantic segmentation of natural and
medical images: A review. Artif. Intell. Rev. 2021, 54, 137-178. [CrossRef]

Liu, X.; Deng, Z.; Yang, Y. Recent progress in semantic image segmentation. Artif. Intell. Rev. 2019, 52, 1089-1106. [CrossRef]
Khan, M.Z.; Gajendran, M.K;; Lee, Y.; Khan, M. A. Deep neural architectures for medical image semantic segmentation. IEEE
Access 2021, 9, 83002-83024. [CrossRef]

Hachaj, T.; Piekarczyk, M. High-Level Hessian-Based Image Processing with the Frangi Neuron. Electronics 2023, 12, 4159.
[CrossRef]

http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1504/IJAISC.2010.032511
http://dx.doi.org/10.1109/TIV.2024.3379367
http://dx.doi.org/10.1145/3623377
http://dx.doi.org/10.3389/frai.2021.550030
http://dx.doi.org/10.1145/3616864
http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.1109/DOCS55193.2022.9967709
http://dx.doi.org/10.16910/jemr.12.3.8
http://dx.doi.org/10.1007/s10462-020-09854-1
http://dx.doi.org/10.1007/s10462-018-9641-3
http://dx.doi.org/10.1109/ACCESS.2021.3086530
http://dx.doi.org/10.3390/electronics12194159

Appl. Sci. 2025, 15, 538 26 of 26

60.

61.

62.

63.

64.

Sankar, K.; Pooransingh, A.; Ramroop, S. Synthetic Data Generation: An Evaluation of the Saving Images Pipeline in Unity. In
Proceedings of the 2023 Congress in Computer Science, Computer Engineering, & Applied Computing (CSCE), Las Vegas, NV,
USA, 24-27 July 2023; pp. 2009-2013. [CrossRef]

Tremblay, J.; Prakash, A.; Acuna, D.; Brophy, M.; Jampani, V.; Anil, C.; To, T.; Cameracci, E.; Boochoon, S.; Birchfield, S. Training
deep networks with synthetic data: Bridging the reality gap by domain randomization. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18-22 June 2018; pp. 969-977.

Breiman, L. Classification and Regression Trees; Routledge: Oxfordshire, UK, 2017. [CrossRef]

Le, N.; Rathour, V.S.; Yamazaki, K.; Luu, K.; Savvides, M. Deep reinforcement learning in computer vision: A comprehensive
survey. Artif. Intell. Rev. 2022, 59, 2733-2819. [CrossRef]

Ranaweera, M.; Mahmoud, Q.H. Virtual to Real-World Transfer Learning: A Systematic Review. Electronics 2021, 10, 1491.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/CSCE60160.2023.00330
http://dx.doi.org/10.1201/9781315139470
http://dx.doi.org/10.1007/s10462-021-10061-9
http://dx.doi.org/10.3390/electronics10121491

	Introduction
	State of the Art
	Novelty of This Paper

	Materials and Methods
	The Neural Network of an Agent Trained with Proximal Policy Optimization with Visual (Image) Input
	GradCAM for Image Processing Layer Explanation
	Decision Trees, Proxy Geometry and Semantic Scene Segmentation
	PPO Model Approximation with Decision Tree-Based Naive Method and with GradCam Weights
	Computational Complexity and Comparison with Other Methods
	Experiment Setting

	Results
	Discussion
	Conclusions
	References

