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Abstract

The dynamic development of agent systems and large language models opens up new
possibilities for automating spatial and investment analyses. The study evaluated a reactive
Al agent with an NLP interface, integrating Apache Spark for large-scale data processing
with PostGIS as a reference point. The analyses were carried out for two areas: Nowy Sacz
(36,000 plots, 7 layers) and Ostroteka (220,000 plots). For medium-sized datasets, both
technologies produced similar results, but with large datasets, PostGIS exceeded time limits
and was prone to failures. Spark maintained stable performance, analyzing 220,000 plots
in approximately 240 s, confirming its suitability for interactive applications. In addition,
clustering and spatial search algorithms were compared. The basic DFS required 530 s,
while the improved one reduced the time almost tenfold to 54-62 s. The improved K-Means
improved the spatial compactness of clusters (0.61-0.76 vs. <0.50 in most base cases) with a
time of 5664 s. Agglomerative clustering, although accurate, was too slow (30006000 s).
The results show that the combination of Spark, improved algorithms, and agent systems
with NLP significantly speeds up the selection of plots for renewable energy sources,
supporting sustainable investment decisions.

Keywords: large language models (LLM); conversational agents; Geographic Information
System (GIS); site selection; big data; ETL; biogas; renewable energy

1. Introduction

The progressive development of information technologies, particularly artificial intelli-
gence (Al) and decision support systems (DSS), is setting new directions in the field of data
analysis and strategic decision-making. There exists a complex yet synergistic relationship
between artificial intelligence (AI) and decision support systems (DSS), whose integration
constitutes a powerful tool supporting decision-making processes by combining advanced
analytical and informational technologies [1]. The application of artificial intelligence (AI)
in decision support systems (DSS) enables the analysis of large datasets, the identification
of hidden patterns and trends, and the prediction of potential outcomes of decisions, which
translates into better optimization of decision-making processes [1].

In this context, one of the fastest-growing technological and operational trends is
the use of Al agents, driven by artificial intelligence and machine learning, to carry out
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complex tasks within decision-making processes [2]. However, for such systems to be
effective and practical, it is essential to maintain a balance between transparency, accuracy,
and user trust [3]. In practice, this means designing solutions that ensure not only high
analytical efficiency but also clarity and the ability for decision-makers to verify the decision-
making processes.

An increasingly important perspective in this area is the environmental one [4], which
is crucial both for achieving organizational goals and for fulfilling social and ecological
objectives [5,6]. Many decisions in the field of environmental management (EM) are spatial
in nature and are related, for example, to the siting of investments, including the selection
of the most appropriate location for various infrastructure elements [7,8].

Due to the spatial nature of environmental decisions, tools that enable the analysis of
geographical and infrastructural data are of key importance. The fundamental solution
in this area is the Geographic Information System (GIS), which constitutes an essential
component of modern DSS. GIS supports investment planning, especially in the renewable
energy sector (RES), by collecting, integrating, and visualizing spatial data [9,10].

In this context, solutions that enable the integration of analytical methods with domain-
and regulation-based approaches become particularly important. The complexity of
decision-making problems, especially in environmental and investment management,
requires not only precise computational tools but also mechanisms that incorporate legal
and spatial considerations. In the Polish legal framework, the siting of agricultural biogas
plants is closely linked to spatial planning and environmental protection requirements.
Both national and EU regulations impose specific quantitative criteria, including the exclu-
sion of protected areas (e.g., Naturaz2000 sites, landscape parks), minimum siting distances
of 100-200 m from residential buildings, 30 m from rivers and surface waters, and 50 m
from drinking water intakes. Digestate storage tanks must be located at least 25 m from
drainage ditches and surface waters, while the agricultural use of digestate is limited by
the Nitrate Directive to 170 kg of nitrogen per hectare per year. From an economic and
logistical perspective, access to infrastructure is also critical: connections to electricity or
gas grids should be available within 1-2 km, and biomass sources are considered optimal
within a radius of 5-10 km. These requirements strongly determine the decision-making
process and highlight the importance of incorporating regulatory criteria into GIS-based
models supporting investment site selection.

Therefore, innovative ways of automating data analysis and supporting the selection
of optimal solutions—including investment site selection—are increasingly sought, particu-
larly through the use of Al agents capable of interpreting complex datasets. The aim of the
study is to explore the potential of agent-based systems combined with natural language
processing (NLP) techniques in automating the analysis of legal requirements and the selec-
tion of investment plots. The goal is to lower the entry threshold in this field by eliminating
dependence on specialized engineering, legal, and advanced geospatial data interpretation
expertise. The proposed solution significantly accelerates the processes of selection, predic-
tion, and classification of plots. Unlike methods based on manual inspection of GIS data or
complex interfaces (e.g., ArcGIS, QGIS), reactive Al agents controlled by a large language
model are employed. This solution offers a conversational interface enabling transcription,
matching, evaluation, and classification of requirements as well as management of the plot
selection process. The reactive Al agent automates the retrieval, filtering, and analysis of
geospatial data in accordance with legal criteria. Such an architecture enhances control
over the decision-making process and presents results in a clear and intuitive way, aligned
with the natural form of communication.

In contrast to traditional rule-based GIS platforms, which demand user proficiency
in tools, query languages, and Multi-Criteria Decision Analysis (MCDA), our approach
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introduces a layer of intelligent, reactive conversational agents powered by Large Language
Models (LLMs). Consequently, the process of defining criteria and interpreting outcomes
occurs through natural dialog, eliminating the need for specialized engineering or legal
expertise. The agent automatically translates user requirements into formal analysis rules
and performs filtering, grouping, and evaluation of spatial data in accordance with legal
and investment conditions. This significantly lowers the barrier to entry for spatial analyses
and aligns with the current trend of integrating GIS with agent architectures and LLMs in
intelligent decision support systems.

The implementation employing reactive agents governed by an LLM represents a
fundamentally different methodology for conducting searches. It substantially reduces
the reliance on specialist skills or familiarity with interface functionalities and database
operational rules. This enables even non-expert users to articulate requirements in natural
language, which the system automatically converts into a structured set of signals. The
LLM is responsible for data extraction and mapping, while geospatial data processing is
delegated to a specialized reactive agent, mitigating the inefficiencies inherent in direct
spatial data operations by LLMs. Currently, two primary approaches exist for integrating
LLMs with GIS: the first involves fine-tuning the model for direct comprehension of
spatial structures, metrics, and functions; the second focuses on constructing specialized
reactive agents. Our solution adheres to the latter approach, ensuring precise control over
the formulation of legal requirements and facilitating algorithm optimization based on
dataset scale.

The main contributions of this study can be summarized as follows:

1. Integration of agent-based systems with large-scale data processing platforms.

We implemented a reactive agent architecture combining Apache Spark and PostGIS
to handle large spatial datasets. The evaluation used the execution time metric, showing
that Spark processed 220,000 parcels in ~240 s, whereas PostGIS exceeded the predefined
15 min limit, confirming Spark’s scalability for conversational and interactive applications.

2. Comparative analysis of clustering algorithms.

Five clustering methods were tested: DFS (basic and improved), K-Means (basic and
improved), and agglomerative clustering. The analysis time metric revealed that improved
DFS and improved K-Means achieved acceptable runtimes (~54—64 s), while agglomera-
tive clustering required several thousand seconds (>3000 s), limiting its applicability for
interactive use.

3. Improvement of spatial compactness and coherence.

The optimized K-Means algorithm increased the compactness index (C) to 0.61-0.76,
compared to <0.50 in most baseline cases. Similarly, the improved DFS reduced execution
time by nearly one order of magnitude compared to its basic version (530 s — ~54-62 s),
demonstrating both efficiency and higher cluster quality.

4. Demonstration of large-scale applicability in conversational interfaces.

The system efficiently processed datasets ranging from 36,000 to 220,000 parcels, en-
abling their use in an LLM-driven NLP interface. This confirms the feasibility of integrating
advanced spatial analysis into chat-based decision-support systems.

5. Inclusion of regulatory and spatial criteria.

Beyond computational performance, the system embedded legal and spatial con-
straints (e.g., buffer distances from water bodies and residential buildings), ensuring
that investment recommendations meet both regulatory requirements and practical
siting conditions.
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2. GIS as the Foundation of Spatial Analyses

Geographic Information Systems (GIS) constitute the foundation of modern spa-
tial analyses, enabling the collection, integration, processing, analysis, and visualiza-
tion of spatially referenced data [11]. Thanks to their ability to combine data from vari-
ous sources—ranging from satellite imagery, through field measurements, to IoT sensor
data—GIS makes it possible to create comprehensive representations of spatial phenomena.
Such integration enables more accurate decision-making in spatial planning, environmental
management, and infrastructure investments, as well as in forecasting spatial changes and
their impacts [12,13].

The importance of GIS is particularly evident in the renewable energy sector, espe-
cially in wind energy. It enables the creation of suitability maps for siting wind farms by
integrating data on topography, land cover, wind conditions, transmission infrastructure,
and environmental constraints [14]. Methods such as AHP, fuzzy logic, and TOPSIS make
it possible to account for both quantitative and qualitative criteria [15]. Moreover, GIS
supports the analysis of wind energy resources and the assessment of investment potential,
thereby facilitating cost optimization and impact minimization [16].

In the case of photovoltaics, GIS enables precise identification of the best PV instal-
lation sites by taking into account solar exposure, slope and orientation of the terrain,
shading, and access to infrastructure [17,18]. GIS models integrated with machine learning
allow for analyses at both local and regional scales, while integration with economic mod-
eling tools supports investment feasibility assessments. GISs are also used in the design
of hybrid RES systems, combining different energy generation technologies to enhance
system stability [19,20].

In the context of biogas plants, GIS supports siting processes by analyzing substrate
availability, proximity to transport and energy infrastructure, legal conditions, and social
factors [21]. These issues are particularly interesting from the point of view of high-
energy industries such as foundry, metallurgy, and glass industries. For many years,
attempts have been made to completely or partially replace natural gas in production
processes [22]. One of the key problems is the creation of a stable and efficient biogas
supply system. The use of GIS through the analysis of spatial conditions, raw material
availability, and infrastructure allows for optimal design of agricultural biogas plants [23].
Integration of GIS models with MCDA methods, such as AHP or the Best-Worst method,
enables objective evaluation of locations in terms of both economic and environ-mental
efficiency [24]. Moreover, GIS makes it possible to build biomass resource databases, taking
into account supply seasonality, transport logistics, and opportunities for integration with
other energy systems, which fosters the implementation of solutions aligned with circular
economy principles [25].

For hydropower plants, GIS is used to assess hydroenergy potential by analyzing
topography, river flows, elevation drops, and environmental constraints. The integration of
hydrological models with spatial data enables the identification of sites with the greatest
energy potential while minimizing environmental impact [26]. In small hydropower plants,
such as run-of-river installations, GIS supports transmission infrastructure planning, con-
struction cost analysis, and landscape impact assessment. The combination of GIS analyses
with MCDA methods makes it possible to optimize site selection based on balancing energy
production efficiency with the protection of natural resources [27,28].

GIS also finds wide application in the circular economy (CE). In the waste management
sector, it allows for the optimization of waste collection routes, siting of processing facilities,
analysis of material flows, and assessment of resource recovery potential [29]. This is
particularly important in the circulation of materials that are critical to the economy and
industry, access to which may be restricted, e.g., as a result of military conflicts, natural



Appl. Sci. 2025, 15, 10406

5 of 30

disasters, political decisions, environmental regulations, etc. Examples include processed
materials such as metal alloys. It should be remembered that the available waste may vary
depending on the technological culture, relevant industrial processes, local standards and
other regulations [30]. The use of GIS makes it possible to link data on waste generation
sources with information on recycling, composting, or energy recovery options, thereby
supporting effective resource management and minimizing landfilling. An example is the
AHP-based siting of municipal solid-waste collection points in rural areas using GIS [31,32].

In the area of CE, the use of GIS in spatial analyses of secondary raw material logistics
is also significant. By integrating data on collection points, processing facility capacity, and
transport infrastructure, it is possible to design closed material loops with minimal carbon
footprints [33]. Moreover, GIS supports industrial symbiosis modeling by identifying po-
tential linkages between enterprises where by-products from one activity become resources
for another [34,35].

As the foundation of spatial analyses, GIS is becoming a key element of the digital
transformation of decision-making processes in the environment, energy, and circular
economy sectors. By combining diverse data sources, modern analytical techniques, and
visualization tools, it enables not only the diagnosis of current conditions but also the
forecasting of changes and planning of adaptive actions [36]. As a result, GIS serves
as a strategic instrument supporting the achievement of sustainable development goals,
integrating technological, environmental, economic, and social perspectives [37,38].

3. The Role of Multi-Criteria Methods and Metaheuristic Optimization in
Decision Support Systems

Decision-making is a fundamental function of management [39] and, as Puselji¢ et al.
note, a key determinant of organizational success or failure [40]. It enables managers to
select one or more alternatives aimed at achieving a desired outcome [39]. In a rational
decision-making process, choices are made objectively, after carefully considering the cir-
cumstances, alternative perspectives, and the potential consequences of each option [41].
However, the complexity of many decision contexts [42], particularly in environmental
management, necessitates the use of multi-criteria decision analysis (MCDA), which pro-
vides a systematic framework for integrating diverse data, information, and stakeholder
opinions to compare possible courses of action [43]. This approach enables consideration
of both measurable factors and those difficult to quantify financially, allowing available
options to be ranked by overall attractiveness and thereby supporting the selection of the
solution that best meets established objectives [43].

As Baczkiewicz et al. observe, there are various MCDA methods that represent
three traditions: the American, the European, and a mixed one based on sets of rules [44].
The main differences among particular MCDA methods include, among others: the level of
complexity of the applied algorithms, the method of assigning weights to criteria, the form
of presenting preferences and evaluation of criteria, the ability to account for uncertain
data, and the type of data aggregation method used [45]. When applying MCDA in the
decision-making process, a challenge arises in selecting and applying the appropriate
method for solving a given problem.

The complexity of decision-making processes in management, including environ-
mental management, obliges managers to employ not only MCDA methods but also
decision support systems (DSS). This also results from the fact that traditional approaches
to environmental management, based on manual data collection, are often inefficient and
inaccurate [46]. Interactive information systems, such as decision support systems, assist
decision-makers in making informed choices by collecting, processing, and analyzing
data [47]. They aim to solve complex problems, provide valuable insights, and increase
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the accuracy of decisions by combining data management, analytical models, and intuitive
user interfaces [47].

As Ali et al. point out, modern DSS are often equipped with MCDA along with
modules for their control [45]. Highlighting the relationship and differences between
MCDA and DSS, it should be noted that the former is a methodology—that is, a set
of methods that allow evaluating and comparing alternatives by considering multiple
criteria. Decision support systems, in turn, are information systems (software). This means
that multi-criteria decision-making is a technique, while decision support systems are
the machine that may or may not employ this technique [48]. Keenan observes that in
scientific literature, MCDA is considered a subset of DSS research, and that multi-criteria
decision-making methods have always played a key role in decision support systems [48].

Currently, hybrid approaches are increasingly being applied, in which DSS integrate
various MCDA methods in fuzzy environments [49]. The literature also highlights intelli-
gent decision support systems that combine machine learning (ML) with MCDA [50]. As a
result, intelligent decision support systems (IDSS) using ML and MCDA techniques are
dynamically evolving. Within DSS, distributed decision support systems (DDSS) are also
distinguished, enabling the integration and sharing of data from previously isolated silos,
including in real time [47].

Complementing the MCDA-based perspective developed above, the literature also ex-
amines metaheuristic optimization as a direct search approach for related energy-planning
problems. Metaheuristic optimization methods, including evolutionary, swarm-based,
differential, and related algorithms, are widely applied in power system problems because
they can effectively handle nonlinearity, high-dimensional variable spaces, and numerous
operational constraints [51]. Literature reviews highlight their successful use in areas such
as optimal power flow, reactive power dispatch (ORPD), combined economic—emission
dispatch, Volt/Var control, and the size and placement of distributed generation (DG),
confirming their value for typical grid optimization tasks [51].

During the design phase of energy systems, particularly hybrid renewable energy
systems (HRES), hybrid metaheuristics are extensively employed for the optimal sizing
and parameterization of system components, both in single-objective and multi-objective
contexts [52]. At the operational stage, they also support microgrid management. For in-
stance, the Multi-Verse Optimizer (MVO) has been used to schedule battery energy storage
systems (BESS) in AC microgrids, in both grid-connected and islanded modes, with the aim
of reducing power losses and carbon emissions while respecting network constraints [53].
Such approaches provide decision-makers with flexible tools for addressing operational
challenges under dynamically changing requirements.

In spatial planning and site selection, metaheuristic methods enable the simultaneous
consideration of environmental, social, and economic criteria. A notable example is the
use of an improved NSGA-II for selecting photovoltaic farm locations, which illustrates
how metaheuristics can help identify Pareto-optimal trade-offs and support strategic
infrastructure planning [54].

Recent studies further emphasize the importance of integrating metaheuristics with
Geographic Information Systems (GIS) and Multi-Criteria Decision-Making (MCDM) tech-
niques. Together, these create coherent decision-making frameworks for requirements
analysis and alternative evaluation, as demonstrated in the context of offshore wind farm
planning. In this way, metaheuristics complement ranking-based techniques, enabling the
incorporation of multiple perspectives and facilitating the selection of optimal sites for
energy infrastructure development [55].
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4. The Role of Machine Learning, Large Language Models, and Agents in
Decision Support Processes

Decision support systems (DSS) play a key role in environmental management, in-
frastructure, and business processes. In recent years, their development has increasingly
relied on the integration of artificial intelligence, particularly machine learning, large lan-
guage models (LLMs), and agent-based architectures [56,57]. This enables not only the
storage and analysis of large datasets but also their interpretation in a more “human-like”
way—comprehensible and transparent for users.

Machine learning (ML) allows DSS to identify hidden patterns, perform prediction
and classification, and forecast the outcomes of alternative decisions [58]. Large language
models (LLMs)—such as GPT or BERT—open new possibilities for interaction with decision
systems through a conversational interface, enabling users to ask questions in natural
language and receive personalized recommendations [59]. The integration of ML and LLM
supports the transparency of analytical processes and provides users with greater control
over inputs and outputs.

Al agents are autonomous components capable of perceiving their environment, mak-
ing decisions, and executing actions within complex processes [60]. They can be classified
into several types: reactive agents (operating on a stimulus-response basis), deliberative
agents (planning and goal-oriented), hybrid agents (combining both approaches), and
learning agents [61]. In practice, agent models are key elements of Al architectures, serving
as intermediaries between the analytical layer and end users.

Reactive agents are defined by simple structures and immediate stimulus-response
behavior, which makes them well suited for dynamic environments such as environmental
monitoring or the Internet of Things (IoT) [62]. Their main advantages are speed and
low computational requirements, but the absence of memory and planning limits their
adaptability in complex contexts [63]. As a result, they are most commonly employed today
as components of larger hybrid systems.

In the era of Big Data, decision-related data processing requires scalable platforms.
Apache Spark enables parallel, distributed processing of large datasets, which, when com-
bined with agents, allows for the creation of intelligent analytical workflows [64]. PostGIS,
the spatial extension of PostgreSQL, supports agents operating directly in the database,
enabling automatic spatial queries and the integration of agent logic with geodata [65].
Thanks to this, Al agents can analyze billions of spatial records in real time, supporting
decisions in urban planning, transportation, or environmental protection.

Agent-based systems supported by ML and LLM are increasingly applied in spa-
tial analysis, investment planning, and environmental management [66]. However, this
development comes with challenges—the need to ensure transparency, user trust, and
compliance with regulations [67,68]. It is therefore essential to design such systems in a
way that not only maximizes efficiency but also allows users to verify and understand
decision-making processes.

The methodology grounded in reactive agents operating under the supervision of a
Large Language Model (LLM) introduces a fundamentally novel paradigm for executing
spatial search processes. This approach minimizes, to an almost negligible level, the
requirement for users to possess advanced expertise or familiarity with the interfaces and
operational rules of geographic databases. Instead, it enables non-expert users to retrieve
relevant information through natural language queries. Within this architecture, the LLM
is responsible for extracting user requirements and transforming them into a structured
set of signals, while the computationally demanding tasks of spatial data processing are
delegated to a dedicated reactive agent.
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Contemporary research outlines two principal directions for integrating LLMs with
GIS. The first emphasizes fine-tuning language models to comprehend data structures,
metrics, and functions directly within spatial datasets. The second prioritizes the devel-
opment of specialized agents that cooperate with LLMs. Our preference for the latter
approach stems from the necessity of ensuring robust control over the generation of leg-
islative requirement lists, as well as enabling algorithmic optimization that scales with
dataset size.

5. Clustering Algorithms

Clustering is one of the fundamental techniques of data mining, aimed at grouping
objects in such a way that elements within the same group (cluster) are more similar to
each other than to those in other groups. Unlike supervised methods, clustering does
not require prior data labeling—hence it belongs to unsupervised learning methods. It
has wide applications in many fields, such as image analysis, customer segmentation,
bioinformatics, and spatial data processing. This chapter presents the most important
clustering algorithms, their characteristics, advantages and limitations, as well as examples
of practical applications.

5.1. Depth-First Search Algorithm

The depth-first search algorithm (DFS) is one of the fundamental methods for exploring
graph structures. It uses a stack mechanism that allows visiting consecutive vertices as
long as there is a path to an unvisited neighbor. Once the path is exhausted, the algorithm
backtracks and continues searching in other directions. DFS is applied in various areas of
computer science, including topological sorting, cycle detection, finding bridges, connected
components, and as a component of more complex graph algorithms [69,70].

In the context of clustering, DFS can be used to determine connected components of a
graph, which are then treated as independent clusters. This approach works particularly
well when data is represented as graphs and relationships between objects are defined by a
similarity metric or spatial structure. Using DFS for this purpose enables fast and efficient
identification of related object groups, even in large datasets. Connected-component clus-
tering is deterministic, and its results are fully replicable, which is a significant advantage
compared to stochastic methods [71,72].

DEFS is also employed in hybrid approaches, forming the basis for processing more
complex data structures. For example, it can be used in the analysis of spatial trajectories,
with vertices representing stop locations and edges corresponding to possible connections
or spatiotemporal neighborhoods. DFS can then be applied to detect clusters of such points,
reflecting real-world concentrations of user activity [73].

Beyond spatial analysis, DFS is also applied in recommender systems and graph
pattern mining. In these cases, users, products, or events are represented as nodes, and their
relationships as edges. DFS enables the grouping of nodes into clusters based on mutual
reachability and graph structure. It also supports structural pattern searches in graph
datasets, as in the gSpan algorithm, which systematically explores graphs by generating
DEFS codes for subgraphs to efficiently detect frequently occurring structures [74,75].

5.2. Agglomerative Clustering Algorithm

Agglomerative hierarchical clustering is a bottom-up data segmentation method. The
process begins by treating each data point as a separate cluster. In successive iterations,
pairs of the most similar clusters are merged until one group covering the entire dataset is
obtained, or until a predefined stopping level is reached. This process represents relation-
ships between points in the form of a hierarchical tree, known as a dendrogram [76].
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A key aspect of the algorithm is how distances between clusters are measured. The
most common linkage methods include: single linkage (nearest neighbor), complete link-
age (farthest neighbor), average linkage (average distance), and Ward’s method, which
minimizes the increase of within-cluster variance at each merge. The choice of linkage
strategy strongly affects the structure, number, and shape of the resulting clusters [77].

Agglomerative clustering is particularly useful when the expected number of clusters
is unknown. Unlike methods such as k-means, it does not require a predefined number of
groups. Users can explore the hierarchical structure and decide on the number of clusters
based on dendrogram analysis. This flexibility makes the method useful in molecular
biology (gene expression analysis), social sciences (respondent segmentation), and spatial
data analysis [78].

One of the main advantages of agglomerative clustering is its interpretability. The den-
drogram provides insight into relationships between points at different levels of hierarchy.
The method also performs well with irregularly shaped clusters and clusters of varying
density. On the downside, its main limitation is high computational cost—the standard
implementation has time complexity of O(n®) and space complexity of O(n?), which can be
a serious barrier for very large datasets [79].

In response to these limitations, various optimizations have been developed. Al-
gorithms such as SLINK (for single linkage) and CLINK (for complete linkage) reduce
runtime to O(n?) or less while maintaining accuracy. Approximate hierarchical methods
based on sampling or data compression can also be used, making them applicable in Big
Data environments [80].

Modern implementations of agglomerative clustering are provided in many analytical
libraries, such as SciPy, scikit-learn, and R (e.g., the hclust and agnes functions). The
algorithm is also employed as a component of more complex solutions—for example in
image analysis for object segmentation or in recommender systems, where it groups users
according to behavioral profiles [81].

5.3. K-Means Algorithm

The k-means algorithm belongs to the family of non-hierarchical clustering methods,
also known as partitional clustering. Its goal is to divide a dataset into k non-overlapping
clusters in such a way that within-cluster variance is minimized—that is, the sum of squared
distances between points and the centroid of their assigned cluster [82].

The algorithm operates using an iterative optimization scheme. First, k points are
randomly selected as initial centroids. Each data point is then assigned to the nearest
centroid according to a chosen distance metric (typically Euclidean). Once all points are
assigned, centroids are updated as the arithmetic mean of the coordinates of points in each
cluster. The assignment and update steps are repeated until stability is achieved—that is,
no changes in assignments occur, or a maximum number of iterations is reached [83].

One of the main advantages of k-means is its simplicity and low computational cost.
In many practical cases, convergence is reached very quickly, even for large datasets.
As a result, k-means has become a standard tool in data mining and is widely ap-
plied in fields such as market analysis, image segmentation, bioinformatics, and natural
language processing [84].

However, the classic k-means algorithm has important limitations. Most notably,
it requires the number of clusters k to be specified in advance, which in practice can be
difficult. Moreover, k-means is sensitive to centroid initialization—different initializations
may lead to different final results. To address this, variants such as k-means++ were
developed, introducing improved initialization methods that increase the likelihood of
finding a global minimum [85].
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K-means also assumes that clusters are convex, roughly equal in size, and spherical.
For datasets with irregular shapes or clusters of varying density, results may be unreliable.
Additionally, the method is sensitive to outliers, which can distort centroids and negatively
affect segmentation outcomes [86].

To evaluate clustering quality, several indices are used, such as the Silhouette coeffi-
cient, Calinski-Harabasz index, or Davies-Bouldin index. Choosing the right metric allows
not only the assessment of clustering performance but also the selection of the optimal
number of clusters k, often using the “elbow method” [87].

Despite its limitations, k-means remains one of the most widely used tools in data
analysis. Its simplicity, interpretability, and effectiveness in many applications make it a
crucial starting point for more advanced and hybrid clustering methods.

6. Materials and Methods

The system architecture was designed with the goal of maximizing user interaction
efficiency while effectively managing potentially large datasets. A key assumption was the
use of an interface enabling natural language processing, the selection of a specialized agent,
and the separation of a one-time, computationally expensive process of data retrieval and
preprocessing from lightweight, dynamic analyses performed in response to user actions.
To achieve the objectives of this article, two parallel reactive agents were implemented.
The first agent uses PostgreSQL/PostGIS as a stable and widely adopted environment for
storing and analyzing spatial data. The second agent explores the application of Big Data
solutions based on the distributed processing framework Spark, which enables scalable
operations on large datasets.

6.1. Application Concept

The application architecture was based on the assumption of maximum performance
and responsiveness of the user interface while efficiently managing large datasets. The
general operation of the application can be described in the following stages:

e Step 1—Data intake and preprocessing
e  Step 2a—Use of Apache Spark

e  Step 2b—Use of PostGIS

e  Step 3—Aggregation of results

6.1.1. Data Intake and Preprocessing (Step 1)

In this process, the user interface sends queries to the LLM, which executes an iterative
procedure of gathering the information necessary to precisely define requirements. The
model engages in follow-up questioning and interaction in order to obtain detailed input
from the user. Based on the collected data, the model translates knowledge into a set of
clear criteria that form the basis for triggering a specialized agent.

The implementation is based on a REST API serving as the communication layer be-
tween system components, enabling the automatic transformation of investor requirements
expressed in natural language into formalized operational criteria for the agent’s reactive
execution engine. The process begins with user interaction through a conversational in-
terface, where requirements are specified and passed to the Ollama environment. There,
the selected large language model (LLM) processes them and generates a structured set of
operational signals, which are subsequently forwarded to the agent’s execution engine.

The current implementation of the clustering algorithm is characterized by a selective
approach, in which the analysis is restricted exclusively to objects that meet the defined
surface and quality criteria. During the preprocessing stage, incomplete records contain-
ing missing values in key attributes were first removed, followed by the elimination of
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duplicates. In addition, spatial projections were standardized to the EPSG:2180 coordinate
system to ensure consistency across the dataset and improve the reliability of the results.

Objects that failed to satisfy quantitative requirements—such as maintaining min-
imum spatial distances, belonging to designated areas, or meeting basic geometric
correctness—were excluded from the clustering process. Geometric defects included,
among others, unclosed boundaries and irreparable geometry errors, which prevented
proper execution of subsequent analyses.

The geometry validation process relied on the analysis of spatial coherence indicators,
including the number of connected components (K), compactness index (C), and elongation
index. These measures were used for the hierarchical evaluation and comparison of
the qualitative properties of clusters. To increase the precision of the analysis, the set of
indicators was further extended with the fragmentation index (F) and the share of the largest
component (U), both of which contributed to a more comprehensive assessment of spatial
coherence. These geometric measures were also applied in identifying the dominant island
within individual clusters, thereby enabling more representative and homogeneous results.

In addition to the automatic translation of requirements into operational criteria, a
weighting procedure was introduced to reflect the relative importance of individual factors.
At the current stage of research, deterministic expert weighting was applied. Opinions
were collected from specialists in design, construction, GIS, and environmental engineering,
all of whom had practical experience in comparable projects. Their assessments were
consolidated through a consensus process, ensuring that the assigned weights accurately
represented the expected influence of each criterion on the overall quality and effectiveness
of the final solution. The resulting weights are presented below:

Substrate availability: 0.45
Ecosystems and biodiversity: 0.25
Spatial and landscape pressure: 0.05

Distances, statutory thresholds, and compactness: 0.15

A sensitivity analysis was subsequently carried out, indicating that the most influential
factors were substrate levels, biodiversity, and parameters related to network infrastructure
and cluster compactness. Although fuzzy or interval weighting schemes were not em-
ployed at this stage, future work will extend the methodology with fuzzy and probabilistic
approaches in order to more adequately represent decision-making uncertainty.

6.1.2. Scenario Involving the Use of Apache Spark (Step 2a)

The scenario envisions the use of Apache Spark as the central component for pro-
cessing and analyzing large spatial datasets, combined with tools such as GeoPandas,
Scikit-learn, and Streamlit. This enables efficient execution of the ETL process, in-memory
data buffering, as well as interactive analysis and clustering, which significantly improves
work with distributed geospatial data. The diagram (Figure 1) illustrates the workflow of au-
tomation and selection of plots designated for the construction of agricultural biogas plants.

The proposed system architecture was designed as a sequence of four key stages
of data processing. The first stage involves the ETL (Extract, Transform, Load) process,
managed by Apache Spark. At this step, all necessary data—such as parcels, roads, and
utilities—are loaded using Parquet packages, the GeoPandas library, binary files, or JDBC
drivers. A preliminary transformation is also performed, primarily converting geometries
from binary to columnar formats, which facilitates subsequent processing but may cause
memory issues with very large datasets.
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Figure 1. Diagram of the automation and investment plot selection process.

In the second stage, the processed data are converted into the GeoDataFrame for-
mat and stored in the application’s cache memory using the @st.cache_data mechanism
of Streamlit. This ensures that the data are loaded only once per session, significantly
reducing system response time, although it may lead to memory overflow in the case of
extensive datasets.

The third stage focuses on interactive in-memory analysis. All user initiated operations
such as filtering, clustering, or distance calculations are executed with optimized functions
from the GeoPandas library and clustering algorithms from Scikit-learn.

Finally, in the fourth stage, parcels that do not fully meet the defined criteria undergo
clustering. Selected algorithms, including depth-first search (DFS), agglomerative clus-
tering, and k-means, are applied to group parcels into larger, coherent areas that satisfy
minimal investment requirements. Moreover, classical algorithms were enhanced with
mechanisms to ensure cluster consistency, such as edge-contact analysis and the application
of a minimum rotated rectangle algorithm, which optimize the shape and geometry of the
final clusters.

6.1.3. Scenario Involving the Use of Apache Spark and PostGIS (Step 2b)

Figure 2 presents the diagram of a PostGIS-based agent, which serves as a reference
point for describing the scenario of integration with the Apache Spark platform.

{ compatible
objects
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Figure 2. Diagram of the use of a PostGIS-based agent.

The data preparation and analysis phase constitutes a key distinction between the
discussed approaches to agent architecture. In the traditional model, the process begins
with the preliminary selection of potential investment plots based on defined criteria
(e.g., building status, land classification). Next, using SQL queries and the ST_Distance
function implemented in PostGIS, the geometric distance is calculated between the ex-
amined plot and the union of infrastructure representations (roads, power lines, water
supply and sewage networks, etc.). The obtained results are then converted into a Pandas
DataFrame for integration with the original plot GeoDataFrame based on an identifier.
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Subsequent stages of data processing, such as buffer generation or clustering, can be treated
as equivalents of the processes performed using the Apache Spark platform.

6.1.4. Aggregation of Results (Step 3)

The final stage of the proposed solution is the aggregation of results, aimed at stan-
dardizing the data presentation interface. The system provides both spatial visualizations
in the form of maps and area drawings, as well as tabular data characterizing plots and
identified clusters that meet specific criteria. After the analysis is complete, the data saved
in the session state is used to dynamically generate visualizations:

1.  Map visualization—the _display_map() function from the ui.py module is responsible
for generating an interactive map using the PyDeck library. Separate visual layers
are created:

a. GeoJsonLayer for individual plots (fits), marked in green by default.

b.  GeoJsonLayer for plots belonging to valid clusters, with each cluster assigned a
random, unique color.

c. PathLayer layers for specific types of infrastructure (roads, power lines, water,
sewage), each marked with a different color.

The map is interactive and displays detailed information about an object (plot or
cluster) in a tooltip when hovered over with the cursor.

2. Tabular presentation—the function _display_summary_tables() generates two sep-
arate summary tables. The first contains detailed data on the qualified individual
plots, and the second provides analogous information for the clusters that met all
the criteria.

6.2. Software Environment

The choice of technologies was driven by the aim of creating an efficient, scalable, and
easy-to-maintain system. Below are the key components of the technology stack along with
the rationale for their selection (Table 1).

Table 1. Main components of the software environment.

Type of Software

Description of Operation Ref.

Python (version 3.11.13)

Chosen as the main programming language due to its versatility,
rich ecosystem of data analysis libraries (Pandas, Scikit-learn) and
GIS (GeoPandas), as well as excellent integration with the other
components of the project.

[88]

Streamlit (version 1.48.1)

Used for rapid prototyping and building an interactive user
interface. Its simplicity and script-based model allowed the focus to
remain on analytical logic rather than the complexity of developing

web applications.

[89]

PostgreSQL (version 16.4-1) with standard for storing, indexing, and querying geospatial data, which
PostGIS (version 3.4.3) was crucial for effective management of plot geometries and

Used as the database system. The PostGIS extension is the industry
[90]

infrastructure data.

QGIS (Quantum GIS version desktop GIS software was used for manual editing, validation, and

3.44.1-Solothurn)

Applied at the stage of data preparation and preprocessing. This

preparation of vector layers (plots, water, power lines) before 1]

importing them into the target PostGIS database.
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Table 1. Cont.

Type of Software

Description of Operation

Ref.

Apache Spark (version 3.5.1)

Used to implement the ETL process. Its ability to perform
distributed data processing makes it an ideal tool for efficiently
loading and preprocessing large volumes of data from the database,
offloading this task from the main application.

[92]

GeoPandas (version 1.1.1)

Serves as the foundation of the project’s analytical layer. This
library extends the popular Pandas package with geospatial data
handling, providing an intuitive and efficient interface for
geometric operations, which was essential for implementing
filtering and clustering logic.

[93]

Scikit-learn (version 1.7.1)

Used to implement standard machine learning algorithms, which
served as the basis for clustering mechanisms (e.g., K-Means,
Agglomerative Clustering).

[94]

PyDeck (version 0.9.1)

Applied to create interactive, multi-layered map visualizations. Its
ability to render large datasets client-side (in the browser) using
WebGL ensures high performance and smooth navigation.

[95]

Docker Engine version 24.0 & Docker
Compose vervion 2.39.4

These tools were used to containerize the entire application and its
dependencies (database, Python environment). This enabled the
creation of a consistent, portable, and easily reproducible runtime
environment, significantly simplifying deployment
and development.

[96]

Ollama & Gemma-3n-e4b

Designed as a toolkit providing an API interface for
communication with the large language model (LLM). The choice
of the Gemma-3n-e4b model was motivated by its optimal balance

between performance quality and computational resource
consumption (RAM, VRAM, CPU). The model supports both text
and image inputs. A distinctive feature of Gemma-3n-e4b is its
extended context window of 128K, allowing the processing of
longer information sequences.

[97]

6.3. Implementation of Clustering Algorithms

The central analytical component of the application is the clustering module, responsi-

ble for merging smaller neighboring plots into larger, coherent investment areas. Within the

project, several approaches were implemented and analyzed, ranging from neighborhood

graph-based methods to advanced hybrid techniques. The following sections provide a

detailed description of each algorithm.

6.3.1. Depth-First Search (_Cluster_Plots_NN)

The clustering algorithm is based on graphical representation and the depth-first
search (DFS) method. The process consists of three main stages, as shown in Figure 3.

Construction of the
adjacency graph

for each pair of parcels, the adjacency
relation is checked using the function
geoms]i].touches(geoms(j]). Based on this
relation, an adjacency matrix is created to
represent spatial connections.

2
Cluster identification Geometric constraint
(DFS) control
iterating over all parcels, a DFS procedure during the cluster expansion, a bounding
is initialized for each unvisited parcel. box is calculated. A new parcel is added
Neighbors are recursively added, which only if its inclusion does not cause the
allows the identification of connected cluster dimensions to exceed the allowed
compoenents of the graph. limits max_w_m and max_h_m.

Figure 3. Main stages of the depth-first search.
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6.3.2. Improved Depth-First Search (_Cluster_Plots_NN_Improved)

This version of the algorithm represents a significant improvement over the basic
method, eliminating its key drawbacks. The improved algorithm performs clustering in
two main steps:

1.  Optimized graph construction—instead of an n? loop, the algorithm first creates a
spatial index (R-tree) for all plots using the attribute gdf.sindex. Then, for each plot,
it searches only for potential neighbors (whose bounding boxes intersect), which
drastically reduces the number of costly .touches() checks that need to be performed.

2. Precise dimension control—instead of a bounding box, the algorithm applies a much
more accurate method. When considering the addition of a new plot, it creates a tem-
porary merged cluster geometry (unary_union) and computes its minimum rotated
rectangle (minimum_rotated_rectangle). This method perfectly fits the rectangle to
the shape of the cluster, regardless of its orientation, allowing for precise verification
of its actual width and height.

6.3.3. Basic K-Means (_Cluster_Plots_KMeans)

This is an implementation of the classic k-means algorithm. The algorithm works on
the principle of partitioning and proceeds as shown in Figure 4.

Centroid calculatio

1 2 3
Number of clusters (k) Grouping
. . The number of clusters is predefined The algorithm iteratively assigns each
The geometric center (centroid) using a simple heuristic: k = Vn. centroid to the nearest cluster
center and then updates the centers’
positions until convergence is reached.

is computed for each plot.

Figure 4. Steps of the k-means algorithm.

6.3.4. Improved K-Means (_Cluster_Plots_KMeans_Improved)

This is an advanced hybrid method that combines the speed of k-means with the
accuracy of the neighborhood graph-based approach. The algorithm works in two stages:

1.  Stage 1—Initial clustering (optimization): The fast k-means algorithm is run first. Its
output is not treated as final but only as a way to coarsely divide the entire dataset
into smaller “zones” or “neighborhoods.”

2.  Stage 2—Building coherent clusters: Next, the algorithm iterates through each plot,
building coherent clusters in a way very similar to the _cluster_plots_NN_improved
method. The key difference is that neighbor search is restricted only to plots within the
same k-means “zone.” Dimension control is performed precisely using the minimum
rotated rectangle.

6.3.5. Agglomerative Clustering (_Cluster_Plots_Agglomerative_Clustering)

This method uses a standard hierarchical clustering algorithm from the Scikit-learn
library. The algorithm works from the bottom up and proceeds in the steps shown
in Figure 5.
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o Connectivity matrix Connectivity matrix
Initialization construction construction
Each plot is initially treated as a Similar to the first method, a connectivity The algorithm iteratively merges the two

separate cluster.

closest clusters into a larger one. The
distance between clusters is measured
based on their centroids.

matrix is created, specifying which plots
can be merged (only those that touch).

Figure 5. Stages of the hierarchical agglomerative clustering algorithm.

7. Results
7.1. Evaluation Metric

This chapter focuses on the performance and quality analysis of the implemented
system. Particular attention was given to the evaluation of two key architectural compo-
nents: the data loading mechanism and the clustering algorithms. To objectively assess
system performance, a set of metrics based on execution time and resource consumption
was defined.

7.1.1. Execution Time Metric

Execution time was recorded using the time module in Python, with special attention
to two stages: data loading and analysis.

Data loading time is defined as the period from application startup until all data is fully
loaded into memory and ready for analysis. In practice, this corresponds to the execution
time of the load_initial data function. This parameter is a key metric, as it enables per-
formance comparisons between the two architectural variants—Spark and PostGIS—and
allows assessment of the impact of the caching mechanism on overall system performance.

The second key indicator is the analysis time. It is measured from clicking the “Filter
and analyze” button until the results are saved in the session state and the user interface
is refreshed. This metric was used to evaluate and compare the efficiency of individual
clustering algorithms, facilitating the clear identification of the most effective solutions.

7.1.2. Resource Consumption Metric

In addition to execution time, an important aspect of performance evaluation is the
analysis of system resource consumption. These parameters were monitored using the
docker stats command for the application container, which enabled real-time tracking of
system load during program execution.

The first measured indicator was peak RAM usage [MB], understood as the maximum
amount of memory consumed by the container during both the data loading process and
the actual analysis. The second parameter was maximum CPU load [%], reflecting the
highest level of processor utilization by the application container. Together, these indicators
allow for a comprehensive assessment of system efficiency, not only in terms of execution
time but also in terms of hardware resource management.

7.2. Experimental Plan
7.2.1. Test Environment

To ensure repeatability and reliability of the results, all tests were carried out in a
unified research environment, the specifications of which are presented in Table 2.
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Table 2. Specification of the test environment.
Component Sample Specification
Operating system Windows 11/Ubuntu 22.04
Processor (CPU) Intel Core i7-12700H
Memory (RAM) 32 GB DDR5
Disk NVMe SSD
Software Docker and Docker Compose, QGIS (wersja 3.44.1)
Dataset 36,000 plots and infrastructure layers

Based on the prepared research environment, two main test scenarios were planned,
covering all the specified configuration and analysis variants.

7.2.2. Test Scenarios

Based on the defined research environment, two test scenarios were planned to enable
a comprehensive evaluation of the system’s performance. To obtain a more complete
picture of efficiency, each scenario was carried out in two different configuration variants:

e  Variant [—Spark—covering tests using the Spark mechanism, enabling the analysis of
distributed data processing efficiency.

e  Variant II—PostGIS—covering tests based on the PostGIS database, allowing results
to be compared with a more traditional database solution.

In each case, measurements were repeated five times, and the final analysis considered
the average values. This approach ensures not only the reliability of the results but also their
comparability between variants. On this basis, two main test scenarios were distinguished,
covering the key aspects of system performance:

e  Scenario 1—comparison of data loading performance.
e  Scenario 2—comparison of clustering algorithm performance.

The first scenario focuses on evaluating the time and resources required to prepare
the application for operation, depending on the loading mechanism (Spark vs. PostGIS)
and the use of caching. The analysis includes two configuration variants that examine the
combination of both technologies.

The second scenario aims to compare analysis time and resource consumption for
the five implemented clustering algorithms. The tests are carried out using the most
efficient data loading configuration identified in the first scenario, while keeping filter
values constant.

8. Discussion
8.1. Data Loading Results

The first element of the analysis concerns the results of the data loading process.
Table 3 presents the average application loading time as well as the peak values of RAM
usage and CPU load recorded for the four configuration variants.

Table 3. Comparison of data loading performance.

Application Variant Average Loading Time [s] Peak RAM [MB] Peak CPU [%]
Variant [—Spark 0.0372 1040.38 195.2
Variant I[I—PostGIS 0.03375 760.06 163.38
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The experimental results show that, on the 36,000-parcel dataset, the PostGIS-based
implementation had a marginal time advantage over the Spark-based solution, while Spark
consumed approximately 27% more RAM and 16% more CPU. Dataset size strongly affected
the data-loading stage; nevertheless, the response time of individual agents remained below
1's, which is excellent for most applications. The study pursued two objectives: accelerating
the identification of parcels meeting the siting constraints for renewable energy facilities
(RES) and comparing Spark and PostGIS within a specialized reactive agent to determine
the option most optimal in terms of execution time and resource consumption—a factor
critical for interactions with conversational systems. The approaches are fundamentally
different: Spark is a distributed Big Data engine that provides high scalability for very
large datasets, whereas PostGIS is a classical geospatial environment within a monolithic
PostgreSQL database. The experiments covered two regions: the city of Nowy Sacz and the
county and city of Ostroteka. For medium-sized datasets (approximately 36,000 parcels
with seven thematic layers), both technologies achieved comparable analysis times, with
PostGIS using fewer resources.

For substantially larger datasets, the differences became pronounced. Processing ap-
proximately 220,000 parcels with seven thematic layers in PostGIS exceeded the predefined
15 min time limit. The workflow encompassed computing distance metrics for all parcels,
clustering and grouping, filtering, and preparing data for the graphical interface (conver-
sion to GeoJSON). Similar behavior was observed in QGIS under the same conditions,
with frequent time overruns and application crashes during processing and export. In
contrast, the Spark-based pipeline maintained stable performance as the number of parcels
increased and did not exceed the 15 min limit in any experiment; the average processing
time for the 220,000-parcel scenario was about 240 s. An additional scalability stress test
with approximately 230,000 parcels and seven thematic layers used a longer, 2 h ceiling
to observe degradation effects. In this regime, the PostGIS pathway again exceeded the
time limit, and QGIS exhibited similar limitations. The Spark-based architecture showed
no deterioration as the number of parcels increased and never breached the time ceiling in
the conducted experiments. These results indicate that, while both approaches are viable
at medium scale, Spark offers more stable and scalable behavior for analyses involving
hundreds of thousands of objects and, by extension, for nationwide datasets.

In future stages of research, the analysis will be extended to larger datasets (0.5 and
1 million parcels), which will allow the presentation of scalability curves and a more
comprehensive evaluation of system performance under big data conditions.

8.2. Clustering Algorithms Performance Results

The next stage of the analysis focused on comparing the performance of the imple-
mented clustering algorithms. Similarly to the data loading stage, both the execution time
of the analysis and the peak utilization of system resources were evaluated. Five algorithms
were considered: two variants of the depth-first search method (basic and optimized),
agglomerative clustering, the classical K-Means, and its optimized version. The results are
presented in Table 4.

The clustering stage proved to be the most resource-intensive in terms of computa-
tional time, memory consumption, and processor load, which highlights the importance
of providing users with the option to deactivate this functionality based on natural lan-
guage interface (NLP) commands. A qualitative analysis of the applied methods revealed
a tendency for the optimized algorithms to generate more efficient spatial development
proposals. This improvement results from the selective selection of neighboring parcels
and the implementation of the minimum bounding rectangle inversion algorithm, which
enables better spatial layout optimization.
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Table 4. Comparison of clustering algorithm performance.
Avg. Peak RAM  Peak CPU
Clustering Alsorith Avg. Spé‘ll‘k PostGIS Peak RAM  Peak CPU Usage Usage
ustering Algorthm Analysis Analysis Usage Usage PostGIS PostGIS
Time [s] Time [s] Spark [MB]  Spark [%] [MB] [%]

Depth-First Search (DFS) 530.97 526.77 1038.3 110.21 760.06 109.48
Improved DFS 54.19 61.994 1005.05 109.3 515.58 96.20
K-Means (basic) 5.884 17.478 1040.38 195.2 620.16 174.00
K-Means (improved) 56.346 63.994 703.94 142.9 531.36 123.90
Agglomerative clustering 3056.2 6032.5 1267.82 326.71 1023.34 254.46

The time analysis confirmed that both the optimized DFS implementation and the
K-Means method achieved execution times of approximately 60 s. This constitutes a key
factor in determining their potential applicability in chat-based interfaces. Although this
duration exceeds the commonly cited 10 s threshold of acceptability in human-system
interactions—after which user frustration typically increases—it can nonetheless be con-
sidered acceptable, aligning with the notion of a “creative process of analysis” [98]. In
contrast, despite the high quality of its results, agglomerative clustering is characterized
by significantly longer computation times (stemming from its high computational com-
plexity), which effectively disqualifies it from rapid prototyping scenarios. Despite their
high computational cost, slower methods may be preferred in strategic analyses where
quality and spatial consistency take precedence over response time; a potential solution is
to use approximate variants (e.g., sampling) or hierarchical approaches, in which detailed
algorithms are applied only to preselected areas.

The introduction of algorithmic improvements through preliminary neighbor anal-
ysis and the application of the minimum rotated rectangle (MRR) aimed to enhance the
qualitative coherence of the generated clusters. An expert validation process was adopted
as a supervisory method, confirming that these improvements reduced parcel splits and
preserved appropriate cluster proportions. The improvements introduced an additional
computational overhead—for the K-Means algorithm, execution time increased by ap-
proximately one order of magnitude compared to the baseline version, while for DFS
the improved implementation reduced execution time by nearly an order of magnitude.
Despite these differences, in comparative terms both improved methods provided similar
and acceptable analysis times (~60 s for 36,000 parcels and 7 infrastructure layers, as shown
in Table 4

The results of the agent’s work were evaluated both by domain experts and by selected
spatial coherence metrics, which included the number of connected components, the
compactness index, and the elongation index. These measures were used to rank and
assess the clusters. In addition, they were applied in the process of extracting the dominant
island within a cluster, which was then transformed and became a separate cluster tending
towards K = 1 (improved methods).

The K metric was further extended to include the fragmentation index (F) and the
share of the largest component (U). In the basic versions of clustering algorithms (non-
improved), the number of connected components ranged from 1 up to as many as 14, with
clusters where K > 3 being predominant. This indicated discontinuity and the possible
presence of “holey” areas.

Quantitative results should also be interpreted in the context of location—for example,
the number of possible clusters directly affects the availability of potential investment
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locations, and the distance from the power or gas grid is a key factor in assessing their
actual suitability.

The introduced modification, consisting of extracting the most compact island within
the cluster, proved effective, leading to achieving K = 1. Furthermore, for each cluster, the
compactness index (C) was calculated. For improved algorithms, compactness ranged
between 0.61 and 0.763, whereas in the basic version of the algorithm it most often (in 60%
of cases) fell significantly below 0.50, suggesting the need for cluster boundary revision.

On this basis, an improvement in the spatial coherence of the improved algorithms
was confirmed. It should be remembered that the system proposes parcels by ranking them
according to a weighted average W = (0.5 x K) + (0.5 x C); however, the final decision on
siting always belongs to the user.

The sensitivity analysis indicated that the final ranking is most influenced by the
threshold values for distance from network infrastructure and the weight of the compact-
ness indicator (C); slight changes in these parameters can lead to a significant change in
the order of clusters, suggesting the need for careful calibration of thresholds and weights
depending on the regional context.

To better illustrate the discussed differences, maps were used to present example re-
sults of the clustering algorithms, showing characteristic patterns of spatial parcel grouping.
Map (Figure 6) demonstrates the basic operation of the K-Means algorithm.
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Figure 6. Map illustrating the result of the K-Means algorithm (baseline implementation).

The clusters obtained with the baseline K-Means algorithm are characterized by lower
spatial coherence and therefore reduced practical applicability. In contrast, the same map
after applying the improved version of the algorithm (Figure 7) presents more coherent
and functionally useful clusters.

The presented illustrations show an interactive map generated by the agent based on
user feedback, visualizing land parcels that meet specific criteria. A significant improve-
ment in result quality was observed when applying the enhanced algorithm, understood
as increased operational usefulness and better alignment with the defined parameters.
Through selective grouping, merging, and hierarchical organization of qualifying parcels,
the system expands the range of available options and optimizes the selection process.
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Figure 7. Map illustrating the result of the improved K-Means algorithm.

A key distinction of the proposed architecture from conventional GIS approaches lies
in the organization and control of the analytical workflow. Traditional GIS platforms, pred-
icated on rule-based operations and Multi-Criteria Decision Analysis (MCDA), necessitate
advanced user expertise in query formulation, parameter configuration, and spatial result
interpretation. In contrast, our approach utilizes reactive agents operating under the guid-
ance of a large language model (LLM). The LLM is tasked with extracting and transforming
user requirements into a structured set of formal signals, while the actual processing of
spatial data is handled by a dedicated GIS agent. This division of labor overcomes the
inefficiency of using LLMs for direct spatial computations and ensures control over legal
requirement generation, as well as enabling algorithm optimization based on dataset size.
This methodology not only automates site selection but also enhances its transparency and
scalability, aligning with current research trends in integrating GIS with agent architectures
and LLMs.

Comparable approaches to the application of advanced optimization models have been
reported in the waste-to-energy sector, where polyoptimization of combustible fractions of
municipal waste was used to improve the energy efficiency of biomass fuel production [99].
The results confirm that multi-criteria optimization methods and intelligent algorithms can
significantly increase resource efficiency, which is consistent with the potential for integrat-
ing agent systems and GIS tools in biogas plant planning. Both approaches emphasize the
importance of advanced analytical models for achieving higher efficiency and sustainable
development in circular economy processes.

8.3. Limitations and Challenges

Although the proposed method delivers promising results and accelerates the decision-
making process, its practical application involves several limitations that must be considered:

1.  Limitations of clustering-based approaches.

The main limitation of the method is the inability to generate new parcels beyond those
defined in the cadastral database. In scenarios where individual plots fail to meet zero-level
requirements (e.g., minimum distance from water resources), clustering is not performed,
even if their combination could potentially form an area suitable for investment. This
constraint narrows the spectrum of feasible locations. A potential direction for overcoming
this limitation is the modification of the agent architecture to incorporate nesting algorithms,
which would allow the creation of optimized, artificial parcels that meet regulatory and
spatial criteria.
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2. Regulatory and social acceptance issues.

While clustering provides a computationally efficient tool for spatial optimization,
it does not inherently address legal frameworks or social constraints. Investment siting
is strongly influenced by land-use regulations, environmental protection requirements,
and public acceptance. In practice, even technically optimal clusters may be excluded
due to zoning restrictions, Natura 2000 areas, or community opposition. Therefore, the
presented method should be treated as a decision-support tool rather than a substitute for
comprehensive regulatory and stakeholder analyses.

3. Risks of NLP-based legal interpretation.

The application of natural language processing (NLP) to interpret legal requirements
introduces the risk of misclassification or oversimplification of regulations. Automatic
parsing of legal texts may overlook exceptions, ambiguous clauses, or recent amendments,
which could result in non-compliance. To mitigate this risk, the system should be combined
with a validation stage involving legal experts and continuously updated rule sets. This
hybrid approach would ensure greater transparency and reliability in translating legal
provisions into operational constraints.

In the Polish legal framework, the siting of agricultural biogas plants is strictly linked
to spatial planning and environmental protection requirements. According to national
guidelines and EU directives, several quantitative criteria must be fulfilled. Facilities cannot
be located within protected areas (e.g., Natura 2000 sites, landscape parks), while minimum
buffer distances are required: typically 100-200 m from residential buildings, 30 m from
surface water bodies, and 50 m from drinking water intakes. Storage of digestate must
respect at least 25 m distance from drainage ditches or watercourses, and its agricultural use
is limited by the Nitrate Directive to 170 kg N/ha/year. Moreover, access to the electricity
or gas grid within a radius of 1-2 km and proximity to biomass sources (ideally less than
5-10 km) are considered decisive for economic and logistic feasibility. These regulatory and
jurisdictional constraints significantly shape the decision-making criteria and are therefore
crucial to incorporate into GIS-based site selection models.

In summary, while the proposed methodology accelerates site selection and enhances
decision-making efficiency, its applicability requires careful consideration of spatial, regula-
tory, and social dimensions, as well as safeguards against potential misinterpretations of
legal frameworks.

4.  Transferability to other regions.

Although the method has been validated on datasets from two Polish case studies, its
broader application requires caution. Assumptions regarding data completeness, cadastral
structure, and regulatory thresholds may not hold in other regions or countries. Therefore,
successful transfer depends on adapting regulatory layers, recalibrating distance thresholds,
and validating the results against local infrastructural and environmental conditions.

5. Weighting and uncertainty representation.

At the current stage of research, only deterministic expert weighting was applied.
While this provided a practical foundation for the evaluation process, it does not fully
capture uncertainty in decision-making. Future work will incorporate fuzzy and prob-
abilistic approaches, which are expected to better reflect uncertainty, enhance flexi-
bility in stakeholder input interpretation, and improve the overall robustness of the
evaluation framework.
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8.4. Extension with Additional Evaluation Criteria

The proposed method has the character of a flexible “skeleton” that can be expanded
with additional data layers and analytical criteria. Proper geospatial tagging enables
their integration into the analysis process, the calculation of dedicated metrics, and their
application within the agent algorithm. Examples of potential extensions include:

1.  Greenhouse gas (GHG) emission reduction potential.

The database can be supplemented with emission indicators related to the use of
substrates and the replacement of fossil fuels with biogas-based energy. This would allow
for the calculation of potential CO,eq savings for each siting scenario, which is particularly
relevant in the context of climate policies and renewable energy support schemes.

2. Transport logistics.

Road network layers, together with information on substrate sources and energy
consumers, can be used to assess transport costs and environmental footprint. Network
analysis (e.g., shortest path) enables the evaluation of infrastructure accessibility and the
minimization of transport distances for feedstock and energy products.

3.  Environmental impact assessment (EIA).

The system can be enriched with layers representing protected areas (e.g., Natura
2000 sites, landscape parks), soil classes, or ecologically sensitive zones. This makes it
possible to automatically exclude conflict-prone locations and to evaluate the degree of
potential environmental interference.

Extending the method with these criteria will increase its practical usefulness
and provide more comprehensive support for decision-making in sustainable energy
investment planning.

8.5. Comparison of Plot Evaluation by the Traditional Method and the Agent-Based Model

To validate the proposed approach, a comparison was carried out between the plots
assessed using the traditional expert-based method and those identified by the agent-based
model. Due to the very large number of parcels in the database, a case study was conducted

on a selected set of parcels located in district 110 in the city of Nowy Sacz—plots no. 9/17
and 9/18, with a total area of 0.2701 ha (Figure 8).

Figure 8. Presentation of the plot evaluated by the expert compared with the results obtained using
the agent-based model. The area of the planned investment is marked in red.
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The expert evaluation was based on criteria consistent with the materials presented
in the article, including: width (50 m), height (54 m), distance from the road (43.2 m),
distance from power lines (138 m), distance from watercourses (34 m), and distance from
the sewage network (50 m). The analysis showed that the plots indicated by the expert
strongly correlated with those identified by the agent-based system. The obtained results
confirm the correctness of the proposed model and its practical applicability in supporting
investment decision-making for biogas plant siting.

9. Conclusions and Future Research

The conducted study confirms that the integration of agent-based systems with GIS
tools and large-scale data processing platforms such as Apache Spark and PostGIS provides
effective support for the site selection of agricultural biogas plants. The results demonstrate
that both architectures—the distributed (Spark) and the database-centered (PostGIS)—offer
comparable performance when analyzing datasets of tens of thousands of plots, while
maintaining acceptable response times (660 s). The clustering stage remains the most
resource-intensive in terms of computational demand, yet it enables more optimal and
coherent spatial planning proposals.

The inclusion of improved algorithms—such as enhanced DFS and K-Means
variants—significantly increased the quality of the results by enabling more precise se-
lection of neighboring plots and applying geometric optimization methods. As a result,
the proposed solution not only automates the selection process but also enhances its
transparency and usability for designers and decision-makers, eliminating the need for
time-consuming manual work in classical GISs. In this way, agent-based systems combined
with GISs are thus becoming fully functional instruments of environmental management,
supporting both spatial planning and sustainable development policies [100,101].

The developed architecture, supported by a conversational interface powered by a
large language model, lowers the entry barrier to geospatial and legal analysis, making it
more accessible to users without advanced technical knowledge. In this way, the project
aligns with the broader trend of digital transformation in decision-making processes within
renewable energy and circular economy domains.

In conclusion, the presented agent-based system constitutes a viable alternative to
traditional design procedures by combining speed, scalability, and interactivity with the
ability to verify and visualize outcomes. Future research should focus on improving clus-
tering efficiency, expanding the scope of analysis to include additional environmental and
social criteria, and conducting pilot implementations in real-world investment processes.

In this context, particular attention should be given to the agglomerative cluster-
ing method due to the high qualitative usefulness of the obtained results. Further-
more, an important direction for future development is the concept of a hybrid agent
which, based on changing legal conditions, could adapt its operations in an evolutionary
manner while simultaneously significantly reducing the maintenance overhead of the
information environment.

Another promising area of research is the use of biogas not only in the distributed
energy sector, but also in industrial processes requiring high temperatures, such as metal-
lurgy and foundry work. The use of biogas as a fuel in foundry furnaces or in metal heat
treatment processes could significantly reduce the dependence of these industries on fossil
fuels, while contributing to the reduction of greenhouse gas emissions. The integration of
biogas plant location models with an analysis of potential industrial customers opens up
the possibility of creating local energy-industrial clusters, in which agricultural and munic-
ipal waste becomes a resource supporting the sustainable transformation of metallurgical
processes. Research in this area could include both technical and economic simulations as
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well as experimental tests of the quality of biogas combustion under industrial conditions,
which represents another step towards the fuller integration of the circular economy with
traditional industrial sectors. Additionally, the development of technologies based on
biogas and circular economy models may also contribute to reducing the demand for
plastics and the pollution associated with them [102-104].

This study is subject to several limitations. Firstly, the experiments were conducted on
two case-study regions in Poland, and the applicability of the approach may vary in other
geographical or regulatory contexts. Secondly, the implemented clustering algorithms,
although effective for medium-sized datasets, remain computationally intensive for very
large-scale scenarios. Thirdly, the integration of legal rules through NLP carries the risk
of misinterpretation of ambiguous clauses or recent amendments. Future research should
therefore focus on improving algorithmic scalability, validating the system with diversified
datasets from different regions, and incorporating hybrid legal-expert validation stages to
enhance reliability and compliance.

In the production workflow, each algorithm plays a distinct role under specific time
and resource constraints. The improved DFS provides a near real-time solution for ensuring
spatial coherence of clusters at moderate computational cost, while the basic K-Means
offers a very fast approximation useful for rapid prototyping. The improved K-Means
balances execution time (~60 s) with significantly higher compactness, making it suitable
for decision-making interfaces. Finally, agglomerative clustering, despite its long runtime,
remains valuable for offline strategic planning, where accuracy and hierarchical structure
are prioritized over response time. This diversity allows the agent-based system to adapt
the choice of algorithm to the scale, purpose, and temporal requirements of the analysis.
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The following abbreviations are used in this manuscript:

AHP Analytic Hierarchy Process

Al Artificial Intelligence

API Application Programming Interface

APC Article Processing Charge

BWM Best-Worst Method

CE Circular Economy

CLINK Complete Linkage (hierarchical clustering algorithm)
CPU Central Processing Unit

DDSS Distributed Decision Support System

DFS Depth-First Search

DSS Decision Support System
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EM Environmental Management

ETL Extract, Transform, Load

F-AHP Fuzzy Analytic Hierarchy Process
GIS Geographic Information System
IDSS Intelligent Decision Support System
IoT Internet of Things

JDBC Java Database Connectivity
K-Means K-Means Clustering Algorithm
LCA Life-Cycle Assessment

LLM Large Language Model

MCDA Multi-Criteria Decision Analysis
ML Machine Learning

MRR Minimum Rotated Rectangle

NLP Natural Language Processing

PV Photovoltaics

QGIS Quantum GIS (Free and Open-Source Geographic Information System)
RAM Random Access Memory

RES Renewable Energy Sources

REST Representational State Transfer

R-Tree Rectangle Tree (Spatial Index)

SLINK Sequential Linkage (single-link hierarchical clustering algorithm)
SQL Structured Query Language

TOPSIS Technique for Order Preference by Similarity to Ideal Solution
VRAM Video Random Access Memory

WebGL Web Graphics Library

References

1. Kostopoulos, G.; Davrazos, G.; Kotsiantis, S. Explainable Artificial Intelligence-Based Decision Support Systems: A Recent Review.
Electronics 2024, 13, 2842. [CrossRef]

2. Vélez Bedoya, ].I.; Gonzalez Bedia, M.; Castillo Ossa, L.F. Intelligent Agents and Causal Inference: Enhancing Decision-Making
through Causal Reasoning. Appl. Sci. 2024, 14, 3818. [CrossRef]

3. Kovari, A. Al for Decision Support: Balancing Accuracy, Transparency, and Trust Across Sectors. Information 2024, 15, 725. [CrossRef]

4. Fernandez, V. Environmental Management: Implications for Business Performance, Innovation, and Financing. Technol. Forecast.
Soc. Change 2022, 182, 121797. [CrossRef]

5. do Amaral, M.R.; Willerding, I.A.V.; Lapolli, E.M. ESG Practices: The Key to Organizational Sustainability (Praticas ESG: A Chave
para a Sustentabilidade Organizacional). Concilium 2024, 24, 85-107. [CrossRef]

6. Li, C.; Zhang, T.; Wang, X.; Lian, Z. Site Selection of Urban Parks Based on Fuzzy-Analytic Hierarchy Process (F-AHP): A Case
Study of Nanjing, China. Int. J. Environ. Res. Public Health 2022, 19, 13159. [CrossRef]

7. Farsi, H.; Dizene, R.; Flamant, G.; Notton, G. Multi-Criteria Decision Making Methods for Suitable Site Selection of Concentrating
Solar Power Plants. Sustainability 2024, 16, 7673. [CrossRef]

8.  Rekik, S.; Khabbouchi, I.; El Alimi, S. A Spatial Analysis for Optimal Wind Site Selection from a Sustainable Supply-Chain-
Management Perspective. Sustainability 2025, 17, 1571. [CrossRef]

9. Kochanek, A ; Ciuta, J.; Cembruch-Nowakowski, M.; Zactona, T. Polish Farmers’ Perceptions of the Benefits and Risks of Investing
in Biogas Plants and the Role of GISs in Site Selection. Energies 2025, 18, 3981. [CrossRef]

10. Ciutla, J.; Gaska, K,; Siedlarz, D.; Koval, V. Management of Sewage Sludge Energy Use with the Application of Bifunctional
Bioreactor as an Element of Pure Production in Industry. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2019;
Volume 123, p. 01016. [CrossRef]

11. Department of Forestry and Rural Development. An Introduction to the Geo-Information System of the Canada Land
Inventory; Department of Forestry and Rural Development: Ottawa, ON, Canada, 1967; p. 46. Available online:
https:/ /gisandscience.wordpress.com/wp-content/uploads /2014 /02 /3-an-introduction-to-the-geo-information-system-of-
the-canada-land-inventory_complete.pdf (accessed on 5 August 2025).

12. Zhu, J.; Wu, P. Towards Effective BIM/GIS Data Integration for Smart City by Integrating Computer Graphics Technique. Remote

Sens. 2021, 13, 1889. [CrossRef]


https://doi.org/10.3390/electronics13142842
https://doi.org/10.3390/app14093818
https://doi.org/10.3390/info15110725
https://doi.org/10.1016/j.techfore.2022.121797
https://doi.org/10.53660/CLM-3227-24G16
https://doi.org/10.3390/ijerph192013159
https://doi.org/10.3390/su16177673
https://doi.org/10.3390/su17041571
https://doi.org/10.3390/en18153981
https://doi.org/10.1051/e3sconf/201912301016
https://gisandscience.wordpress.com/wp-content/uploads/2014/02/3-an-introduction-to-the-geo-information-system-of-the-canada-land-inventory_complete.pdf
https://gisandscience.wordpress.com/wp-content/uploads/2014/02/3-an-introduction-to-the-geo-information-system-of-the-canada-land-inventory_complete.pdf
https://doi.org/10.3390/rs13101889

Appl. Sci. 2025, 15, 10406 27 of 30

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Bordbar, M.; Shahabi, H.; Chapi, K.; Kariminejad, N.; Deo, R.C.; Ahmad, A.; Rahmati, O.; Pham, B.T.; Bui, D.T.; Tien Bui, D.; et al.
Multi-Hazard Spatial Modeling via Ensembles of Machine Learning Algorithms (Earthquake, Flood, Landslide). Sci. Rep. 2022,
12,2115-2134. [CrossRef] [PubMed]

Miller, A.; Li, R. A Geospatial Approach for Prioritizing Wind Farm Development in Northeast Nebraska, USA. ISPRS Int. ].
Geo-Inf. 2014, 3, 968-979. [CrossRef]

Moltames, R.; Naghavi, M.S.; Silakhori, M.; Noorollahi, Y.; Yousefi, H.; Hajiaghaei-Keshteli, M.; Azizimehr, B. Multi-Criteria Decision
Methods for Selecting a Wind Farm Site Using a Geographic Information System (GIS). Sustainability 2022, 14, 14742. [CrossRef]
Demir, A.; Dinger, A.E.; Ciftci, C.; Giilgimen, S.; Uzal, N.; Yilmaz, K. Wind Farm Site Selection Using GIS-Based Multicriteria
Analysis with Life-Cycle Assessment Integration. Earth Sci. Inform. 2024, 17, 1591-1608. [CrossRef]

Kwasnicki, P; Gronba-Chyta, A.; Generowicz, A ; Ciuta, J.; Makara, A.; Kowalski, Z. Characterization of the TCO Layer on a
Glass Surface for PV IInd and IIIrd Generation Applications. Energies 2024, 17, 3122. [CrossRef]

Ashraf, H.A; Li, J.; Li, Z.; Sohail, A.; Ahmed, R.; Butt, M.H.; Ullah, H. Geographic Information System and Machine Learning
Approach for Solar Photovoltaic Site Selection: A Case Study in Pakistan. Processes 2025, 13, 981. [CrossRef]

Adhikari, M.D.; Yune, C.-Y. Geospatial-Based Risk Analysis of Solar Plants Located in the Mountainous Region of Gangwon
Province, South Korea. Renew. Energy 2025, 251, 123408. [CrossRef]

He, Z.; Xu, W,; Sun, Y.; Zhang, X. A GIS-Based Techno-Economic Comparative Assessment of Offshore Fixed and Floating
Photovoltaic Systems: A Case Study of Hainan. Appl. Energy 2025, 391, 125854. [CrossRef]

Chukwuma, E.C.; Onyesolu, F.C.O.; Ani, K.A.; Nwanna, E.C. GIS Bio Waste Assessment and Suitability Analysis for Biogas
Power Plant: A Case Study of Anambra State of Nigeria. Renew. Energy 2021, 163, 1182-1194. [CrossRef]

Fiehl, M.; Leicher, J.; Giese, A.; Gorner, K.; Fleischmann, B.; Spielmann, S. Biogas as a Co-Firing Fuel in Thermal Processing
Industries: Implementation in a Glass Melting Furnace. Energy Procedia 2017, 120, 302-308. [CrossRef]

Mesthrige, T.G.; Kaparaju, P. Decarbonisation of Natural Gas Grid: A Review of GIS-Based Approaches on Spatial Biomass
Assessment, Plant Siting and Biomethane Grid Injection. Energies 2025, 18, 734. [CrossRef]

Uyan, M.; Ertung, E. GIS-Based Optimal Site Selection of the Biogas Facility Installation Using the Best-Worst Method. Chem. Eng.
Res. Des. 2023, 192, 1003-1011. [CrossRef]

Michalski, K.; Koska-Wolny, M.; Chmielowski, K.; Bedla, D.; Petryk, A.; Guzdek, P.; Dabek, K.A.; Gasiorek, M.; Griibel, K,;
Halecki, W. Examining the Potential of Biogas: A Pathway from Post-Fermented Waste into Energy in a Wastewater Treatment
Plant. Energies 2024, 17, 5618. [CrossRef]

Petryk, A.; Czop, M.; Pohrebennyk, V. The Assessment of the Degree of Pollution of Fallow Vegetation with Heavy Metals in
Rural Administrative Units of Psary and Ploki in Poland. In Proceedings of the 18th International Multidisciplinary Scientific
Geoconference SGEM, Albena, Bulgaria, 2-8 July 2018; Volume 18, pp. 921-928. [CrossRef]

Korkovelos, A.; Mentis, D.; Siyal, S.H.; Arderne, C.; Rogner, H.; Bazilian, M.; Howells, M.; Beck, H.; De Roo, A. A Geospatial
Assessment of Small-Scale Hydropower Potential in Sub-Saharan Africa. Energies 2018, 11, 3100. [CrossRef]

Chiu, Y.-R;; Tsai, Y.-L.; Chiang, Y.-C. Designing Rainwater Harvesting Systems Cost-Effectively in an Urban Water-Energy Saving
Scheme by Using a GIS-Simulation Based Design System. Water 2015, 7, 6285-6300. [CrossRef]

Ciula, J.; Sobiecka, E.; Zactona, T.; Rydwariska, P.; Oleksy-Gebczyk, A.; Olejnik, T.P.; Jurkowski, S. Management of the Municipal
Waste Stream: Waste into Energy in the Context of a Circular Economy—Economic and Technological Aspects for a Selected
Region in Poland. Sustainability 2024, 16, 6493. [CrossRef]

Piatkowski, J.; Nowinska, K.; Matula, T.; Siwiec, G.; Szucki, M.; Oleksiak, B. Microstructure and Mechanical Properties of
AlSi10MnMg Alloy with Increased Content of Recycled Scrap. Materials 2025, 18, 1119. [CrossRef]

Malinowski, M.; Guzdek, S.; Petryk, A.; Tomaszek, K. A GIS and AHP-Based Approach to Determine Potential Locations of
Municipal Solid Waste Collection Points in Rural Areas. J. Water Land Dev. 2021, 51, 94-101. [CrossRef]

Kochanek, A.; Ciula, ].; Generowicz, A.; Mitryasova, O.; Jasiriska, A.; Jurkowski, S.; Kwasnicki, P. The Analysis of Geospatial
Factors Necessary for the Planning, Design, and Construction of Agricultural Biogas Plants in the Context of Sustainable
Development. Energies 2024, 17, 5619. [CrossRef]

Kafel, P.; Nowicki, P. Circular Economy Implementation Based on ISO 14001 within SME Organization: How to Do It Best?
Sustainability 2023, 15, 496. [CrossRef]

Plinke, M.; Berndmeyer, J.; Hack, ]. Development of a GIS-Based Register of Biogas Plant Sites in Lower Saxony, Germany: A
Foundation for Identifying P2G Potential. Energy Sustain. Soc. 2025, 15, 7. [CrossRef]

Heck, R,; Rudi, A.; Lauth, D.; Schultmann, F. An Estimation of Biomass Potential and Location Optimization for Integrated
Biorefineries in Germany: A Combined Approach of GIS and Mathematical Modeling. Sustainability 2024, 16, 6781. [CrossRef]
Safari Bazargani, J.; Sadeghi-Niaraki, A.; Choi, S.-M. A Survey of GIS and IoT Integration: Applications and Architecture. Appl.
Sci. 2021, 11, 10365. [CrossRef]

Calka, B.; Szostak, M. GIS-Based Environmental Monitoring and Analysis. Appl. Sci. 2025, 15, 3155. [CrossRef]


https://doi.org/10.1038/s41598-022-05364-y
https://www.ncbi.nlm.nih.gov/pubmed/35087111
https://doi.org/10.3390/ijgi3030968
https://doi.org/10.3390/su142214742
https://doi.org/10.1007/s12145-024-01227-4
https://doi.org/10.3390/en17133122
https://doi.org/10.3390/pr13040981
https://doi.org/10.1016/j.renene.2025.123408
https://doi.org/10.1016/j.apenergy.2025.125854
https://doi.org/10.1016/j.renene.2020.09.046
https://doi.org/10.1016/j.egypro.2017.07.221
https://doi.org/10.3390/en18030734
https://doi.org/10.1016/j.psep.2023.10.058
https://doi.org/10.3390/en17225618
https://doi.org/10.5593/sgem2018/5.2/S20.119
https://doi.org/10.3390/en11113100
https://doi.org/10.3390/w7116285
https://doi.org/10.3390/su16156493
https://doi.org/10.3390/ma18051119
https://doi.org/10.24425/jwld.2021.139019
https://doi.org/10.3390/en17225619
https://doi.org/10.3390/su15010496
https://doi.org/10.1186/s13705-024-00505-9
https://doi.org/10.3390/su16166781
https://doi.org/10.3390/app112110365
https://doi.org/10.3390/app15063155

Appl. Sci. 2025, 15, 10406 28 of 30

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.
49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Kochanek, A.J.; Kobylarczyk, S. The Analysis of the Main Geospatial Factors Using Geoinformation Programs Required for the
Planning, Design and Construction of a Photovoltaic Power Plant. J. Ecol. Eng. 2024, 25, 49-65. [CrossRef]

Koko, M.N.; Eleyi, ES. Impact of Financial Reporting on Management Decision Making in Rivers State Owned Universities. Glob.
J. Hum. Soc. Sci. 2020, 20, 49-54. Available online: https://socialscienceresearch.org/index.php/GJHSS/article /view /3159
(accessed on 7 August 2025).

Puselji¢, M.; Skledar, A.; Pokupec, I. Decision Making as a Management Function. Interdiscip. Manag. Res. 2015, 11, 234-244.
Citroen, C.L. The Role of Information in Strategic Decision-Making. Int. |. Inf. Manag. 2011, 31, 493-501. [CrossRef]
Nurfez-Valdez, E.R. Special Issue on Algorithms in Decision Support Systems Vol.2. Algorithms 2023, 16, 512. [CrossRef]

Kabir, G.; Sadiq, R.; Tesfamariam, S. A Review of Multi-Criteria Decision-Making Methods for Infrastructure Management. Struct.
Infrastruct. Eng. 2014, 10, 1176-1210. [CrossRef]

Baczkiewicz, A.; Watrébski, J.; Kizielewicz, B.; Satabun, W. Towards Objectification of Multi-Criteria Assessments: A Comparative
Study on MCDA Methods. In Proceedings of the 16th Conference on Computer Science and Intelligence Systems (FedCSIS),
Online, 2-5 September 2021; pp. 417—425. [CrossRef]

Taherdoost, H.; Madanchian, M. Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia 2023, 3, 77-87. [CrossRef]
Mohamed, A.-M.O.; Mohamed, D.; Fayad, A.; Al Nahyan, M.T. Enhancing Decision Making and Decarbonation in Environmental
Management: A Review on the Role of Digital Technologies. Sustainability 2024, 16, 7156. [CrossRef]

Almadani, B.; Kaisar, H.; Thoker, I.R.; Aliyu, F. A Systematic Survey of Distributed Decision Support Systems in Healthcare.
Systems 2025, 13, 157. [CrossRef]

Keenan, PB. A Scientometric Analysis of Multicriteria Decision-Making Research. J. Decis. Syst. 2024, 33 (Suppl. S1), 78-88. [CrossRef]
Alam Bhuiyan, M.M.; Hammad, A. A Hybrid Multi-Criteria Decision Support System for Selecting the Most Sustainable Structural
Material for a Multistory Building Construction. Sustainability 2023, 15, 3128. [CrossRef]

Ali, R.; Hussain, A.; Nazir, S.; Khan, S.; Khan, H.U. Intelligent Decision Support Systems—An Analysis of Machine Learning and
Multicriteria Decision-Making Methods. Appl. Sci. 2023, 13, 12426. [CrossRef]

Nassef, A.M.; Abdelkareem, M.A.; Maghrabie, H.M.; Baroutaji, A. Review of Metaheuristic Optimization Algorithms for Power
Systems Problems. Sustainability 2023, 15, 9434. [CrossRef]

Bouaouda, A.; Sayouti, Y. Hybrid Meta-Heuristic Algorithms for Optimal Sizing of Hybrid Renewable Energy System: A Review
of the State-of-the-Art. Arch. Comput. Methods Eng. 2022, 29, 4049-4083. [CrossRef]

Sanin-Villa, D.; Figueroa-Saavedra, H.A.; Grisales-Norena, L.F. Efficient BESS Scheduling in AC Microgrids via Multiverse
Optimizer: A Grid-Dependent and Self-Powered Strategy to Minimize Power Losses and CO, Footprint. Appl. Syst. Innov. 2025,
8, 85. [CrossRef]

Sicuaio, T.; Zhao, P.; Pilesjo, P.; Shindyapin, A.; Mansourian, A. A Multi-Objective Optimization Approach for Solar Farm Site
Selection: Case Study in Maputo, Mozambique. Sustainability 2024, 16, 7333. [CrossRef]

Shao, M.; Mao, Z.; Sun, ].; Guan, X.; Shao, Z.; Tang, T. Multi-Scale Offshore Wind Farm Site Selection Decision Framework Based
on GIS, MCDM and Meta-Heuristic Algorithm. Ocean. Eng. 2025, 316, 119921. [CrossRef]

Olan, E; Spanaki, K.; Ahmed, W.; Zhao, G. Enabling Explainable Artificial Intelligence Capabilities in Supply Chain Decision
Support Making. Prod. Plan. Control. 2024, 36, 808-819. [CrossRef]

Shool, S.; Adimi, S.; Amleshi, R.S.; Bitaraf, E.; Golpira, R.; Tara, M. A Systematic Review of Large Language Model (LLM)
Evaluations in Clinical Medicine. BMC Med. Inform. Decis. Mak. 2025, 25, 117. [CrossRef]

Soori, M.; Karimi Ghaleh Jough, E; Dastres, R.; Arezoo, B. Al-Based Decision Support Systems in Industry 4.0, a Review. . Econ.
Technol. 2024, in press. [CrossRef]

Handler, A.; Larsen, K.R.; Hackathorn, R. Large Language Models Present New Questions for Decision Support. Int. J. Inf. Manag.
2024, 76, 102811. [CrossRef]

Bharti, M. Al Agents: A Systematic Review of Architectures, Components, and Evolutionary Trajectories in Autonomous Digital
Systems. Int. J. Comput. Eng. Technol. 2025, 16, 653-664. [CrossRef]

Maroto-Gémez, M.; Alonso-Martin, F; Malfaz, M.; Salichs, M.A. A Systematic Literature Review of Decision-Making and Control
Systems for Autonomous and Social Robots. Int. J. Soc. Robot. 2023, 15, 745-789. [CrossRef]

Miller, T.; Durlik, I.; Kostecka, E.; Kozlovska, P.; Lobodzifiska, A.; Sokotowska, S.; Nowy, A. Integrating Artificial Intelligence
Agents with the Internet of Things for Enhanced Environmental Monitoring: Applications in Water Quality and Climate Data.
Electronics 2025, 14, 696. [CrossRef]

Rousseas, P; Bechlioulis, C.; Kyriakopoulos, K. Reactive Optimal Motion Planning for a Class of Holonomic Planar Agents Using
Reinforcement Learning with Provable Guarantees. Front. Robot. AI 2024, 10, 1255696. [CrossRef]

Tang, S.; He, B.; Yu, C.; Li, Y,; Li, K. A Survey on Spark Ecosystem: Big Data Processing Infrastructure, Machine Learning, and
Applications. IEEE Trans. Knowl. Data Eng. 2022, 34, 71-91. [CrossRef]

Obe, R.O.; Hsu, L.S. PostGIS in Action, 3rd ed.; Manning Publications: Shelter Island, NY, USA, 2021; ISBN 9781617296697 .


https://doi.org/10.12911/22998993/183628
https://socialscienceresearch.org/index.php/GJHSS/article/view/3159
https://doi.org/10.1016/j.ijinfomgt.2011.02.005
https://doi.org/10.3390/a16110512
https://doi.org/10.1080/15732479.2013.795978
https://doi.org/10.15439/2021F61
https://doi.org/10.3390/encyclopedia3010006
https://doi.org/10.3390/su16167156
https://doi.org/10.3390/systems13030157
https://doi.org/10.1080/12460125.2024.2354642
https://doi.org/10.3390/su15043128
https://doi.org/10.3390/app132212426
https://doi.org/10.3390/su15129434
https://doi.org/10.1007/s11831-022-09730-x
https://doi.org/10.3390/asi8030085
https://doi.org/10.3390/su16177333
https://doi.org/10.1016/j.oceaneng.2024.119921
https://doi.org/10.1080/09537287.2024.2313514
https://doi.org/10.1186/s12911-025-02954-4
https://doi.org/10.1016/j.ject.2024.08.005
https://doi.org/10.1016/j.ijinfomgt.2024.102811
https://doi.org/10.34218/IJCET_16_01_065
https://doi.org/10.1007/s12369-023-00977-3
https://doi.org/10.3390/electronics14040696
https://doi.org/10.3389/frobt.2023.1255696
https://doi.org/10.1109/TKDE.2020.2975652

Appl. Sci. 2025, 15, 10406 29 of 30

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.
76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.
98.

Zeng, Y.; Brown, C.; Raymond, J.; Byari, M.; Hotz, R.; Rounsevell, M. Exploring the opportunities and challenges of using large
language models to represent institutional agency in land system modelling. Earth Syst. Dyn. 2025, 16, 423-449. [CrossRef]
Afroogh, S.; Akbari, A.; Malone, E.; Kargar, M.; Alambeigi, H. Trust in Al: Progress, Challenges, and Future Directions. Humanit.
Soc. Sci. Commun. 2024, 11, 1568. [CrossRef]

Sebastiao, S.P; Dias, D.F-M. Al Transparency: A Conceptual, Normative, and Practical Frame Analysis. Media Cormmun. 2025, 13, 9419. [CrossRef]
Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; MIT Press: Cambridge, MA, USA, 2009.
Aho, A.V,; Hopcroft, ].E.; Ullman, J.D. Data Structures and Algorithms; Addison-Wesley: Boston, MA, USA, 1983.

Riansanti, O.; Thsan, M.; Suhaimi, D. Connectivity Algorithm with Depth First Search (DFS) on Simple Graphs. J. Phys. Conf. Ser.
2018, 948, 012065. [CrossRef]

Ng, R.T.; Han, J. Efficient and Effective Clustering Methods for Spatial Data Mining. In Proceedings of the 1994 VLDB Conference,
Santiago de Chile, Chile, 12-15 September 1994; Morgan Kaufmann: Santiago, Chile, 1994; pp. 144-155.

Xie, K.; Wang, T.; Zhong, P.; Zhao, Z.; Wang, Z. Human Clustering Based on Graph Embedding and Space Functions of Trajectory
Stay Points on Campus. Appl. Sci. 2025, 15, 3090. [CrossRef]

Yan, X.; Han, J. gSpan: Graph-Based Substructure Pattern Mining. In Proceedings of the 2002 IEEE International Conference on
Data Mining, Maebashi City, Japan, 9-12 December 2002; IEEE: Maebashi, Japan, 2002; pp. 721-724. [CrossRef]

Washio, T.; Motoda, H. State of the Art of Graph-Based Data Mining. SIGKDD Explor. 2003, 5, 59-68. [CrossRef]

Rokach, L.; Maimon, O. Clustering Methods. In The Data Mining and Knowledge Discovery Handbook; Maimon, O., Rokach, L., Eds.;
Springer: Boston, MA, USA, 2005; pp. 321-352. [CrossRef]

Jain, A K.; Murty, M.N,; Flynn, PJ. Data Clustering: A Review. ACM Comput. Surv. 1999, 31, 264-323. [CrossRef]

Everitt, B.S.; Landau, S.; Leese, M.; Stahl, D. Cluster Analysis, 5th ed.; Wiley: Chichester, UK, 2011.

Kaufman, L.; Rousseeuw, P]. Finding Groups in Data: An Introduction to Cluster Analysis; Wiley: New York, NY, USA, 1990;
ISBN 0-471-87876-6. [CrossRef]

Defays, D. An Efficient Algorithm for a Complete Link Method. Comput. J. 1977, 20, 364-366. [CrossRef]

Murtagh, E; Contreras, P. Algorithms for Hierarchical Clustering: An Overview. WIREs Data Min. Knowl. Discov. 2012, 2, 86-97. [CrossRef]
Jain, A K. Data Clustering: 50 Years Beyond K-Means. Pattern Recognit. Lett. 2010, 31, 651-666. [CrossRef]

Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-Means Clustering Algorithm. J. R. Stat. Soc. C Appl. Stat. 1979, 28, 100-108. [CrossRef]
MacQueen, J. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967; pp. 281-297.
Arthur, D.; Vassilvitskii, S. K-Means++: The Advantages of Careful Seeding. In Proceedings of the 18th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), New Orleans, LA, USA, 7-9 January 2007; SIAM: New Orleans, LA, USA, 2007;
pp- 1027-1035.

Xu, R.; Wunsch, D. Survey of Clustering Algorithms. IEEE Trans. Neural Netw. 2005, 16, 645-678. [CrossRef]

Halkidi, M.; Batistakis, Y.; Vazirgiannis, M. Cluster Validity Methods: Part I. SIGMOD Rec. 2001, 31, 40-45. [CrossRef]

Python Software Foundation. Python Programming Language. Available online: https://www.python.org/ (accessed on 17
August 2025).

Streamlit Inc. Streamlit—The Fastest Way to Build and Share Data Apps. Available online: https://streamlit.io/ (accessed on 17
August 2025).

PostgreSQL Polska. PostgreSQL—System Zarzadzania Relacyjnymi Bazami Danych. Available online: https:/ /www.postgresql.
org.pl/ (accessed on 17 August 2025).

QGIS Development Team. QGIS—A Free and Open Source Geographic Information System. Available online: https://qgis.org/
(accessed on 17 August 2025).

Apache Software Foundation. Apache Spark™—Unified Analytics Engine for Big Data. Available online: https://spark.apache.
org/ (accessed on 17 August 2025).

GeoPandas Developers. GeoPandas—Python Tools for Geographic Data. Available online: https://geopandas.org/en/stable/
(accessed on 17 August 2025).

Scikit-Learn Developers. Scikit-Learn: Machine Learning in Python. Available online: https://scikit-learn.org/stable/ (accessed
on 17 August 2025).

Uber Technologies Inc. Deck.gl—WebGL-Powered Framework for Large-Scale Data Visualization. Available online: https:
/ /deckgl.readthedocs.io/en/latest/ (accessed on 17 August 2025).

Docker Inc. Docker—Develop, Ship, and Run Applications. Available online: https://www.docker.com/ (accessed on 17 August 2025).
Ollama Inc. Ollama—Run Large Language Models Locally. Available online: https://ollama.com/ (accessed on 17 August 2025).
Lee, H.M,; Yadav, D.; Lee, S.; Govindarazan, K.; Chen, C.; Sundar, S.S. While We Wait... How Users Perceive Waiting Times
and Generation Cues during Al Image Generation. In Proceedings of the Extended Abstracts of the CHI Conference on Human
Factors in Computing Systems (CHI EA’25), Yokohama, Japan, 26 April-1 May 2025; ACM: New York, NY, USA, 2025; p. 602; 8p.
[CrossRef]


https://doi.org/10.5194/esd-16-423-2025
https://doi.org/10.1057/s41599-024-04044-8
https://doi.org/10.17645/mac.9419
https://doi.org/10.1088/1742-6596/948/1/012065
https://doi.org/10.3390/app15063090
https://doi.org/10.1109/ICDM.2002.1184038
https://doi.org/10.1145/959242.959249
https://doi.org/10.1007/0-387-25465-X_15
https://doi.org/10.1145/331499.331504
https://doi.org/10.2307/2532178
https://doi.org/10.1093/comjnl/20.4.364
https://doi.org/10.1002/widm.53
https://doi.org/10.1016/j.patrec.2009.09.011
https://doi.org/10.2307/2346830
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1145/565117.565124
https://www.python.org/
https://streamlit.io/
https://www.postgresql.org.pl/
https://www.postgresql.org.pl/
https://qgis.org/
https://spark.apache.org/
https://spark.apache.org/
https://geopandas.org/en/stable/
https://scikit-learn.org/stable/
https://deckgl.readthedocs.io/en/latest/
https://deckgl.readthedocs.io/en/latest/
https://www.docker.com/
https://ollama.com/
https://doi.org/10.1145/3706599.3719725

Appl.

Sci. 2025, 15, 10406 30 of 30

99.

100.

101.

102.

103.

104.

Gaska, K.; Generowicz, A.; Lobur, M.; Jaworski, N.; Ciula, J.; Vovk, M. Advanced Algorithmic Model for Poly-Optimization of
Biomass Fuel Production from Separate Combustible Fractions of Municipal Wastes as a Progress in Improving Energy Efficiency
of Waste Utilization. E3S Web Conf. 2019, 122, 01004. [CrossRef]

Kochanek, A.; Generowicz, A.; Zactona, T. The Role of Geographic Information Systems in Environmental Management and the
Development of Renewable Energy Sources—A Review Approach. Energies 2025, 18, 4740. [CrossRef]

Wereda, W.; Zaclona, T. Shaping the Image as a Management Instrument in the Contemporary Enterprise. In Scientific Papers of
Silesian University of Technology, Organization and Management, Series 145; Silesian University of Technology Publishing House:
Gliwice, Poland, 2020; pp. 597-611. [CrossRef]

Kochanek, A.; Graz, K.; Potok, H.; Gronba-Chyta, A.; Kwasny, J.; Wiewidrska, I.; Ciula, J.; Basta, E.; Lapinski, ]. Micro- and
Nanoplastics in the Environment: Current State of Research, Sources of Origin, Health Risks, and Regulations—A Comprehensive
Review. Toxics 2025, 13, 564. [CrossRef]

Gronba-Chyta, A.; Generowicz, A.; Kwasnicki, P.; Kochanek, A. Recovery and Recycling of Selected Waste Fractions with a Grain
Size Below 10 mm. Sustainability 2025, 17, 1612. [CrossRef]

Kochanek, A.; Janczura, J.; Jurkowski, S.; Zactona, T.; Gronba-Chyta, A.; Kwasnicki, P. The Analysis of Exhaust Composition
Serves as the Foundation of Sustainable Road Transport Development in the Context of Meeting Emission Standards. Sustainability
2025, 17, 3420. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1051/e3sconf/201912201004
https://doi.org/10.3390/en18174740
https://doi.org/10.29119/1641-3466.2020.145.44
https://doi.org/10.3390/toxics13070564
https://doi.org/10.3390/su17041612
https://doi.org/10.3390/su17083420

	Introduction 
	GIS as the Foundation of Spatial Analyses 
	The Role of Multi-Criteria Methods and Metaheuristic Optimization in Decision Support Systems 
	The Role of Machine Learning, Large Language Models, and Agents in Decision Support Processes 
	Clustering Algorithms 
	Depth-First Search Algorithm 
	Agglomerative Clustering Algorithm 
	K-Means Algorithm 

	Materials and Methods 
	Application Concept 
	Data Intake and Preprocessing (Step 1) 
	Scenario Involving the Use of Apache Spark (Step 2a) 
	Scenario Involving the Use of Apache Spark and PostGIS (Step 2b) 
	Aggregation of Results (Step 3) 

	Software Environment 
	Implementation of Clustering Algorithms 
	Depth-First Search (_Cluster_Plots_NN) 
	Improved Depth-First Search (_Cluster_Plots_NN_Improved) 
	Basic K-Means (_Cluster_Plots_KMeans) 
	Improved K-Means (_Cluster_Plots_KMeans_Improved) 
	Agglomerative Clustering (_Cluster_Plots_Agglomerative_Clustering) 


	Results 
	Evaluation Metric 
	Execution Time Metric 
	Resource Consumption Metric 

	Experimental Plan 
	Test Environment 
	Test Scenarios 


	Discussion 
	Data Loading Results 
	Clustering Algorithms Performance Results 
	Limitations and Challenges 
	Extension with Additional Evaluation Criteria 
	Comparison of Plot Evaluation by the Traditional Method and the Agent-Based Model 

	Conclusions and Future Research 
	References

