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Abstract

With the increasing integration of mobile technologies into manufacturing automation
environments, the effective visualisation of data on small-screen devices has emerged as
an important consideration. This study investigates the usability and readability of com-
mon visualisation types (bar charts, line charts, and tables) on mobile devices, comparing
different interface designs and interaction methods. Using a within-subject experimental
design with 11 participants, we evaluated two primary approaches for handling large visu-
alisations on mobile screens: segmented (cutting) displays versus continuous (dragging)
displays. Results indicate that segmented displays generally improve task completion time
and reduce mental workload for bar charts and tables. In contrast, line charts exhibit more
complex patterns that depend on the size of the data. These findings provide practical
guidelines for designing responsive data visualisations optimised for mobile interfaces.

Keywords: industrial automation; Industry 4.0; mobile data visualisation; usability;
mental workload

1. Introduction
Mobile devices have transformed both daily life and professional environments, par-

ticularly with the emergence of the Internet of Things (IoT) and Industry 4.0. IoT integrates
pervasive networks, device miniaturisation, mobile communication, and new ecosystems [1–3],
eliminating temporal and geographical barriers to information access. In this data-intensive
era, mobile devices serve as crucial intermediaries between machines and humans, enabling
seamless information flow and decision-making.

Data visualisation has emerged as an essential solution for presenting complex in-
formation effectively [4,5], which is both an opportunity and a significant challenge [6,7].
Increasingly, IoT applications employ User-Centred Design (UCD) principles with in-
tegrated data visualisation to enable intuitive data control and viewing [8,9]. This is
particularly critical in industrial contexts, where Enterprise Resource Planning (ERP) and
Business Intelligence (BI) systems depend on effective visualisation to support organi-
sational decision-making. The convergence of Internet of Things (IoT) technologies and
mobile devices now permits real-time data access, remote operational control, and rapid
response to emergent situations, contributing to enhanced automation on the shop floor.
Manufacturing and quality data can now be transmitted instantly to responsible managers,
who can retrieve information and issue operational commands through their smartphones.
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However, as information volumes increase, system usability faces significant
challenges [10–12]. Simultaneously, technological innovation transforms working
environments [13]. Users no longer work exclusively on desktop systems; instead, mobility
has become a fundamental requirement for modern work environments. Consequently,
browsing increasingly complex information on progressively smaller interfaces represents
a necessary research focus.

In 2010, Marcotte introduced Responsive Web Design (RWD) as a development ap-
proach enabling web interfaces to adapt dynamically to various screen sizes [14]. The
framework comprises three core components: flexible grid layouts, flexible images and
media, and CSS media queries [15]. This methodology allows seamless content presentation
across devices ranging from smartphones to desktop computers without requiring separate
versions [16].

Previous studies revealed that compared to desktop screen sizes, executing reading
tasks on mobile devices with smaller screens reduces task performance. Users spend
longer times searching for content on small screens [17–20]. When users make decisions or
acquire specific information on smaller devices, performance is lower than on larger screen
devices [21–23]. Additionally, testing the readability and usability of graphs and charts on
mobile devices remains a relatively new research area.

1.1. Motivation

This study addresses the challenge of displaying visualisations commonly used in
ERP and BI systems on mobile devices. Visualisation charts offer intuitive and effective
methods for presenting information, particularly when working with large datasets. Gen-
erally, statistical graphs are presented horizontally, especially when they have time series
attributes. However, mobile devices are typically viewed in portrait orientation (held
vertically). Simultaneously, increasing data volumes create interesting challenges regarding
chart readability when entire graphical charts exceed display screen dimensions.

We focus on common data presentation formats (bar charts, line charts, and tables).
The research aims to identify challenges encountered when presenting large charts with
big data on small display screens. Interface layout creates users’ first impressions, and
design quality directly affects individual user experiences. Therefore, this study aims to
identify interaction modes and interface layouts that provide superior user experiences
when interacting with bar charts, line charts, and tables.

Since data integration in ERP and BI system operations occurs primarily in work
contexts, discussing mental workload during tasks is important. Based on each chart type
and associated reading tasks, this study treats each Chart as independent and examines
them individually.

1.2. Objective

The primary objective of this study is to investigate the impact of interface design and
various interactions on people’s experiences and performance when using three common
data formats: bar charts, line charts, and tables. We look at both what people say about
their experience and how well they actually perform tasks. The goal is to determine
whether people’s opinions align with their actual performance, and to develop design
recommendations for guidelines on designing large charts for mobile devices in the future.

This study makes novel contributions by systematically comparing segmented (cut-
ting) versus continuous (dragging) displays for mobile data visualisation in industrial
ERP/BI contexts, revealing that bar charts and tables consistently benefit from segmentation
(cutting or fixed columns). In contrast, line charts exhibit dataset-dependent behaviours,
with cutting being effective for small datasets and dragging being preferable for large
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ones. By integrating objective task times with subjective usability (SUS) and workload
(NASA-TLX) assessments, the research offers a holistic evaluation rarely seen in mobile
chart studies. It extends the visual momentum and workload theory to explain differences
in user performance. It proposes practical design guidelines—segmentation for bar charts
and small line charts, dragging for large line charts, and fixed columns for tables—thereby
filling a gap in responsive visualisation research and providing actionable insights for
mobile interface design in industrial automation.

1.3. Structure of This Study

Section 1 of this study provides the research background, motivation, and the neces-
sity of industrial automation and summarises the innovative contributions of this work.
Section 2 examines the key components of information visualisation on mobile devices, hu-
man visual perception, and methods for evaluating user experience, including approaches
for assessing the usability and mental workload of mobile interfaces. Section 3 describes in
detail the experimental design, procedures, equipment used, and the participants involved.
Section 4 reports the experimental results along with the corresponding statistical analyses.
Section 5 presents an in-depth discussion and the implications of statistical inferences based
on the findings of Section 4. Finally, Section 6 offers a concise summary of the study’s
conclusions and suggests potential directions for future research.

2. Related Work
2.1. Data Visualisation

The established definition of visualisation is “the use of computer-supported, in-
teractive, visual representations of data to amplify cognition,” where cognition refers to
mental action or the acquisition and use of knowledge [24]. Visualisation can deliver
vast amounts of data or information from different perspectives [25]. The visual system
releases cognitive abilities by shifting some processing to the visual system. Visualisation
can establish graphical information that conveys complex ideas clearly, accurately, and
effectively [26–29].

Visualisation serves as a powerful tool in various cognitive processes, including de-
scriptive, analytical, and exploratory. Descriptive visualisation is used when phenomena
represented in data are known, but a precise explanation of the data is needed. Ana-
lytical visualisation addresses situations where users know what they seek in data, and
visualisation helps determine it through decision-making processes [30,31]. Exploratory
visualisation applies when users do not know what they seek and aim for broad discovery
within data [32,33].

Previously, various data visualisation technologies have been developed to represent
and analyse massive information volumes. Data visualisation systematically organises
information attributes and variables [34]. Visualisation should provide sufficient informa-
tion and meet user needs. Usability issues become critical for visualisation—specifically,
how to make it easy to use and efficient. Understanding basic perceptual cognitive tasks is
fundamental in information visualisation engineering, based on human perception capabil-
ities. Visual perception, knowledge, and cognitive aspects facilitate effective visualisation
design [35–38].

2.1.1. Table

Tables provide simple and easily understood techniques for expressing data. They use
structured formats organised by related rows and columns [34]. Tables show relationships
between data and their attributes through row and column arrangements. They play
essential roles in research and data analysis.
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2.1.2. Chart

Charts represent another important type of data visualisation. Bar charts and line
charts are primary and commonly used visualisation types. Bar charts typically represent
discrete data, rather than continuous data, in visual presentations of categorical data.
Horizontal dimensions can represent value attributes or time series data. This study utilises
time series demonstrations. Vertical bar length represents values. Bar charts can describe
single data series or multiple data series, where related data points are grouped [34].

Line charts, also known as line graphs, display data points connected by straight line
segments. They are similar to scatter plots and can be considered extensions of scatter plots.
Line charts visualise data trends over time, showing changes in data behaviour as time
passes [39].

As the graph size changes, the transmission in graphs is influenced. Graph aspect ratios
determine readability quality. Chart geometry is judged within the first few seconds [40].
Previous research has shown that the slope of a graph affects accuracy judgments when
reading charts. Cleveland and McGill [40] proposed the “banking to 45◦” theory, which states
that when the average angle of positive slopes is at 45◦, the most accurate comparative slope
judgments result [41]. Based on this theory, Beattie and Jones [42] investigated charts used in
financial reports. They concluded that judgmental accuracy of physical slopes is maximised at
45◦, supported by statistical graphics research, which indicates that sub-optimal graph slopes
may lead to biassed judgments of corporate financial performance.

2.2. Responsive Data Visualisation

With the recent growth of mobile devices, mobile visualisation has become a fascinat-
ing field of study; however, mobile limitations should be considered [34,43]. Chittaro [44]
discussed presenting visual information on mobile devices, providing suggestions for
designers developing mobile visualisation, including mapping, selection, presentation,
interactivity, human factors, and evaluation.

In RWD, to support design patterns, components such as charts, graphics, and web
visualisations should be flexible enough to adapt to display device characteristics. These
components must have responsive capabilities [45]. Scalable data visualisations can fit
available screens while maintaining a basic appearance [46]. Furthermore, responsive data
visualisation can be divided into three parts: responsive layout, responsive display density,
and responsive interaction.

Responsive layout means visualisation can change representation at specific break-
points and scale freely between breakpoints. Responsive display density considers display
density—for example, showing fewer but more important data points for lower-resolution
displays. Responsive interaction means that visualisation can support user interaction
through touch, mouse, keyboard, and other input methods [45].

Some related works have studied making visualisation responsive. Some discussed
making visualisation scalable [47,48]. Another discussed aspect of responsive charts in-
cluded data density reduction [49,50]. Responsive bar chart examples were provided by
Nagle [51]. However, few people have researched the usability of responsive data visuali-
sation, especially on mobile devices. Though input or graph sizes can fit desired display
screens, maintaining equivalent usability and readability represents the next challenge for
responsive data visualisation.

2.3. Graphical Perception

Graphical perception is the visual decoding of information encoded in graphs [40].
When discussing visual decoding, it is essential to understand the visual perception models
operating in the human brain. Visual perception is a crucial component of information
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processing, encompassing sensory memory, short-term memory (also referred to as working
memory), and long-term memory [52]. Research has provided definitions for information
extraction using simple charts, such as bar or line charts [53]. These studies suggested
processing stages. Cleveland and McGill [54] developed an elementary perceptual task
theory that explains how people extract quantitative information from charts. The study
also conducted experiments supporting their theory [40,41,55].

Visual momentum theory examines how users integrate data across separate and
successive displays [56], which means the display screen data is less than the potential
data that should be displayed, relating to proper information integration. Good visual
momentum depends on how easily users can comprehend information during transitions
to other display screens. Greater visual momentum helps users perceive continuity across
screens; however, poor visual momentum confuses users [56]. In our experiment, huge
data visualisation depicted on small display screens also concerns visual momentum.

2.4. User Interface Design Evaluation

User interface design (UI) addresses user-interface relationships, focusing on maximis-
ing usability and user experience. Usability is a user-centred design concept, well-defined
as whether a product enables users to accomplish desired tasks or goals with efficiency,
effectiveness, and satisfaction [57].

Nielsen [58] proposed five dimensions that systems or websites possessing excellent
usability should meet: learnability, efficiency, memorability, low error rate, and satisfaction.
Therefore, interfaces lacking usability may significantly reduce business execution efficiency
or increase system operation learning time. Hackos and Redish [59] also mentioned the
importance of evaluating product interface or prototype usability.

Mental workload is an additional important usability element. Previous studies
have shown that usability enhancements are associated with reduced workload. Research
has indicated the interactions between human mental workload and usability, aiming to
describe mental workload constructs in web design [60,61].

From this, we understand that the focus is on making systems conform to users’
habits and needs, allowing for user-interface interactions without creating pressure and
frustration, while enabling users to maximise efficiency and productivity with the least
effort. In our experiment, this study utilised the System Usability Scale (SUS) and the
NASA Task Load Index (NASA-TLX) as subjective assessment questionnaires for usability.
SUS provides a “quick and dirty”, reliable tool for measuring usability, and NASA-TLX
provides mental workload measurement tools.

2.4.1. System Usability Scale (SUS)

Brooke [62] proposed SUS, which has been widely used in the rapid testing of system
interfaces, desktop programmes, and web interfaces. SUS is recognised as the fastest,
simplest, and most effective subjective questionnaire.

SUS contains ten statements scored from 0 (strongly disagree) to 5 (strongly agree),
with total scores after calculation ranging from 0 to 100. SUS provides indicators for avail-
ability and customer satisfaction. Bangor et al. [63] collected SUS data for approximately
the past decade and found alpha reliability reached 0.911. Test results confidently support
SUS as a tool for easily and efficiently collecting subjective assessments and system or
product usability.

Additionally, Bangor [63,64] suggested verifying SUS results by adding adjective
rating scales modified from subjective quality statements. This scale contains only
one statement and provides qualitative scales that can support and better explain final
SUS scores.
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2.4.2. NASA-Task Load Index (NASA-TLX)

National Aeronautics and Space Administration Task Load Index, referred to as NASA-
TLX, is a subjective measurement method proposed by Hart and Staveland [65]. This
scale’s primary purpose is to evaluate workload within and between tasks by participants
themselves. NASA-TLX comprises six work-related factors: Mental Demand, Physical
Demand, Temporal Demand, Performance, Effort, and Frustration Level [65].

Workload evaluation is calculated as the sum of six indicators, each multiplied by its
corresponding weight. Higher total scores indicate greater mental loads. Each indicator’s
weight is determined by participants selecting relatively important items through compari-
son methods, based on task performance, and by adding the total number of times each
indicator is checked. After standardisation, indicator weights become item weights.

3. Materials and Methods
3.1. Participants

This study employed a within-subjects design, in which the same group of participants
conducted multiple experiments of different types. A within-subject design was chosen
due to the requirements for fewer participants and more efficient processes compared with
the between-subject design, which is frequently applied in usability studies. It also controls
individual differences among participants.

A total of 11 individuals (five males and six females) participated in this study. All
participants had an average age of 24.1 years (s = 1.18 years). None had eye diseases, and
all had normal or corrected vision. The average weekly mobile device usage was 24.6 h
(SD = 7.72 h). Due to individual performance differences, experiments took approximately
90 to 120 min to complete.

3.2. Apparatus and Questionnaires

We designed two chart types presented with different views and interactions. All
experimental charts were developed using Xcode 9.3, an integrated development envi-
ronment for iOS. Experimental devices were 5.5-inch iPhone 6s (designed by Apple Inc.,
Cupertino, CA, USA; assembled by Foxconn, Zhengzhou, Henan, China). In this study,
we evaluated subjective interface assessments using two questionnaires: a usability rating
using the System Usability Scale (SUS) and a mental workload measurement using the
NASA-TLX Index.

SUS consists of 10 items, with total scores computed as follows:
(1) Items 1, 3, 5, 7, 9 belong to positive items. Subtract one from each item’s score to

obtain the final positive item scores. (2) Items 2, 4, 6, 8, 10 belong to the negative items.
Subtract each item’s score from 5 to obtain the final negative item scores. (3) Multiply all
items by 2.5 to obtain the final overall scores. For the design concept and details of the SUS
questionnaire, please refer to Brooke’s original work [62].

Additionally, Bangor [63,64] suggested that it is helpful to verify the result of SUS by
adding an adjective rating scale, which was modified from a subjective quality statement [66].
This scale consists of only one statement and aims to provide a qualitative scale that can
support and better explain the result of the SUS score.

NASA-TLX comprises six indicators. Overall scores are calculated as the sum of six
indicators, each multiplied by its corresponding weight. Calculation steps are as follows:

(1) Grade six indicators according to just-completed task processes. (2) Set each
indicator’s weight by comparing the two indicators’ importance to obtain each indicator’s
weight. (3) Multiply all indicators by their weights to achieve overall scores.
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3.3. Experiment Design

Testing interfaces for charts were developed based on several dashboard charts com-
monly used in ERP systems. This study also referred to Sanchez and Branaghan’s [23]
suggestion that reducing scrolling on mobile devices may increase performance. We sepa-
rated our experiment into three parts: Bar chart, Line chart, and Table. Experiments for
these three charts were independent due to the differences in reading purposes for each
Chart. Additionally, we designed experimental factors for charts and tables separately to
discuss different issues.

For charts, we employed a 2 × 2 factorial experiment design. We aimed to assess chart
readability on mobile devices and determine whether different interface designs impact
chart readability. Thus, this study utilised a factorial experiment design. We controlled two
factors: data size and segmentation (using a segmented method for each Chart). Table 1
illustrates the experimental factor design for charts and tables. Each factor had two levels.

Table 1. The level settings of the applied factors in this study.

Factor Chart Table

Data Size 12 units/30 units 12 units/30 units
Segmentation Dragging/Cutting Fixed column/Non-fixed column

Data size was defined as the data range that this study aims to transfer into charts. We
divided it into two levels based on the time series length, which affects the final chart size.
One size was 30 units; another was 12 units. These units referenced standard management
reports. For management, commonly used charts are often organised by days or months.
Consequently, we use days and months as time benchmarks for our experiment to define
the length of the y-axis.

The segmented method definition was how we handle chart sizes bigger than display
screens. We also had two levels. One method was reading charts by directly dragging the
display screens. Another method was cutting huge charts into small parts, with all parts
showing simultaneously.

For tables, we employed another 2 × 2 factorial design. We aimed to understand the
usability of tables on mobile devices. We defined tables with segmentation as fixed column
tables, as fixed columns are functions that can cut tables and make important parts stand
out for easy viewing. We attempted to verify whether fixed column functions enhance the
usability of tables. Thus, this study utilised a factorial experiment design. We controlled
two factors: data size and the presence of fixed columns. Each factor had two levels. Data
size was defined as above. The fixed column definition was whether the first table column
was fixed or not.

Furthermore, the dependent variables in this study were task time, subjective eval-
uation of workload, and system usability. The following provides definitions for three
dependent variables:

Task time: During experiments, participants receive tasks. When tasks are executed,
timing begins. After task completion, completion times are obtained (measured in seconds).

Usability evaluation: After the experiment’s completion, participants complete the
System Usability Scale (SUS) based on the interfaces they have just operated, allowing for
subjective usability assessments.

Workload evaluation: After completing the experiment, participants complete NASA-
TLX scales based on the interfaces they have just operated, to perform subjective
workload assessments.

All dependent variables are analysed by RM ANOVA, with effect size in partial eta
square (pes) and magnitude reported for significant factors.
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3.4. Experiment Procedure

Tasks were divided into three groups: bar chart, line chart, and Table. The experimental
interface schema for charts was presented in Figure 1. Figure 2 shows experimental
interface diagrams for tables. Please refer to Appendix A for the actual designs of the
various combinations. Each participant completed the three types of tasks in a randomised
order. Within each task type, the four factor combinations were also presented in a fully
randomised manner. The tasks required participants to answer questions based on the
chart data displayed on a mobile screen. In the bar chart and line chart experiments, there
were eight questions, whereas in the table experiment, there were four questions. Please
refer to Appendix B for the details of each task.
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Since practical applications of each Chart and Table differed, task content also differed.
Participants started with the first chart type. Questions for the same data size were identical
regardless of segmentation type. At the beginning of the experiment, participants were
asked to locate the necessary data. After completing one item, experimenters asked par-
ticipants to look for the following data. The experimental processes for these three charts
and tables all followed the same procedure. The procedure flowchart is demonstrated in
Figure 3.
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4. Results
In this section, we analysed data collected from our experiment, as introduced in

Section 3. We had three chart types. Experiments for each Chart employed a 2 × 2 factorial
experiment design approach using two-way Analysis of Variance (ANOVA) to test each
dataset. These three chart types were analysed independently. Task completion time is first
presented in Section 4.1. In Section 4.2, we discuss subjective assessments of usability using
SUS. Mental workload, as evaluated by the NASA-TLX, is discussed in Section 4.3.

4.1. Task Completion Time
4.1.1. Bar Chart

Table 2 summarises the statistical analysis of task completion time in bar chart experiments.
As Figure 4 shows, regardless of data size, the completion time for cutting a bar chart is
shorter than that for dragging.

Table 2. Task completion time (seconds) statistical analysis in the Bar chart.

Data Size Segmentation n Mean Std. Deviation Std. Error

Big Dragging 11 326.45 78.72 23.73
Cutting 11 257.91 61.14 18.43

Small
Dragging 11 209.00 42.69 12.87
Cutting 11 189.55 46.06 13.89
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ANOVA results showed both data size and segmentation significantly affected task
completion time (F1,10 = 63.302, p < 0.001, pse = 0.864, magnitude = large; F1,10 = 23.872,
p < 0.001, pse = 0.71, magnitude = large), demonstrating that using cutting charts requires
less time and performing tasks with small sizes also requires less time.

4.1.2. Line Chart

Table 3 presents the statistical analysis of the line chart experiments. As depicted in
Figure 5, when the data size is large, the time is shorter using dragging. However, with a
small data size, the time is shorter using cutting.

Table 3. Task completion time (seconds) statistical analysis in the Line chart.

Data Size Segmentation n Mean Std. Deviation Std. Error

Big Dragging 11 195.18 37.61 11.34
Cutting 11 234.91 52.09 15.70

Small
Dragging 11 206.91 39.39 11.88
Cutting 11 175.46 27.48 8.28
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Figure 5. Interaction effect in the Line Chart.

ANOVA results in Line Chart experiments showed significant effects on data size
(F1,10 = 5.862, p < 0.05, pse = 0.370, magnitude = large) and no significant effects on
segmentation. However, a statistically significant interaction was found between these two
factors (F1,10 = 15.349, p < 0.01, pse = 0.606, magnitude = large), indicating that simultaneous
consideration of different data sizes and segmentation resulted in significant differences in
completion time. Using drag charts with big data sizes required less time. However, using
cutting charts with small data sizes required less time, as demonstrated in Figure 5.

4.1.3. Table

As Table 4 shows, a statistical analysis of the table experiments is presented. Regardless
of data size or fixed function, both led to shorter task completion times. The results are
clearly observable in Figure 6.

ANOVA results revealed significant differences in task completion time for data size
and fixed column (F1,10 = 98.70, p < 0.001, pse = 0.908, magnitude = large; F1,10 = 90.43,
p < 0.001, pse = 0.900, magnitude = large), indicating that using fixed column tables and
performing tasks in small tables requires less time.
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Table 4. Task completion time (seconds) statistical analysis in the Table.

Data Size Segmentation n Mean Std. Deviation Std. Error

Big Dragging 11 236.18 41.96 12.65
Cutting 11 180.82 37.23 11.23

Small
Dragging 11 139.91 19.30 5.82
Cutting 11 115.00 19.40 5.85
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4.2. Usability Subjective Assessment

The results of the usability and mental workload assessments are analysed in
Sections 4.2.1 and 4.2.2. First, we examined the reliability of these two questionnaires.
We used Cronbach’s alpha to test reliability [67]. A commonly accepted Cronbach’s alpha
value for explaining reliability is more than 0.7 [68]. The results shown in Table 5 indicate
that the reliability values of both questionnaires exceed 0.7, indicating that the outcomes
from these questionnaires are reliable. Therefore, we can proceed to the analysis of variance.

Table 5. The reliability values of the two subjective metrics applied in this study.

Subjective Metrics Cronbach’s Alpha Number of Items

Data Size 0.926 10
Segmentation 0.823 6

4.2.1. Bar Chart

Table 6 summarises the statistical results of SUS in the Bar chart experiments. Re-
gardless of data size, cutting-type charts received better usability scores as depicted in
Figure 7.

Table 6. SUS scores statistical analysis in the Bar Chart.

Data Size Segmentation n Mean Std. Deviation Std. Error

Big Dragging 11 62.27 19.15 5.77
Cutting 11 78.86 10.92 3.29

Small
Dragging 11 72.96 23.29 7.02
Cutting 11 82.27 9.38 2.83
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ANOVA results illustrated that segmentation factors had a significant effect on SUS
(F1,10 = 6.412, p < 0.05, pse = 0.391, magnitude = large), indicating that participants preferred
charts with cutting views for both data sizes.

4.2.2. Line Chart

Table 7 reveals the statistical analysis of SUS in Line chart experiments. As Figure 8
illustrates, cutting-type charts perform better in subjective usability assessments across
both data sizes.

Table 7. SUS scores statistical analysis in the Line Chart.

Data Size Segmentation n Mean Std. Deviation Std. Error

Big Dragging 11 70.91 13.00 3.92
Cutting 11 76.14 18.18 5.48

Small
Dragging 11 63.41 16.33 4.92
Cutting 11 82.5 12.94 3.90
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ANOVA results in line chart experiments indicated that neither data size nor segmen-
tation had a significant effect on subjective assessments.
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4.2.3. Table

Table 8 summarises the statistical analysis. Tables with fixed columns are more suitable
for both small and large data sizes, as Figure 9 illustrates.

Table 8. SUS scores statistical analysis in the Table.

Data Size Segmentation n Mean Std. Deviation Std. Error

Big Dragging 11 42.73 18.72 5.65
Cutting 11 82.27 18.22 5.49

Small
Dragging 11 50.00 17.99 5.43
Cutting 11 81.36 25.63 7.73
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After ANOVA, results showed that fixed columns significantly influenced subjective
SUS assessments (F1,10 = 36.112, p < 0.001, pse = 0.783, magnitude = large). Clearly, using
fixed-column tables yielded better usability.

4.2.4. Adjective Rating Scale

The statistical results of the Adjective Rating Scale, an assisted questionnaire, are
presented in Table 9. The correlation between adjective ratings and SUS scores was
r = 0.815. The regression line slope drawn for SUS scores versus adjective rating val-
ues was 11.71. This result indicated high interdependence between SUS and adjective
rating scales. We can explain SUS results through this scale.

Table 9. The statistical summarizations of the Adjective Rating Scale for the SUS in this study.

Rating Count Mean Std. Deviation

Best imaginable 16 94.84 7.77
Excellent 27 81.39 15.04

Good 38 74.34 11.79
OK 23 67.50 9.91

Poor 17 47.79 17.11
Awful 9 34.44 19.83

Worst imaginable 1 17.50 NA
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4.3. NASA-TLX
4.3.1. Bar Chart

Shown in Table 10 and Figure 10, the statistical analysis of the Bar charts illustrates
that the workload is higher with dragging charts than with cutting charts, regardless of
the data size. ANOVA results revealed significant differences in the workload for data size
and fixed column (F1,10 = 7.725, p < 0.05, pse = 0.436, magnitude = large; F1,10 = 10.099,
p < 0.001, pse = 0.502, magnitude = large). We could see that using a cutting chart led to
less workload in both sizes.

Table 10. NASA-TLX scores statistical analysis in the Bar Chart.

Data Size Segmentation n Mean Std. Deviation Std. Error

Big Dragging 11 4.04 1.05 0.32
Cutting 11 2.95 1.17 0.35

Small
Dragging 11 3.30 1.12 0.34
Cutting 11 2.58 1.09 0.33
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4.3.2. Line Chart

As Table 11 and Figure 11 present, for both data sizes, using cutting charts results in a
lower workload.

Table 11. NASA-TLX scores statistical analysis in the Line Chart.

Data Size Segmentation n Mean Std. Deviation Std. Error

Big Dragging 11 3.47 1.13 0.34
Cutting 11 2.72 1.06 0.32

Small
Dragging 11 3.85 1.24 0.37
Cutting 11 2.70 0.79 0.24
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From the ANOVA test results, we can see that chart segmentation has a significant
effect on workload (F1,10 = 7.432, p < 0.05, pse = 0.426, magnitude = large). Using cutting
line charts causes less workload.

4.3.3. Table

As depicted in Table 12 and Figure 12, regardless of data size, fixed-column tables
receive a lower workload.

Table 12. NASA-TLX scores statistical analysis in the Table.

Data Size Segmentation n Mean Std. Deviation Std. Error

Big Dragging 11 4.72 1.23 0.37
Cutting 11 2.52 1.14 0.34

Small
Dragging 11 3.92 1.07 0.32
Cutting 11 2.22 0.97 0.29

Appl. Sci. 2025, 15, x FOR PEER REVIEW 15 of 27 
 

 

Figure 11. NASA-TLX scores in the Line chart. 

From the ANOVA test results, we can see that chart segmentation has a significant 
effect on workload (F1,10 = 7.432, p < 0.05, pse = 0.426, magnitude = large). Using cutting 
line charts causes less workload. 

4.3.3. Table 

As depicted in Table 12 and Figure 12, regardless of data size, fixed-column tables 
receive a lower workload. 

Table 12. NASA-TLX scores statistical analysis in the Table. 

Data Size Segmentation n Mean Std. Deviation Std. Error 

Big 
Dragging 11 4.72 1.23 0.37 
Cutting 11 2.52 1.14 0.34 

Small 
Dragging 11 3.92 1.07 0.32 
Cutting 11 2.22 0.97 0.29 

 

Figure 12. NASA-TLX scores in the Table. 

Figure 12. NASA-TLX scores in the Table.



Appl. Sci. 2025, 15, 10832 16 of 25

As ANOVA demonstrated, fixed column tables had a significant effect on workload
(F1,10 = 24.414, p < 0.001, pse = 0.709, magnitude = large). This means that fixed columns
allow participants to finish tasks with a lower workload.

5. Discussion
Although this study included only 11 participants, the effect sizes measured by partial

eta square were all greater than 0.17 for the significant factors, indicating a large magni-
tude. This result suggests that, despite the limited sample size, the reliability of statistical
inference and generalizability remains robust.

RWD was designed to provide convenience to maintainers while allowing users of
different-sized devices to have better experiences. However, the discussion on how to
better present charts that exceed the actual screen sizes on mobile devices is warranted.
This study has examined graphical visualisation on mobile devices. Table 13 summarises
the implications from Section 4.

Table 13. The summarisations of the implications from the results of this study.

Implications

The bar chart with cutting spends less time.
The line chart with cutting spends more time.
The table with a fixed column takes less time.

The bar chart with cutting has a higher subjective rating of usability.
The line chart with cutting has a higher subjective rating of usability.

The table with a fixed column has a higher subjective rating of usability.
The bar chart with cutting has a lower subjective mental workload.
The line chart with cutting has a lower subjective mental workload.

The table with a fixed column has a lower subjective mental workload.

5.1. The Effect of Segmentation on Performance

In this study, we evaluate each Chart’s performance through an objective assessment
of task completion time. In bar charts, as expected, regardless of data size, the average time
for reading charts with cutting was lower than for reading charts with dragging. Previous
research has suggested that reducing scrolling on mobile devices enhances reading text
performance [23]; similarly, our research observed similar effects on chart reading.

The interaction effect observed in line charts—where cutting performs better for small
data sizes but dragging performs better for large data sizes—reflects a fundamental tension
within visual momentum principles. According to visual momentum theory, momentum
depends on the user’s ability to maintain continuity and context when transitioning be-
tween displays or display segments. For small line charts, cutting supports high visual
momentum because the limited data volume enables users to mentally reconstruct the
continuous trend from segmented parts. This approach allows simultaneous viewing of all
segments, facilitating global analysis and helping users identify patterns and relationships.

In contrast, for large line charts, cutting reduces visual momentum by fragmenting
the continuous narrative that line charts are designed to convey. Visual momentum theory
emphasises the need to preserve “impetus or continuity across successive views,” and
line charts rely on trend interpretation rather than discrete value searching. When large
datasets are divided into segments, users must perform additional cognitive work to
reconnect broken trend lines, creating what the theory describes as “discontinuous display
transitions,” which increase mental workload. The dragging approach, although requiring
sequential navigation, better preserves the continuous flow of information and aligns with
users’ natural tendency to interpret trends as coherent visual narratives.
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Based on these results, we speculated that the differences led to the differences in
the chart reading tasks. According to bar chart design principles, the reading purpose
is to search, and we only need to identify the absolute values of specific information in
the data [69]. In particular, as the amount of information increased in large bar charts,
the working memory occupied by searching tasks also increased. Therefore, reading bar
charts with cutting can reduce the workload caused by simultaneously dragging charts
while searching.

However, the line chart’s reading purposes differed from bar charts. Due to
the characteristics of line charts, when reading them, emphasis is placed on trend
interpretation [70,71]. Consequently, it was not simply a searching task. Charts with
cutting accomplished by problems that users had to connect broken trend parts in line
charts by themselves. Since there is not much data in small line charts, charts with cutting
can also bring better efficiency. Once data amounts increase to large line charts, the benefits
of cutting charts are not as good as those of dragging charts.

Simultaneously, we observed participants’ behaviour while dragging charts without
cutting. In bar charts, we found that scrolling numbers (Mean = 21.66) are highly correlated
with task completion time (r = 0.679, p < 0.01), indicating that more scrolling is associated
with longer user task completion times. However, there is no significant correlation in
line charts. This result may suggest that line chart task time is not necessarily caused by
dragging charts, but rather by other tasks that allow participants to spend more time, such
as trying to interpret chart trends.

Additionally, fixed column table efficiency was as expected. Fixed column tables were
much better than non-fixed tables. In fixed-column situations, users can keep the first
column visible while scrolling through screens. Such a situation helps users fill in some
necessary information and reduces the number of scrolling windows.

5.2. The Effect of Segmentation on Usability

Subjective usability assessments collected using the SUS strongly indicated that par-
ticipants had a preference for charts with cutting and fixed-column tables. Though the
three charts and tables have different orientations, preferences are the same overall. Given
that charts with cutting allow participants to see all information simultaneously, they can
quickly grasp specific target search locations. Therefore, it can provide a better user experi-
ence. Relatively speaking, the amount of data that can be presented on charts with dragging
is limited and not conducive to search. In tables, fixed columns can help participants search
data more quickly.

We summarised our adjective rating scale and acceptable SUS scores [64] to facilitate
discussion of the results. Scores above 74.34 mean “Good” in our collected adjective rating
scale. The suggested acceptable score is 70 or above. In our study, charts with cutting and
tables with fixed columns are all acceptable and classified into good or better levels.

5.3. The Effect of Segmentation on Mental Workload

In this section, we discuss mental workload results from NASA-TLX. Overall, the
results indicated that participants experienced lower mental workload when viewing charts
with cutting and fixed column tables. Additionally, we found some topics for discussion.
Among all our experimental charts, the big data bar charts with dragging had a higher
workload than the others.

Due to the bar charts in our experiment being grouped, the visual information density
is more intensive than that of line charts. There was already much information in the big
data bar charts. Furthermore, visible regions are limited by screen width, so participants
had to search for more information by dragging the screen. Therefore, we speculated that
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dragging, which is the second task, affected searching performance, the master task. That
is the reason for the higher mental workload caused by short-term memory overload.

Apart from this, we found that the mental workload in big data bar charts with cutting
is higher than in other charts that do not use cutting. To verify this, we analysed NASA-
TLX weight indicators. We found that participants’ “physical demand” weights for charts
with cutting were slightly higher than those for charts with dragging, which suggests
that most participants perceived more physical pressure when implementing experiments
with charts that required dragging. Simultaneously, from interviews, we found that some
participants felt that carrying out search tasks on bar charts with cutting would burden the
eyes. Therefore, although charts with cutting can reduce mental workload most of the time,
when the amount of data and information is too large, we suggest not displaying charts on
small screens.

6. Conclusions
As industrial paradigms and work practices continue to evolve, mobile devices are

becoming an integral component of contemporary professional environments. The use of
applications that facilitate the visualisation of manufacturing and quality data and that
allow the remote issuance of instructions via smartphones has already been shown to
increase the degree of automation within manufacturing systems. We have begun to value
mobile device usability while working. Charts are among the most important tools used by
various industries to communicate data. Nevertheless, due to discrepancies between chart
displays and common mobile device behaviour, we would like to know if we could enhance
user experience and readability through different interface designs and interactions when
transiting large charts from larger screens to mobile devices.

Therefore, we conducted this study to examine the readability and usability of charts
and tables when using mobile devices. We summarise our research and significant findings
in this section, and we hope this study can provide suggestions and directions for future
mobile device interface design. The conclusions of this study are as follows:

Segmentation using cutting can enhance chart usability and readability on mobile
devices, thereby reducing task time. However, chart reading purposes relatively com-
promise the ease of use of the cutting chart. Fixed column tables have absolute ease of
use advantages.

Simultaneously, segmentation, cutting, and fixed columns reduce workload while
reading charts and tables on mobile devices.

In our research, we were subject to some limitations. First, to maintain experiment
quality, all participants conducted their experiments in laboratory settings. If applied to real
work situations, there may be inaccuracies. Second, due to time and resource constraints,
this study focuses on task time assessment, which is sufficient for its purpose. Additionally,
due to technical issues, the charts designed for this study are not interactive, which may
limit chart possibilities on mobile devices. Future research should explore integrating
our segmentation findings with advanced visualisation techniques—particularly focus
+ context methods such as fisheye distortion and semantic zooming—which may help
address the complex patterns observed in line charts, where the optimal display method
varied by data size.

We can consider further objective data, such as eye-tracking aids, later; we believe
we can obtain more valuable findings to support our research. We can also add touch-
screen features to consider interactive graphics usage on mobile devices. This study
provides solutions for bar charts, line charts, and tables on mobile devices. This frame-
work can be extended in the future to construct more complete chart design guidelines for
mobile devices.
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Appendix B. The Tasks of Experiment
1. Bar chart with big data size (30 units)

(1) Among the daily inventory levels, which products have inventory below 30?
Please record the products and their corresponding dates.

(2) Please identify on which days product H002 had the lowest sales volume for
that day.

(3) Please sort the production volume on 3/11 from highest to lowest.
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(4) Please write down which products had inventory levels equal to 60 on
which days.

(5) Please identify which days had 2 products with daily production volume
exceeding 20 (not including 20), and write down the products as well.

(6) What was the product with the highest inventory on 3/18?
(7) Please observe the daily sales volume from 3/5–20 and identify which dates

had two or more products with sales volume less than 20 (not including 20),
and which products.

(8) Please write down the sales volume of all products on 3/20.

2. Bar chart with small data size (12 units)

(1) In which months was the monthly inventory of product M009 below 500?
(2) In which months were the monthly production volumes of both P001 and A010

below 300?
(3) What was the inventory level of each product in December?
(4) Which products had monthly sales exceeding 900, and in which months?
(5) In which months were actual sales lower than forecasted sales?
(6) What was the ranking of product production volume in September? Please list

from highest to lowest.
(7) Which months had two or more products with sales volume below 500? Write

down the months and products.
(8) What was the difference between actual sales and forecasted sales in November?

3. Line chart with big data size (30 units)

(1) In the historical annual sales volume, what were all the changes from 1995 to
2000? Rising, falling, or unchanged.

(2) Please write down the sales changes for M009 from 3/25–27. Rising, falling,
or unchanged.

(3) Please write down which products had declining production volume from
3/26–27.

(4) Please write down the date ranges when A010’s inventory increased continu-
ously for two or more days.

(5) Please observe between 3/5–20, the date ranges when both P001 and A010’s
production volumes increased.

(6) Between which two years did the historical annual sales volume have the
largest decline?

(7) Please write down the sales volume changes for all products from 3/21–22.
Rising, falling, or unchanged.

(8) Which product had the largest inventory decrease from 3/14–15?

4. Line chart with small data size (12 units)

(1) What were the month ranges when product P001’s inventory decreased?
(2) Observing the same-period sales volume, what were the month ranges when

2016 increased and 2017 decreased?
(3) Which products had increased sales volume from August to September?
(4) What were the changes in the same-period sales volume from July to

August, respectively?
(5) What were the month ranges when both M009 and A010’s monthly sales

volumes declined?
(6) Which products had decreased inventory from October to November?
(7) In which months did each of the four products have the largest increase in

sales volume?
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(8) For the same-period sales volume change from September to October, which
year had a larger magnitude of change? Please write down the amount of
increase or decrease.

5. Table with big data size (30 units)

(1) Which orders were shipped on 3/17? Please record the shipping numbers
and status.

(2) In order management, which orders were placed on 4/22? Write down the
order numbers and amounts.

(3) Referring to shipping management, which orders currently have insufficient
inventory and are still being prepared? Please write down the shipping numbers.

(4) In order management, which orders have amounts greater than 5000? Please
record the order numbers and corresponding product quantities.

6. Table with small data size (12 units)

(1) Which products have an inventory quantity below 10? Please write down the
product codes.

(2) Which products have an inventory cost higher than 1300? Please record the
product codes and corresponding inventory quantities.

(3) In the current inventory status, which products have an average cost greater
than 100? Please write down the product codes.

(4) Which forms have not yet been approved? Please write down the form numbers.
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