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Abstract

This study investigates semantic text segmentation enhanced by large language model
(LLM) embeddings. We assess how effectively embeddings capture semantic coherence and
topic closure by integrating them into both classical clustering algorithms and a modified
graph-based methods. In addition, we propose a simple magnetic clustering algorithm as a
lightweight baseline. Experiments are conducted across multiple datasets and embedding
models, with segmentation quality evaluated using the boundary segmentation metric.
Results demonstrate that LLM embeddings improve segmentation accuracy, highlight
dataset-specific difficulties, and reveal how contextual window size and embedding choice
affect performance. These findings clarify the strengths and limitations of embedding-
based approaches to segmentation and provide insights relevant to retrieval-augmented
generation (RAG).

Keywords: text segmentation; embedding; LLMs; clustering algorithms; machine learning;
optimization; RAG; semantic analysis

1. Introduction

The task of text segmentation is to partition a text into sequential fragments that each
exhibit high internal semantic coherence. This requires a representation of meaning that
captures semantic similarity across sentences. In our study, we use vector representations,
or embeddings, generated by modern pre-trained LLMs. Embeddings encode textual
information into dense vectors, and several methods for constructing them exist, each with
different assumptions and interaction mechanisms [1,2]. These differences give embedding
methods distinct properties that affect their suitability for intelligent systems. For de-
velopers, analyzing such properties is essential—for example, assessing interpretability,
the ability to generalize across domains, and the capacity to support downstream tasks [3].

It is also important to consider whether a given type of embedding depends strongly
on vocabulary [4] or on domain [5] and to what extent similarity between vector represen-
tations correlates with human judgments, as well as in which semantic dimensions this
occurs. Other relevant factors include the granularity of meaning units, the importance
of long-range semantic connections, the role of segment linearity, and how contextual
information is incorporated. In this regard, text segmentation—where strict evaluation
metrics are available—provides a particularly suitable testing environment. Much research
in this direction has focused on identifying well-defined metrics and developing methods
for obtaining suitable representations [6].
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Depending on the subject area for which segmentation is required, it can be the
subject of separate studies [7], for example, whether the text system is used for dialogues,
encyclopedic text, or a text-cleaning process or whether the system is supplemented with
synthetic data. This spread of input data parameters can also introduce a number of features
into the methods and can require fine-tuning of the hyperparameters of the algorithms.

As a starting point for evaluating segmentation methods, some studies use a baseline
estimate based on random segmentation [8-11]. How close the obtained estimate is to the
random baseline may be explained or may require additional methods and calculations.
However, even if some segmentation algorithms show results close to random, such a
baseline estimate can serve as a measure of the complexity of the dataset. In addition, it
leaves the opportunity to determine the reliability and stability of the obtained results.

The choice of vector representation of text data can be significant for obtaining a
qualitative assessment of working with text data. At the same time, other indicators,
such as stability and reliability, may directly depend on how these embedding models are
formed and used. Embedding models also have their own historical and logical continuity.
Although deep embeddings have recently been unrivaled in terms of representation quality,
the properties embedded in them often reflect many problematic issues. The choice of
trade-off between the complexity of the model, its availability, focus, etc., is still a relevant
and practical task [3].

In this study, we investigate the extent to which accurate text segmentation can be
obtained using computationally light algorithms, provided that high-quality embeddings
from large language models are available. This question is particularly relevant for retrieval-
augmented generation (RAG) systems [12,13], where the quality of retrieved evidence
depends critically on how textual data is partitioned into coherent units. In large-scale
corpora and real-time applications, segmentation enables the extraction of semantically
complete fragments that can be efficiently indexed, embedded, and retrieved in response
to user queries. Importantly, this need persists regardless of the increasing context window
sizes in modern LLMs: excessive inclusion of irrelevant context reduces answer fidelity,
while inadequate fragmentation omits crucial semantic cues. Hence, segmenting texts
into units that balance informativeness, coherence, and length remains a fundamental step
toward improving both retrieval accuracy and model interpretability [14]. Performing
such segmentation in a computationally efficient manner, without compromising semantic
completeness, thus represents a practical requirement for deploying RAG methods at scale.

This leads to the compilation of computational experiments; these experiments aim to
assess the quality of segmentation obtainable from various datasets, embedding models,
and machine learning methods that formalize the idea of semantic proximity in classifica-
tion or clustering problems.

Another reason for the experiments is consideration of overfitting issues, which can
inevitably arise in machine learning problems. Many models, especially those with a large
number of trainable parameters, can be subject to overfitting. The overfitting effect for text
analysis methods may be expressed in various forms (which result in the same visible form
as a low score on validation/test sets for boundary errors) to answer such questions as
corpus field dependency, which may be the case for deep segmentation models. Hence,
independent downstream tasks, like the search for semantic boundaries or cohesion, could
clarify this issue. Hence, both internal checks aimed at the reliability and quality of the
model, as well as external ones for comparison with alternative solutions, are needed.

We note that semantically significant units have different names/terms in this area,
often due to the methods used, but in general they have logically justified meanings (topic
cohesion, semantic granularity of tokens, etc.). In this study, generally accepted terms for
segments are used (the term “linearity” is omitted, since the greatest emphasis is placed on
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sentences as the main text unit of analysis). In some cases, cluster terms are used, since the
segmentation methods employed are closely related to clustering methods.

In summary, in this research we first introduce a systematic evaluation of how large lan-
guage model (LLM) embeddings support semantic text segmentation when combined with
both lightweight clustering methods and graph-based approaches. Second, we propose
and analyze a simple yet robust baseline algorithm—termed Magnetic clustering—which
demonstrates that, given appropriate embeddings, computationally efficient procedures
can achieve results comparable to more sophisticated methods. Third, we conduct an
extensive set of experiments across six datasets with varying structural characteristics,
using the boundary similarity metric as a principled evaluation criterion. This provides
empirical insights into the role of embedding models, context size, and hyperparameter
optimization in segmentation performance.

2. LLM Embedding Models

Table 1 presents the list of models and references selected for computational exper-
iments. Although a wide range of LLM-based models is available [15,16], in this study,
we restrict attention to models that have been specifically trained or optimized for embed-
ding tasks rather than text generation. The selected models provide diversity in scale and
design philosophy: from lightweight universal encoders to very large architectures with
specialized training for semantic retrieval and multi-functionality. This diversity allows us
to examine how universal versus task-specific embeddings capture semantic relations in
segmentation. Preliminary experiments also showed that these models can consistently
detect topic shifts in simple baseline scenarios, which motivated their use as the foundation
for systematic evaluations in this study.

Table 1. Summary of LLM-based embeddings used in the experiments [17].

Name Size Ref. Notes

An embedding model trained on very large

a  all-minilm M [9,18] sentence-level datasets.

A nomic Al model that generates high-quality
nomic-embed- dense vector representations optimized for
b text 137 M [19] semantic search, clustering, and retrieval tasks.
A high-performing open embedding model
with a large token context window.

. mxbai-embed- 334 M [20,21]
large

A state-of-the-art large embedding model
from mixedbread.ai.

A very large embedding model from BAAI,
d bge-m3 12G [22] distinguished by its versatility across multiple
functions, languages, and granularities.

3. Segmentation Algorithms

A number of algorithms were used to conduct computational experiments. A basic
segmentation algorithm using local vector similarity was implemented. Since one of the
main tasks of the study is to test the hypothesis of applicability of basic algorithms, we fo-
cused on the following well-established (classical) algorithms: [23] Spectral Clustering [24],
Agglomerative Clustering [25], Affinity Propagation [26], and KMeans++ [27,28]. A com-
parative analysis with the published algorithm GraphSeg from [11] and with a variant that
substitutes embedding-based distances in this method (GraphSegSM) was also conducted.

All segmentation algorithms in this study operate on a similarity matrix derived from
sentence embeddings. Let D = (sq,...,s,) denote a document consisting of n sentences,
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and let e(s;) € R be the embedding vector of sentence s; produced by a given LLM model.
We construct the similarity matrix S = [s; ;]1<; j<, using cosine similarity:

e(s;) - e(Sj)

s;j = cos(e(s;), e(sj)) = TeGsa)l eI

Because we consider linear segmentation [3], only entries close to the main diagonal of S
are stored and used, corresponding to local sentence neighborhoods (see Figure 1). This
matrix serves as the common input for all subsequent algorithms—both clustering-based
and graph-based—ensuring comparability across methods. For computational efficiency
all similarity matrices were precomputed.

(b)

Figure 1. Example of a heat map for the similarity matrix. Horizontal lines display the true segmenta-
tion, while vertical lines are the estimated clustering boundaries. Segmentation of sample texts from
Abstracts (a) and PhilPapersAl (b) by Spectral Clustering.

3.1. Basic Segmentation Algorithms (Magnetic Clustering)

Unlike random segmentation for the baseline score shown in [8,9], our approach uses
a basic segmentation algorithm to understand what an embedding metric can produce
without large further investments. We call it Magnetic clustering because the basic principle
of the algorithm “glues” adjacent text blocks together, analogous to a magnet. The direction
of attraction is determined by the values of the similarity (proximity) matrix, taking into
account the trainable parameters.

For the similarity matrix S = [si,j} 1<ij<n, it is convenient to introduce an approxima-
tion for the values outside of the matrix indices:
o Si,js if1 < i,j<m

mean{sy #|i' — i =i—7,1<1i,i <n}, otherwise.
] ] ] )

In other words, s j coincides with the original entry s; ; inside the matrix, and outside
the index range, it is approximated by the average of all entries lying on the diagonal with
the same offset i — ;.

For every 1 <i < n, the difference between the weighted similarities of the neighbors

on the right and on the left is evaluated.
bi= Y. wesiik— ). WSk (*)
k=1,...,d k=1,...,d

where wy > 0 represents the weights applied symmetrically to both sides of the (i, 1)
position. b; from (x),1 < i < n naturally defines a clustering partition. We say b; and by
are in the same cluster if one of the following conditions is satisfied:



Appl. Sci. 2025, 15, 10849

50f13

*  b;and by have the same signand |i —i'| = 1;

* b >0and by < 0have different signsand i’ =i +1;

e Fori' >1i" > i, every by belongs to the same cluster as b; or b;.

In other words, the segment/ clustering border is defined between positions (7,7 + 1) such
that b; < 0and b;;1 > 0 (e.g., Figure 2).

pmmmmmm e B o A

{ ] j A )
Y Y Y Y
cluster 1 cluster 2 cluster3 cluster 4

Figure 2. Clustering defined by the segmentation algorithm partition. ‘+/—"for sign(b;),1 < i < n.

The obtained b; represent only a tendency i-th unit toward left (negative) or right
(positive) neighbors, and they may have high variance. Hence, as an intermediate step,
a smoothing filter (function) has to be applied. This filter also works as an aggregator
of semantic blocks of texts into higher-level semantically related blocks. For the given
algorithm, the following parameters are subject to optimization: weights wy, k =1,...,4d.
We assume wy = 0, for k > d, meaning that the relation between distant semantic elements
can be neglected.

The proposed segmentation algorithm shows high stability with respect to parameter
variations. For example, small changes in the optimal parameters do not result in notable
changes in the final score. The same is true with respect to the filtering hyperparameters.

3.2. Adaptation of Clustering Algorithms for Segmentation

The following machine learning clustering algorithms [23] were used to assess the
possibility of good clustering based on the calculated similarity matrix: Spectral Clustering,
Agglomerative Clustering, Affinity Propagation, and KMeans++. An essential point is how
the similarity matrix is constructed. The sentence embeddings generated by LLMs contain
enough information for distinguishing the topic-centric scope of the texts. It is worth
noting that different ways to compute the similarity matrix can be adapted. Preliminary
computational results show that they do not yield advantages regarding the segmentation
metrics. This can be explained by how the embedding models are trained. Our analysis
indicates that cosine similarity provides the most stable form of similarity for this task.

For every algorithm, the width of the non-zero diagonal band is estimated as a hyper-
parameter per dataset. It corresponds to the level of granularity by which algorithms try
to identify target segmentation blocks. Every applied algorithm has a specific parametric
search space with three common parameters: kn, which is the number of sentences in the
embedding (sliding window length of 1, 2, or 3 sentences); wdiag, which is the bandwidth
of non-zero central diagonals in the similarity matrix; and emodel, which is the embedding
model from Table 1. The other adjustable parameters are defined by the specificity of
algorithms: the mode for choosing the weights and filters in Magnetic clustering and the
mode to evaluate the number of clusters in Spectral Clustering, Agglomerative Clustering,
and KMeans++; the mode to determine the connectivity type in Agglomerative Cluster-
ing, and the mode to determine the damping factor in Affinity Clustering. Optimization
was performed with the hyperparameter optimization library Optuna [29]. By setting the
proper values (the optimum found) from the search space, the algorithm is adapted to
dataset-specific characteristics.

3.3. Graph-Based Algorithms for Segmentation

Graph-based segmentation algorithms show promising concepts and results. We
evaluate the method proposed in [11], which relies on composing graph cliques into a
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coherent segmentation structure. This approach introduces heuristics that estimate the
similarity of sentences using word embeddings: it measures a fine-grained alignment of
parsed sentence-unit embeddings weighted by information content, so nouns and verbs
have higher weights. The algorithm produces a segmentation that relies on semantic
similarity between sentences: it builds a graph structure that represents the semantic
relatedness of text units: sentences are nodes, and edges connect semantically related
sentences according to the heuristics. Segmentation is then derived by detecting the
maximal cliques of semantically coherent sentences and merging them into larger units.

For this algorithm, the space of optimizable parameters is defined by two values:
(1) The similarity threshold (7) is the cutoff value for adding an edge between two sentences
in the semantic similarity graph. Only pairs of sentences whose similarity exceeds T are
connected. The parameter T is considered in the real valued range of 2.5 < T < 5. (2) The
minimum segment size (minseg) is the smallest number of sentences in a segment. Segments
smaller than minseg are merged with their most semantically related neighbor, thereby
preventing the creation of very short and incoherent fragments. The parameter minseg is
considered in the integer range of 3 < minseg < 6.

The choice of parameter ranges reflects both methodological considerations and em-
pirical observations across different datasets. The similarity threshold 7 is limited to the
above interval because values below this range tend to generate overly dense graphs in
which nearly all sentences are connected, making clique detection uninformative, while
values above this range produce graphs that are too sparse to form meaningful cliques.
Similarly, the range for minseg is set to 3 < minseg < 6 in order to avoid trivial boundaries:
segments shorter than three sentences often capture only noise or local fluctuations rather
than genuine topic shifts, whereas segments longer than six sentences risk merging distinct
semantic units and obscuring meaningful transitions. These ranges were selected to en-
sure robust behavior across different datasets, balancing sensitivity to fine-grained topical
changes with stability against over-segmentation or under-segmentation.

We extend the original GraphSeg algorithm [11] into a modified framework, hereafter
called GraphSegSM. The overall structure of GraphSegSM remains identical to GraphSeg:
the text is represented as a graph where sentences are nodes, and edges connect semantically
related sentences; segmentation is then obtained by detecting cliques of highly related
sentences and merging them into larger coherent units. The key difference lies in how
similarity between sentences is estimated. While the original GraphSeg algorithm relies on
a heuristic combining word embeddings with information-content weighting, GraphSegSM
replaces this heuristic with cosine similarity between sentence-level LLM embeddings. This
modification ensures a consistent comparison with other clustering-based approaches
in this study, which also operate on embedding-derived similarity matrices. To enable
systematic evaluation, the search space of optimizable parameters in GraphSegSM is
defined as the Cartesian product of the tuples (T, minseg) x (kn, wdiag, emodel), where
(kn, wdiag, and emodel) are as defined previously. This formulation allows GraphSegSM to
preserve the structural advantages of the original graph-based method while leveraging
the representational power of modern LLM embeddings.

4. Boundary Segmentation Metric

In this research, the boundary segmentation score is used as a primary evaluation met-
ric [30]. Its advantages over various metrics such as Pk [31] and WinDiff [32] are discussed
in [6]. The selection of the primary segmentation score allows us to compare in a formal way
both embedding models and segmentation algorithms. The boundary segmentation score



Appl. Sci. 2025, 15, 10849

70f13

evaluates the proportion between wrong boundaries, near misses, and perfect matches:

|Ae| + wispan(Te, ny)
|Ae| + |Te| + [Bm|

A comparison of two segmentations to evaluate their difference involves the use of an

B(s1,50, 1) =1 —

edit distance function that produces sets of editing operations: insertion/deletion A,
transpositions T,, and the set By that specifies the matching boundary pairs. The numeric
parameter 11; > 0 defines how far a boundary can be misplaced to be counted as a near miss.
That is, for boundary b from segmentation s; and b’ from segmentation sy, if there are no
boundaries in their matching positions and |b — V'| < ny,, then (b,V") € T,. By default, it is
set to two; hence only the pairs of boundaries whose positions differ by one are considered
as “near misses", provided that their corresponding next positions are empty.

b V|

wispan(T,, nt) = Z o

(b,b)ET,

It is clear that for n; = 2, the estimation score B penalizes a “near miss” half as much
as each insertion/deletion editing pair. Also, it gives room for flexible approximations of
segmentation with smooth borders. In our study it provides advantages for text segmenta-
tion since it is a normal situation that text-related topics vary smoothly, allowing variation
in defining boundaries. Further, for some of the considered algorithms that evaluate text
topics over neighboring contexts, this mechanism becomes inherited for defining proper
evaluations with contextualized embeddings. Unlike cases where various boundary types
are specified as in [30], we consider the case where the semantic difference between text
blocks alone matters, and this difference defines a single boundary type. Hence, we remove
from consideration the terms for penalizing substitutions between boundary types.

For a simple visualization of this metric, consider the example in Figure 3. For
two segmentations, s; and sy, positional boundaries are denoted as b1y, b1y, . . .. The bound-
aries by and by, form a pair of matching boundaries, (b1p,b2») € Bys. The pair (by1, ba1)
belongs to T, (a near miss), assuming n; = 2. Finally, (by3, *), (b14, %), and (%, byy) are in A,,
corresponding to two deletions and one insertion (boundary editing) [30].

S1 b11 b12 b13 b14
v v v
2 | 2 ] 4 | 4 E
s b2 baz b2z
2 R v
3 | 1| 6 | 5
-
ne

Figure 3. Example of boundary segmentation.

5. Description of Datasets

To evaluate the quality of segmentation, it is wise to use different datasets that have
different semantic characteristics. Based on the objectives of this study, it makes sense
to consider datasets on which the algorithms described in the Section 3 are easy and
convenient to use, and their characteristics reflect the variety of possible text fragments. An
overview of the datasets used, together with their statistics, is given in Table 2.

We assume that there can be subjective (human perception-dependent) and objective
segmentation with clearly expressed topic changes. For example, in the dataset from
Wikipedia, there is a large number of border segments based on subjective ratings. In reality,
these two types can be mixed as much as possible and may overlap. One of the reasons for
using multiple datasets is a necessity to investigate the cases where subjective and objective
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boundaries coexist. We also included datasets with more objective boundaries, although in
some cases the distinction is not always clear.

Table 2. Summary of datasets.

Choi Manifesto Wiki-1024 Abstracts SMan PhilPapers Al
Documents 922 6 1024 300 300 336
Real-world X v v X X 4
:l;gfiiecty /document High Average Low Low Low Average
Topic variety /dataset ~ High Low High Low High High
Segment length 7.36 +2.98 3.08 +5.42 28.47 + 33.02 8.09 +2.92 10.70 + 10.66 5.73+6.19
Segments/document 9.98 +0.13 478.50 £ 250.07  7.33 +2.61 24.83 + 8.57 30.00 + 0.00 7.85+2.94

Document length

73.44 £ 21.36 1474.33 £ 390.63 208.55 £105.05 20096 + 71.37  321.09 £ 56.57  44.92 + 30.64

Below is a brief description of the datasets used.

5.1. Benchmarking Datasets in Text Segmentation Field

In this section, we describe classic datasets, which have been used repeatedly in the
task of segmentation:

The Choi dataset [8] contains 922 artificial documents. Each of them is a set of
segments (blocks) of sentences drawn from different sources. The segments are not related
to each other, so as a rule, segmentation is relatively easy for many algorithms and typically
yields high accuracy. Several studies have used this dataset for comparative segmentation
evaluations, for example, see [33-35].

Manifesto consists of six fairly long texts of major political speeches [36,37]. It includes
a human-generated segmentation according to strictly formed guidance. It is used to
evaluate segmentation for semantic topic shifts and thematic changes [38,39].

Wiki-1024 contains texts from 1024 selected Wikipedia articles. Segmentation is
determined by dividing the documents into sections and subsections. The original dataset
has a large scale and makes it possible to train models with millions of parameters, such as
deep networks of various architectures [10].

5.2. Datasets Generated in This Study

The following small datasets were created to increase the variety of text segmenta-
tion characteristics.

The Abstracts dataset is created by generating artificial documents and merging real
abstracts of research articles into continuous texts. It is collected by a request for the online
Scopus service (around 20k of abstracts) in the field of Information Retrieval. Segments are
straightforward splits of documents by abstracts.

SMan was constructed in a similar way to the Abstracts dataset, but it uses random
samples of Manifesto segments to generate artificial texts of political statements. Topics
vary considerably due to mixing, though they generally follow the same slogan-like style.

PhilPapersAl is a selection of 336 articles on philosophy (in the field of modern
philosophy of AI) based on papers from the philpapers.org archive. The archive is available
at [40,41]. The files in the dataset were obtained in PDF format and had low parsing
quality due to markup. With the OpenAI GPT-40-mini LLM, 336 articles were restored and
reprocessed with a breakdown by subsections. The texts processed by Al have a coherent
and well-structured format. The LLM prompts required preserving the structure and style
of the authors as accurately as possible.
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These datasets are available at [42].

6. Experiments

Algorithm parameters were optimized using Optuna [29] (with a tree-structured
hyperparameter search) for each dataset individually. The results obtained on independent
test subsets are reported below.

During optimization, filtering and other parameters were adjusted to maximize the
segmentation score, thereby aligning them with the task of identifying accurate boundaries
corresponding to each dataset.

For independent testing, a portion of the dataset not involved in optimization was
used. The results indicate that the scores remain consistent, showing that both filtering and
other parameters were well adapted to the properties of each dataset. Boundary similarity
scores are shown in Table 3.

Table 3. Summary of results on test data. Higher boundary similarity scores correspond to better

results.
Boundary Similarity Choi Manifesto Wiki-1024 Abstracts SMan PhilPapers Al
Magnetic 0.72 0.14 0.14 0.73 0.10 0.05
Spectral 0.71 0.36 0.08 0.70 0.25 0.37
Agglomerative 0.77 0.35 0.12 0.79 0.20 0.32
Affinity 0.61 0.27 0.06 0.49 0.30 0.22
KMeans++ 0.65 0.33 0.11 0.68 0.34 0.28
GraphSeg [11] 0.49 -1 0.08 0.71 -1 0.33
GraphSegSM 0.68 0.33 0.13 0.73 0.54 0.38

! The algorithm cannot be applied because the dataset’s segmentation does not rely on sentences as elementary units.

Pk scores are shown in Table 4 for consistency, as this metric has good interpretability
and appears frequently in segmentation studies.

Table 4. Summary of results on test data. Pk ~ 0.5-0.6 corresponds to a random segmentation
algorithm (picking segmentation boundaries at random). Lower scores correspond to better results.

Pk [31] Choi Manifesto Wiki-1024 Abstracts SMan PhilPapers Al
Magnetic 0.14 0.50 0.40 0.13 0.49 0.76
Spectral 0.10 0.44 0.46 0.13 0.40 0.40
Agglomerative 0.08 0.44 0.44 0.09 0.45 0.43
Affinity 0.14 0.46 0.58 0.24 0.34 0.56
KMeans++ 0.18 0.44 0.41 0.14 0.34 0.43
GraphSeg 0.32 - 0.61 0.13 - 0.45
GraphSegSM 0.18 0.45 0.58 0.13 0.29 0.42

7. Optimizable Parameters and Result Overview

It is important to identify non-trivial patterns in the results produced by machine
learning algorithms. Accordingly, we explain the outcomes not only in terms of model
efficiency but also with respect to complementary analytic measures, such as stability under
different types of errors.
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Texts in natural language often show a nested semantic structure. Even if an algorithm
is capable of recognizing semantic closure, its parameters have to be tuned in order to align
with the corresponding layer of the hierarchy. In other words, algorithm tuning refers to
the process of identifying optimal hyperparameters that correspond to specific datasets
and specific types of segmentation.

Comparing the heat maps in Figure 1 for text data from the artificial Abstracts dataset
(a) and the natural Wiki dataset (b), it is easy to see the granularity of different levels in
the second case. This granularity can be useful and of interest for some tasks, but it can
also be an obstacle for others—for example, when identifying hierarchical semantics versus
simplifying to a flat list of topics. This also leads to systematic errors on naturally segmented
texts, as the smoothness of such texts introduces an advanced level of complexity.

The use of lightweight, computationally efficient machine learning algorithms in-
creases the stability of results by enabling evaluation over batches of segmented texts.
In our experiments, as shown in Tables 4 and 5, the batch size varied between 100-300 texts.
This approach helps to avoid overfitting and yields more dataset-oriented results. On the
other hand, it decreases the resulting scores, since the adaptability of classical machine
learning algorithms to the segmentation task may be relatively low.

Additionally, the stability of results can be evaluated via the stability of the correspond-
ing optimal parameters—i.e., whether the hyperparameter search space has converged to a
stable minimum. Verification experiments, as illustrated in Figure 4, can be conducted by
evaluating parameters in the neighborhood of the possible minimum.

. - 1.00 HI
N 0.75 o
"
m |:o.50 -
© 3 3 38

o < «©
© a8 & o~

(a) (b)

Figure 4. Heat maps for optimal parameters. The number of sentences in the embedding (y-axis) and
the width of the diagonal bandwidth in the similarity matrix (x-axis) are optimized by the boundary
segmentation score. (a) Choi and (b) Abstracts.

Table 5 demonstrates several patterns regarding the embedding models used:

*  Magnetic clustering resolves segmentation tasks well on simpler datasets (Choi and
Abstracts) but performs poorly on more challenging cases where coherent blocks
depend on human perception.

*  Magnetic clustering results on PhilPapersAl indicate systematic errors, which can be
interpreted in different ways.

¢  In the majority of cases, the nomic-embed model outperforms the others.

*  Context size deeply affects most evaluations; LLM-based embeddings over two con-
secutive sentences generally provide higher scores.

*  Our hypothesis on the applicability of basic algorithms is partially confirmed. With
the help of simple (computationally efficient) algorithms, it is possible to obtain results
comparable to those of computationally expensive ones, for example, those based on
graph methods.
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Table 5. Summary of results on model choice and context embedding sizes that achieved the highest
scores. One, two, or three consecutive sentences were passed for the embedding (window length).
Models a—d refer to the embedding models from Table 1.

Choi Manifesto Wiki-1024 Abstracts SMan PhilPapers Al
Magnetic 2-c 2-a 3-b 2-b 2-b 3-a
Spectral 1-c 2-d 2-b 2-b 2-b 3-d
Agglomerative 1-c 1-b 2-b 2-b 1-b 3-b
Affinity 1-b 1-c 1-b 3-b 3-d 1-d
KMeans++ 2-c 3-d 3-b 2-b 3-b 3-d

8. Concluding Remarks

This article set out to examine what kinds of analytical insights can be gained from
vector-based text representations generated by LLMs in the task of distinguishing semantic
patterns. By combining clustering techniques with graph-based approaches, we compared
a range of embedding models and assessed how well they capture semantic relations and
the internal closure of topics.

Our focus was on identifying both the strengths and the limitations of such represen-
tations when applied to text segmentation as an unsupervised task. Lightweight machine
learning methods allowed us to highlight the extent to which segmentation quality depends
not only on the underlying representation but also on the simplicity or sophistication of
the algorithm applied. We further observed that contextual information can significantly
reinforce semantic coherence. The research opens possibilities to link segmentation met-
rics more explicitly with different types of errors. While this extension lies beyond the
present study, it points to a promising path for improving both evaluation methodology
and segmentation performance.

In practical terms, the proposed approach may benefit RAG systems, where precise
segmentation improves evidence retrieval and response fidelity. It is also relevant for
downstream tasks such as automatic summarization, question answering, topic track-
ing, and document indexing in large-scale corpora, including scientific and legal texts.
In these applications, accurate segmentation contributes directly to efficiency, reliability,
and interpretability.
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